高等数学中极限问题的解法详析
- 格式:doc
- 大小:611.00 KB
- 文档页数:18
千里之行,始于足下。
极限求解方法总结极限是高等数学中的重要概念,是数学分析和微积分的基础。
在实际问题中,往往需要通过求解极限来得到数学模型的一些重要结果。
本文将对极限求解的方法进行总结与归纳。
1. 基本极限公式:在求解极限问题时,我们首先要生疏一些基本的极限公式,这些公式可以挂念我们快速求解极限问题。
常用的基本极限公式有:- 数列极限:常数数列、等差数列、等比数列、级数等。
- 函数极限:幂函数、指数函数、对数函数、三角函数等。
2. 替换法:替换法是求解极限问题时常用的一种方法。
通过将极限问题中的变量进行替换,使得计算变得更加简洁。
常用的替换法有以下几种:- 分子分母同时除以最高次数的项;- 用无穷小量代替无穷大量;- 用无穷小量的幂代替无穷小量。
3. 夹逼准则:夹逼准则是求解极限问题的一种重要方法。
通过找到一个上界和一个下界,使得极限问题的解被夹在这两个界之间,可以确定极限的存在性和取值。
常用的夹逼准则有以下几种:- 当函数在某一点四周趋于同一个极限;- 当两个函数的极限分别为一正一负,但两个函数的确定值函数的极限相等。
4. 施瓦茨不等式:第1页/共3页锲而不舍,金石可镂。
施瓦茨不等式是求解极限问题中常用的一种方法。
它可以用来估量两个函数的内积,从而得到某些函数的极限。
施瓦茨不等式的形式如下:\\[|\\int_{a}^{b}f(x)g(x)dx|\\leq\\sqrt{\\int_{a}^{b}f^2(x)dx}\\s qrt{\\int_{a}^{b}g^2(x)dx}\\]5. 利用基本不等式:在求解极限问题时,我们可以利用一些基本的不等式来推导和求解极限问题。
常用的基本不等式有以下几个:- 平均值不等式:对于两个正数a和b,平均值不等式可以表示为\\[(a+b)/2≥\\sqrt{ab}\\]- 柯西不等式:对于两个数列或者两个函数,柯西不等式可以表示为\\[\\sum a_kb_k≤(\\sum a_k^2)^{1/2}(\\sum b_k^2)^{1/2}\\]6. 等价无穷小替换法:在求解极限问题时,假如消灭了不适合直接求解的形式,可以尝试使用等价无穷小替换法。
解决高考数学中的函数极限与连续性难题的方法在高考数学考试中,函数极限与连续性是一道难题,许多学生常常感到头疼。
然而,只要掌握正确的解题方法和技巧,这类题目不再是难题。
本文将介绍一些解决高考数学中的函数极限与连续性难题的方法,帮助学生们更好地应对这一考点。
一、关于函数极限函数极限是高考数学中常见的考点之一。
在解决函数极限难题时,一般可以采取以下步骤:1. 确定x趋于的值:首先,需要明确x的变化趋势,是否趋于无穷大、无穷小或某一特定值。
根据情况,选择使用不同的极限判断方法。
2. 分解式并化简:对于复杂的函数,可以通过分解式和化简的方式来更好地理解题目,找到解题的突破口。
将函数拆解成更简单的形式,有助于快速求解。
3. 利用常用极限公式:高考中涉及到的函数极限问题中,有许多常用的极限公式可以利用。
例如极限值为自然对数e、三角函数极限、指数函数极限等。
4. 利用洛必达法则:洛必达法则是许多函数极限问题中的常用技巧。
当遇到函数间的极限形式为“无穷与无穷相除”、“0/0”、“∞/∞”等不确定形式时,可使用洛必达法则将问题转化为求导数的形式,进一步求解。
5. 利用夹逼定理:夹逼定理是函数极限问题中常用的判断方法。
当某一函数趋于极限时,可以找到两个已知函数,一个极限值较小,一个极限值较大,通过这两个函数夹逼待求函数,从而确定其极限。
二、关于函数连续性函数连续性是另一个常见的考点,解决函数连续性难题可以采取以下方法:1. 确定函数的定义域:首先,需要明确函数的定义域,即x的取值范围。
根据定义域的特点,确定函数在该范围内是否连续。
2. 利用函数连续性的性质:函数连续性的性质是解决连续性问题的关键。
例如,有界闭区间上的连续函数一定有最大值和最小值等。
3. 分段讨论函数的连续性:对于分段函数,可以将函数分为不同的区间,并分别讨论每个区间上的连续性。
通过分段讨论,可以更好地理解函数在不同区间上的连续性特点。
4. 利用介值定理和零点定理:介值定理和零点定理是解决连续性问题的重要定理。
高等数学中函数极限的求法技巧解析函数极限是高等数学中的一个重要概念,常常用于研究各种复杂的数学问题。
在求解函数极限的过程中,有一些常用的技巧,可以使计算更加简洁、高效。
下面简要介绍一些常用的函数极限求法技巧。
一、分子分母同除分子分母同除是一种常用的技巧,可以化简分式,便于计算。
具体操作如下:假设要求的函数极限为:lim f(x) / g(x)当分子和分母都含有相同的项时,可以将它们同除以这个公共项,得到新的分式。
例如:将分子和分母都除以 (x+1) ,得到:这样就将原问题化简成了一个更简单的问题。
二、恒等式变形在计算函数极限时,可以通过运用一些基本恒等式进行变形,以使计算更加简单。
例如:1、三角函数的基本恒等式:sin^2 x + cos^2 x = 1这些恒等式可以用于化简三角函数的表达式,使计算更加简便。
2、指数运算的恒等式:a^x / a^y = a^(x-y)三、用等价无穷小代替函数极限中经常会涉及到等价无穷小的概念。
如果 lim f(x) = 0,lim g(x) = 0,且lim f(x) / g(x) = 1,那么就可以将 f(x) 用 g(x) 的等价无穷小代替,求解新的函数极限。
例如:可以用等价无穷小代替 sin x,得到:lim 1 / x = 0四、洛必达法则洛必达法则是一种用于求解 0/0 或∞/∞ 型无穷小的极限的方法,也是求导数时的基本工具。
该法则的核心思想是将原问题转化成一个求导数的问题,并通过对导数的求解来解决原问题。
具体操作如下:且在极限点 x0 处,f(x0) = 0,g(x0) = 0。
1、求出 f'(x0) 和 g'(x0),如果两者都存在且g'(x0) ≠ 0,则原极限等于 f'(x0) / g'(x0)。
f(x) = f(x0) + f'(x0)(x-x0) + o(x-x0)其中 o(x-x0) 表示 x -> x0 时比 (x-x0) 高阶的无穷小量。
高等数学中函数极限的求法技巧解析函数极限是高等数学课程中的重要内容,它是研究函数在某一点邻域内的变化趋势的数学工具。
函数极限的求法技巧在课程中占据着重要的地位,能够帮助学生更好地理解和掌握函数极限的求解方法。
下面我们将从极限的定义、性质和一些常见的求法技巧进行解析,希望能够帮助学生更好地理解这一部分内容。
一、极限的定义和性质1. 极限的定义对于函数f(x),当x无限接近于某一点a时,如果函数f(x)的取值无限接近于某个确定的值A,那么我们说函数f(x)在点a处的极限为A,记作lim(x->a)f(x)=A。
这个定义中的“无限接近”可以用数学语言来描述,即对于任意小的正数ε,存在一个正数δ,当0<|x-a|<δ时,有|f(x)-A|<ε成立。
这就是函数极限的ε-δ定义,是高等数学中函数极限的核心概念。
2. 极限的性质函数极限有一些基本性质,如:(1)唯一性:当极限存在时,它是唯一确定的;(2)局部有界性:如果函数在某一点的极限存在,则该点的邻域内函数的取值是有界的;(3)局部保号性:如果函数在某一点的极限存在且大于(或小于)零,则该点的邻域内函数的取值保持大于(或小于)零。
二、常见的极限求法技巧1. 数列极限在高等数学中,函数极限的求解经常涉及到数列极限的技巧。
数列极限是函数极限的基础,常用来推导函数的极限性质和求解复杂的极限问题。
我们可以利用数列极限的性质和定理来求解函数极限,如夹逼定理、单调有界原理等。
2. 无穷小量与无穷大量的运算在高等数学中,常常需要对无穷小量和无穷大量进行运算,这也是求解函数极限的一个重要技巧。
我们可以将无穷小量和无穷大量进行合并、分解或代换,来简化函数极限的求解过程,例如利用无穷小量的性质来消去形式不确定的无穷小量。
3. 函数的展开和化简在求解函数极限时,我们可以利用泰勒展开、函数的特殊性质等手段,将待求的极限转化为更简单的形式。
通过展开和化简函数,我们可以更容易地求解函数在某一点的极限,从而使得求解过程更加简单和直观。
高等数学中函数极限的求法技巧解析
函数极限是高等数学中的重要概念,也是其他数学领域的基础。
在计算函数极限时,有一些常用的技巧和方法,可以帮助我们更快地求解极限问题。
下面是一些常用的函数极限求法技巧。
1. 代入法:当函数极限中存在形如"0/0"或"无穷大/无穷大"的不定型时,可以尝试使用代入法求解。
即将函数中的变量逐渐靠近极限值进行代入,计算出函数在极限点附近的取值,进而得到极限结果。
2. 无穷小代换法:当函数极限中含有无穷大或无穷小的项时,可以使用无穷小代换法进行求解。
即将无穷大或无穷小项替换为相应的无穷小量,对含有无穷大或无穷小的函数进行化简,再进行极限计算。
3. 分子分母除以最高幂次法:当函数极限中含有多项式的幂次较高时,可以尝试使用分子分母除以最高幂次的方法进行化简。
将函数中的每一项均除以该最高幂次,使得函数的分子和分母变为相对较小的多项式,从而更便于求解极限。
4. 辅助函数法:当函数极限较复杂时,可以尝试构造一个辅助函数来辅助求解。
通过适当选择辅助函数,将原函数转化为一个更简单的形式,再求解极限。
5. 夹逼定理:夹逼定理是函数极限求解的重要工具,适用于求解某些特殊的函数极限。
当函数的上下界均存在且极限相等时,可以通过夹逼定理求出函数的极限。
6. 泰勒级数展开法:当函数极限中含有三角函数、指数函数等特殊函数时,可以尝试使用泰勒级数展开法进行求解。
通过将特殊函数展开为无穷级数的形式,可以将原函数转化为一个容易求解的形式,再进行极限计算。
高中数学极限问题解题思路与例题一、引言高中数学中,极限问题是一个重要的考点,也是学生们普遍感到困惑的一个难点。
正确理解和掌握极限问题的解题思路对于学习数学和应对考试都具有重要意义。
本文将从基本概念、解题思路和例题分析三个方面,详细介绍高中数学极限问题的解题方法。
二、基本概念1. 极限的定义极限是数学中一个重要的概念,用于描述函数在某一点附近的趋势。
对于函数f(x),当自变量x无限接近某一点a时,如果函数值f(x)无限接近于一个常数L,那么我们就说函数f(x)在点a处的极限为L,记作lim(x→a)f(x)=L。
2. 极限的性质极限具有一些重要的性质,如极限的唯一性、四则运算法则、复合函数的极限等。
掌握这些性质对于解题非常有帮助。
三、解题思路1. 分析题目在解决极限问题时,首先要仔细分析题目,明确题目中给出的条件和要求。
特别要注意是否存在不确定形式,如0/0、∞/∞等。
2. 利用基本极限高中数学中,有一些基本的极限公式是非常重要的,如lim(x→0)(sinx/x)=1、lim(x→∞)(1+x)^1/x=e等。
在解题时,可以利用这些基本极限公式来简化计算。
3. 利用极限的性质极限具有一些重要的性质,如极限的四则运算法则、复合函数的极限等。
在解题时,可以灵活运用这些性质来简化计算。
4. 利用夹逼定理夹逼定理是解决极限问题的常用方法之一。
当我们无法直接计算出极限时,可以通过找到两个函数,一个上界函数和一个下界函数,使得它们的极限都等于我们要求的极限,从而利用夹逼定理求出极限的值。
四、例题分析1. 例题一求极限lim(x→0)(x^2+sinx)/x。
解析:首先,我们可以利用基本极限lim(x→0)(sinx/x)=1,将题目转化为lim(x→0)(x+sinx)/x。
然后,利用极限的四则运算法则,将分子和分母分别求极限,得到lim(x→0)x/x+lim(x→0)sinx/x=1+0=1。
2. 例题二求极限lim(x→∞)(2x^2+x)/(3x^2-4x)。
高等数学求极限的常用方法(附例题和详解)高等数学求极限的常用方法(附例题和详解)在高等数学中,求极限是一个基础而重要的概念,它在各个数学领域都有广泛的应用。
本文将介绍一些常用的方法,以及针对这些方法的例题和详细解析。
I. 无穷小量法无穷小量法是求解极限最常见的方法之一。
它的基本思想是将待求极限转化为无穷小量之间的比较。
下面通过一个例题来说明这个方法。
例题1:求极限lim(x→0) (sin x) / x解析:考虑当 x 趋近于 0 时,sin x 和 x 的关系。
根据三角函数的极限性质,我们知道 sin x / x 的极限为 1。
因此,原式可以看作(sin x) / x ≈ 1,即它在 x 趋近于 0 时趋近于 1。
故lim(x→0) (sin x) / x = 1.II. 夹逼法夹逼法也是常用的求解极限的方法,它适用于求解含有不等式的极限问题。
下面通过一个例题来说明夹逼法的思想。
例题2:求极限lim(x→0) x^2sin(1/x)解析:首先,我们要注意到 x^2sin(1/x) 的取值范围在 [-x^2, x^2] 之间,因为 -1 ≤sin(θ) ≤ 1 对任意θ 成立。
然后,我们可以利用夹逼法,将 x^2sin(1/x) 夹逼在 0 和 0 之间。
也就是说,对于任何 x,都有 -x^2 ≤ x^2sin(1/x) ≤ x^2。
根据夹逼定理,当 x 趋近于 0 时,x^2sin(1/x) 的极限为 0。
故lim(x→0) x^2sin(1/x) = 0.III. 泰勒展开法泰勒展开法是一种将函数在某点附近进行多项式逼近的方法,它可以帮助我们求解一些复杂的极限问题。
下面通过一个例题来说明泰勒展开法的应用。
例题3:求极限lim(x→0) (e^x - 1) / x解析:考虑函数 f(x) = e^x 在 x = 0 处的泰勒展开式:f(x) = f(0) + f'(0)x + f''(0)x^2 / 2! + f'''(0)x^3 / 3! + ...其中,f'(0)表示 f(x) 在 x = 0 处的导数,依次类推。
高等数学求极限的14种方法一、极限的定义1、极限的保号性很重要:设A x f x x =→)(lim 0,(i)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。
2、极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限与0x x →的极限。
要特别注意判定极限就是否存在在:(i)数列{}的充要条件收敛于a n x 就是它的所有子数列均收敛于a 。
常用的就是其推论,即“一个数列收敛于a 的充要条件就是其奇子列与偶子列都收敛于a ”(ii)A x x f x A x f x =+∞→=-∞→⇔=∞→limlimlim)()((iii)A x x x x A x f x x =→=→⇔=→+-lim lim lim 0)((iv)单调有界准则(v)两边夹挤准则(夹逼定理/夹逼原理)(vi)柯西收敛准则(不需要掌握)。
极限)(lim 0x f x x →存在的充分必要条件就是:εδεδ<-∈>∃>∀|)()(|)(,0,021021x f x f x U x x o时,恒有、使得当二.解决极限的方法如下:1、等价无穷小代换。
只能在乘除..时候使用。
例题略。
2、洛必达(L’ho spital)法则(大题目有时候会有暗示要您使用这个方法)它的使用有严格的使用前提。
首先必须就是X 趋近,而不就是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然就是趋近于正无穷的,不可能就是负无穷。
其次,必须就是函数的导数要存在,假如告诉f(x)、g(x),没告诉就是否可导,不可直接用洛必达法则。
另外,必须就是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。
洛必达法则分为3种情况:(i)“00”“∞∞”时候直接用 (ii)“∞•0”“∞-∞”,应为无穷大与无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。
求极限的各种方法及解析1.约去零因子求极限例1:求极限11lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。
【解】6)1)(1(lim 1)1)(1)(1(lim2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限例2:求极限13lim 323+-∞→x x x x 【说明】∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。
【解】3131lim 13lim 311323=+-=+-∞→∞→x xx x x x x 【注】(1) 一般分子分母同除x 的最高次方;(2) ⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a nnm m m m n n n n x 0lim 0110113.分子(母)有理化求极限例3:求极限)13(lim 22+-++∞→x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。
【解】13)13)(13(lim )13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x0132lim22=+++=+∞→x x x例4:求极限30sin 1tan 1limxxx x +-+→ 【解】xx x xx x x x x x sin 1tan 1sin tan lim sin 1tan 1lim3030+-+-=+-+→→ 41sin tan lim 21sin tan limsin 1tan 11lim30300=-=-+++=→→→x x x x x x xx x x x【注】本题除了使用分子有理化方法外,及时分离极限式中的非........零因子...是解题的关键 4.应用两个重要极限求极限两个重要极限是1sin lim0=→xxx 和e x nx x x n n x x =+=+=+→∞→∞→10)1(lim )11(lim )11(lim ,第一个重要极限过于简单且可通过等价无穷小来实现。
高数极限巧解例析求解函数的极限,历来是高数考试的必考内容,这其中,00型与∞∞型的未定式求极限,更是考察测试的重点方向。
在此例析一些解题诀窍,与众网友共同探讨交流。
一、巧用等价无穷小替换求极限1. 1lim(arcsin arctan )x x x→∞⋅ 解:本题求极限,如果用好等价无穷小替换,将会非常轻松,易如反掌。
解法如下:11arctan~()x x x→∞ ∴原式=arcsin lim0x xx→∞=(arcsin 22x ππ≤≤注意:-,有界函数与无穷小的乘积仍为无穷小。
) 2.2cot (tan sin )lim x x x x x →- 解:本题属于0型未定式,可能很多人第一个想到的就是用洛必达法则,这道题如若用该法则求导,计算量将会非常大,算式也会变得十分复杂,极易出错。
有兴趣的同学不妨试一试,看看求导后的函数表达式会是怎样的。
对于本题,如果采用等价无穷小替换求极限,将会容易得多,具体解题过程如下: 由于cos cot sin x x x =,1tan sin sin (1)cos x x x x-=-所以可得原式=2cos 1sin (1)sin cos lim x x x x x x →⋅- =21cos lim x xx →- [注:21cos ~(0)2x x x -→] =222limx x x → =123. 3332lim ln()1n n n n →∞+- 解:本题求极限,首先用倒代换将函数变形,然后再运用等价无穷小替换。
详细步骤如下: 令31n t= ,则原式=33321lim ln()11n n n n→∞+-=0112lim ln()1t t t t→+- =0113lim ln()1t t t t t→-+- =013lim ln(1)1t t t t →+- [注:33ln(1)~(0)11t t t t t+→--] =013lim[()()]1t t t t→- =3(注意:本题不可用洛必达法则求极限,因为n 属于离散变量,不能求导。
数学分析中极限的求法摘要:本文主要归纳了数学分析中求极限的十四种方法, 1:利用两个准则求极限, 2:利用极限的四则运算性质求极限, 3:利用两个重要极限公式求极限, 4:利用单侧极限求极限,5:利用函数的连续性求极限, 6:利用无穷小量的性质求极限, 7:利用等价无穷小量代换求极限, 8:利用导数的定义求极限, 9:利用中值定理求极限, 10:利用洛必达法则求极限, 11:利用定积分求和式的极限,12:利用级数收敛的必要条件求极限, 13:利用泰勒展开式求极限, 14:利用换元法求极限。
关键词: 夹逼准则, 单调有界准则, 无穷小量的性质, 洛必达法则, 中值定理, 定积分, 泰勒展开式, 级数收敛的必要条件.极限是数学分析的基础,数学分析中的基本概念来表述,都可以用极限来描述。
如函数y =f(x)在0x x =处导数的定义,定积分的定义,偏导数的定义,二重积分,三重积分的定义,无穷级数收敛的定义,都是用极限来定义的。
极限是研究数学分析的基本公具。
极限是贯穿数学分析的一条主线。
学好极限是从以下两方面着手。
1:是考察所给函数是否存在极限。
2:若函数否存在极限,则考虑如何计算此极限。
本文主要是对第二个问题即在极限存在的条件下,如何去求极限进行综述。
1:利用两个准则求极限。
(1)夹逼准则:若一正整数 N,当n>N 时,有n x ≤n y ≤n z 且lim lim ,n n x x x z a →∞→∞==则有 lim n x y a→∞= .利用夹逼准则求极限关键在于从n x 的表达式中,通常通过放大或缩小的方法找出两个有相同极限值的数列{}n y 和 {}n z ,使得n n n y x z ≤≤。
例[1]n x =求n x 的极限解:因为n x 单调递减,所以存在最大项和最小项.......n x ≥+=.......n x ≤++=n x ≤≤又因为1x x ==lim 1n x x →∞=(2):单调有界准则:单调有界数列必有极限,而且极限唯一。
利用单调有界准则求极限,关键先要证明数列的存在,然后根据数列的通项递推公式求极限。
例:[1] 证明下列数列的极限存在,并求极限。
123,n y y y y a a a a ====++++证明:从这个数列构造来看 ny 显然是单调增加的。
用归纳法可证。
又因为23,n y y y === 所以得21n n y a y -=+. 因为前面证明n y 是单调增加的。
两端除以 n y得1n nay y <+因为1n y y ≥=则n a y ≤, 从而11n ay +≤1n y ≤≤即 n y 是有界的。
根据定理{}n y 有极限,而且极限唯一。
令 lim n n y l→∞= 则 21lim lim()n n n n y y a -→∞→∞=+则2l l a =+. 因为 0,n y >解方程得l =所以lim n n y l →∞==2:利用极限的四则运算性质求极限极限的四则运算性质:1:两收敛数列的和或积或差也收敛且和或积或差的极限等于极限和的或积或差。
2:两收敛数列且作除数的数列的极限不为零,则商的极限等于极限的商。
通常在这一类型的题中,一般都含有未定式不能直接进行极限的四则运算。
首先对函数施行各种恒等变形。
例如分之,分母分解因式,约去趋于零但不等于零的因式;分之,分母有理化消除未定式;通分化简;化无穷多项的和(或积)为有限项。
例;求极限(1)2211lim 21x x x x →---(2)32lim3x x →--(3)3113lim()11x x x →--++(4) 已知111,1223(1)n x n n =+++⨯⨯-⨯求lim n n x→∞解:(1) 2211lim 21x x x x →---=1(1)(1)lim (1)(21)x x x x x →+--+=11lim 21x x x →++=23(2)32lim 3xx →-=x →x →=14 (3)3113lim()11x x x →--++=2312lim 1x x x x →---+=21(1)(2)lim (1)(1)x x x x x x →-+-+-+=212lim 1x x x x →---+=-1(4) 因为111,1223(1)n x n n =+++⨯⨯-⨯111111111122334411n n n=-+-+-+--+---11n =-所以 1lim lim(1)1n n n x n →∞→∞=-=3:利用两个重要极限公式求极限两个极限公式 (1) 0sin 1limlim sin 1x x x x x x →→∞==(2)101lim(1)lim(1)xx x x x ex →∞→+=+=在这一类型题中,一般也不能直接运用公式,需要恒等变形进行化简后才可以利用公式。
例:求下列函数的极限[4](1)230lim lim cos cos cos cos2222n n n x x xx →→∞⎧⎫⎡⎤⎨⎬⎢⎥⎣⎦⎩⎭(2)22lim(1)m m n m →∞- 解:(1)23cos cos cos cos2222n x x x x=231sin cos cos cos cossin 222222sin 2n nn x x xx xx x=1sin 2sin 2n nx x23lim cos cos cos cos2222n n x x xx→∞=1 limsin 2sin 2n n nxx →∞sin =lim 2sin2n n n x x →∞=sin xx230lim lim cos cos cos cos2222n x n x x x x →→∞⎧⎫⎡⎤⎨⎬⎢⎥⎣⎦⎩⎭=0lim x →sin xx =1(2) 22lim(1)m m n m →∞-=22222()2lim(1)m n m n mm n m --→∞-=2222()2lim(1)m n mn m n m --→∞-=0e =14:利用单侧极限求极限这种方法使用于求分段函数在分段点处的极限,首先必须考虑分段点的左、右极限,如果左、右极限都存在且相等,则函数在分界点处的极限存在,否则极限不存在。
例:x>0 x 021sin ,()1,x f x xx ⎧⎪=⎨⎪+≤⎩ 求 f(x)在x=0的左右极限 解:01lim sin x x x +→⋅=1 01lim sin x x x -→⋅=100lim ()lim ()1x x f x f x +-→→== 0lim ()1x f x →=5:利用函数的连续性求极限这种方法适用于求复合函数的极限。
如果 u=g(x) 在点0x 连续 g(0x )=0u ,而y=f(u)在点0x 连续,那么复合函数y=f(g(x))在点0x 连续。
即0lim (())(())(lim ())x x x x f g x f g x f g x →→==也就是说,极限号limx x →可以与符号f 互换顺序。
例:求1lim ln(1)xx x →∞+ 解:令 y =lnu, u =1(1)xx + 因为 lnu 在点 01lim ln(1)x x u ex →∞=+= 处连续所以 1lim ln(1)xx x →∞+ =1ln lim(1)x x x →∞⎡⎤+⎢⎥⎣⎦ =ln e =16:利用无穷小量的性质求极限:无穷小量的性质:无穷小量与有界量的乘积还是无穷小量。
如果lim ()0x x f x →=,g(x)在某区间0000(,),(,)x x x x δδ-+有界,那么0lim ()()0x x f x g x →⋅=.这种方法可以处理一个函数不存在但有界,和另一个函数的极限是零的极限的乘积的问题。
例:求sin limx xx →∞解: 因为 sin 1x ≤ 1lim0x x →∞=所以 sin limx xx →∞=07:利用等价无穷小量代换求极限:等价无穷小量:当1y z →时,称y,z 是等价无穷小量:记为 y z 在求极限过程中,往往可以把其中的无穷小量,或它的主要部分来代替。
但是,不是乘除的情况,不一定能这样做。
例:求4303lim (sin )2x x x x →+ 解:sin 22x x∴4303lim (sin )2x x x x →+=4303lim ()2x x x x →+=4330lim 8x x x x→+=88:利用导数的定义求极限导数的定义:函数f(x)在0x 附近有定义,,x ∀则00()()y f x x f x =+-如果0000()()limlim x x f x x f x yx x →→+-=存在,则此极限值就称函数 f(x)在点 0x 的导数记为 /0()f x .即/0000()()()limx f x x f x f x x →+-=在这种方法的运用过程中。
首先要选好f(x)。
然后把所求极限。
表示成f(x)在定点0x 的导数。
例:求 2lim()22x x ctg xππ→-⋅解:取f(x)= 2tg x .则22211lim()222lim 2(2)2lim 22x x x x ctg x tg x tg x tg x x πππππππ→→→-⋅==-⋅--=2()()2lim2x f x f x πππ→--=/1()2f π=21(2sec 2)2x x π= =129:利用中值定理求极限:1:微分中值定理:若函数 f(x) 满足 (i ) 在 [],a b 连续 .(ii )在(a,b)可导;则在(a,b)内至少存在一点ξ,使/()()()f b f a f b a ξ-=-例[2]:求30sin(sin )sin limx x xx →-解: []sin(sin )sin (sin )cos (sin )x x x x x x x θ-=-⋅⋅-+ ()01θ<<30sin(sin )sin limx x xx →-=[]3(sin )cos (sin )limx x x x x x x θ→-⋅⋅-+=20cos 1cos 0lim3x x x →-⋅=0sin lim6x xx →-=16-2:积分中值定理:设函数f(x) 在闭区间 [],a b 上连续;g(x) 在[],a b 上不变号且可积,则在[],a b 上至少有一点ξ使得()()()()bbaaf xg x f g x dxξ⋅=⋅⎰⎰()a b ξ≤≤例:求 40lim sin n n xdxπ→∞⎰解: 40lim sin n n xdxπ→∞⎰=lim (0)4n n six πξ→∞⋅⋅-04πξ⎛⎫≤≤ ⎪⎝⎭ =lim(sin )4nn πξ→∞=10:洛必达法则求极限:洛必达法则只能对00或∞∞型才可直接使用,其他待定型必须先化成这两种类型之一,然后再应用洛必达法则。