考研数学强化复习:知识点重点、难点、疑点清晰化
- 格式:doc
- 大小:54.50 KB
- 文档页数:2
2023考研数学重难点及复习规划1500字2023考研数学重难点及复习规划随着社会的不断发展,越来越多的本科毕业生选择继续深造,并报考研究生。
在众多的考研科目中,数学是一个既重要又难以突破的科目。
为了帮助考生更好地复习数学,下面将介绍2023考研数学的重难点,并提出一份详细的复习规划。
一、重难点分析1. 高等数学的基本概念与基本原理:考生需要掌握高等数学的一些基本概念和基本原理,如极限、连续性、导数等。
这些知识是数学建模和解题的基础。
2. 线性代数:考生需要掌握线性代数的基本知识,如矩阵的运算、线性空间的概念与性质、线性方程组的解法等。
线性代数在数学分析、概率论和统计学等学科中都有广泛的应用。
3. 概率论与数理统计:考生需要掌握概率论与数理统计的基本概念与方法,如概率计算、随机变量的概率分布、参数估计等。
这些知识在实际问题中的应用非常广泛。
4. 进一步数学分析:考生需要进一步巩固和扩展高等数学的知识,如多元函数的微分学、多元函数的积分学等。
这些内容是比较难以理解和掌握的。
二、复习规划1. 制定合理的学习计划:考生需要根据自己的实际情况和复习时间,合理地制定每天的学习计划。
要坚持每天按照计划进行复习,避免拖延和懒散。
2. 突出重点难点的复习:考生可以根据自己的情况和复习进度,合理地安排重点难点的复习时间。
可以结合教材和参考书,多做一些相关的练习题和习题册。
3. 多做真题和模拟题:考生可以查阅历年的真题和模拟题,多做一些相关的题目。
通过做题可以检测自己的知识掌握情况,并锻炼解题能力和应对考试的能力。
4. 掌握解题方法和技巧:考生要掌握一些解题的方法和技巧,如分析问题、转换思路、多角度思考等。
这些方法和技巧可以帮助考生更好地解决数学问题。
5. 考前复习与调整:在考前的最后一个月,考生要进行复习总结和提炼,查漏补缺。
同时,要合理安排时间,注意休息和调整心态,保持良好的答题状态。
以上是2023考研数学的重难点分析和复习规划,希望能对考生复习数学有所帮助。
考研数学复习重难点攻克难题的有效方法考研数学作为考研复习的重点科目之一,常常是考生们头疼的难题。
而在复习过程中,攻克数学的重难点问题是考生们需要着重解决的。
本文将介绍一些有效的方法,帮助考生们更好地攻克考研数学中的重难点问题。
一、充分理解数学基础知识要想攻克考研数学的重难点问题,首先必须要对数学基础知识有一个充分的理解。
数学是一门逻辑性很强的学科,只有掌握了基础知识,才能够更好地理解和解决难题。
因此,在复习的初期,考生要花时间系统地复习数学基础知识,夯实基础。
二、找准数学重难点在复习过程中,考生要通过大量的练习和模拟考试,找准个人的数学重难点。
每个人的数学重难点可能并不相同,有的人可能在概率统计上有困惑,有的人则在高等代数上有所迷茫。
只有找准了个人的数学重难点,才能有针对性地加以攻克。
三、多做题,多总结做题是攻克数学重难点的关键步骤之一。
在做题的过程中,考生要注意积累解题的经验和技巧,同时也要及时总结和归纳。
对于做错的题目,要仔细分析错误的原因,找到解题过程中的漏洞。
多做题并总结,在错题本上记录自己容易犯的错误,这样在接触到类似的题目时就能避免犯同样的错误,提高解题的准确性。
四、创设有效的学习方法每个人的学习方法都有所不同,因此,考生要根据自己的特点找到适合自己的学习方法。
有些人适合背诵、默写,有些人适合通过解析题来理解难题。
在探索学习方法的过程中,考生应该不断尝试,不断调整,找到最适合自己的方法,并在学习过程中保持良好的学习习惯。
五、多参加讨论与交流与他人讨论和交流是提高数学解题能力的一种有效途径。
通过与其他考生或者老师的讨论和交流,可以加深对数学问题的理解,也可以从他人的解题思路中获取启发。
此外,还可以参加一些数学学习小组或者网上的论坛,与更多的人进行交流和讨论,拓宽自己的数学视野。
六、保持积极心态,不断坚持考研数学的复习是一个长期的过程,需要考生们保持坚持和积极的心态。
遇到困难时,不要气馁,而是要勇敢地面对,并积极寻找解决问题的方法。
年考研数学复习应该注重哪些考点突破考研数学作为众多考生心中的“拦路虎”,其复习需要有清晰的思路和重点突破的方向。
以下将详细探讨在考研数学复习中应该注重的关键考点以及相应的突破方法。
一、函数与极限函数与极限是考研数学的基础,也是每年必考的重点内容。
对于函数,要熟练掌握函数的性质,如奇偶性、单调性、周期性和有界性等。
同时,对于各类基本函数,如幂函数、指数函数、对数函数、三角函数等,要清晰了解其定义域、值域、图像特征等。
在极限方面,要理解极限的定义、性质和运算法则。
掌握数列极限和函数极限的计算方法,包括利用等价无穷小替换、洛必达法则、泰勒公式等。
此外,对于极限存在的判定、两个重要极限以及无穷小的比较等知识点也要重点掌握。
突破方法:多做练习题,通过大量的题目来加深对函数与极限概念和方法的理解。
总结常见的题型和解题技巧,形成自己的解题思路。
二、一元函数微分学这部分内容在考研数学中占据重要地位。
重点包括导数的定义、几何意义、求导法则以及导数的应用。
对于导数的定义,要深刻理解其内涵,能够灵活运用定义求解导数。
求导法则如四则运算、复合函数求导等要熟练掌握,并且能够准确快速地计算。
导数的应用是重点中的重点,包括函数的单调性、极值与最值、凹凸性与拐点等。
要学会利用导数来判断函数的单调性和极值,通过二阶导数判断函数的凹凸性和拐点。
突破方法:注重对概念的理解,结合图形来加深对导数应用的认识。
对于各类题型,要进行分类整理,总结解题的套路和方法。
三、一元函数积分学积分学是微分学的逆运算,包括不定积分和定积分。
不定积分的计算方法,如换元法、分部积分法等要熟练掌握。
定积分的概念、性质、计算以及定积分的应用都是重要考点。
在定积分的应用方面,要能够利用定积分求平面图形的面积、旋转体的体积、曲线的弧长等。
同时,要理解反常积分的概念和计算方法。
突破方法:多做积分计算的练习题,提高计算的准确性和速度。
对于积分的应用,要通过实际的例子来加深理解,掌握解题的步骤和关键。
数学考研重难点解析数学考研一直是考生们的噩梦之一,而其中的重难点更是让人头疼。
本文将针对数学考研的重难点进行解析,帮助考生们更好地应对考试。
一、高等代数高等代数是数学考研的重点和难点之一。
在考研复习中,重视掌握高等代数的基础概念和基本操作是关键。
在这部分中,常见的重点包括:行列式、矩阵、特征值与特征向量、线性方程组、向量空间等。
在解题过程中,需要注意以下几个方面:1.1 行列式行列式是高等代数中的基础概念,也是许多问题的解题关键。
要熟练掌握行列式的性质和计算方法,特别是行列式的展开和伴随矩阵的运用。
1.2 矩阵矩阵是高等代数中的重要概念,常常与线性方程组和向量空间相联系。
在解题时,要熟练掌握矩阵的运算规则和性质,并能够灵活地运用矩阵的知识解决相关问题。
1.3 特征值与特征向量特征值与特征向量是矩阵理论中的核心内容,与矩阵的对角化和相似矩阵密切相关。
解题时要能够准确求解特征值和特征向量,并理解其在矩阵理论中的重要作用。
1.4 线性方程组线性方程组是高等代数中的一个基本概念,也是数学科学中最基本的问题之一。
要熟练掌握线性方程组的求解方法和解的性质,特别是矩阵法和向量法的应用。
1.5 向量空间向量空间是高等代数中的一个重要知识点,理解和掌握向量空间的定义和性质对于解决相关问题非常关键。
在复习中,要能够熟练地应用向量空间的概念解决各种题型。
二、数学分析数学分析在数学考研中一直是重点和难点。
在数学分析的复习中,需要注意以下几个方面的内容:2.1 极限与连续极限与连续是数学分析的基础概念,也是数学考研中的重点内容。
要熟练掌握极限的定义和性质,理解连续函数的概念和判定方法。
2.2 导数与微分导数与微分是数学分析中的重要内容,也是应用最广泛的数学工具之一。
能够准确求导、应用导数解题以及理解微分的几何和物理意义非常重要。
2.3 级数级数是数学分析中的重难点之一,也是考研中的热门考点。
要掌握级数的收敛性判定方法,理解级数的性质和应用。
西藏自治区考研数学复习资料重难点解析与高分技巧数学作为考研的一门重要科目,对于考生来说常常是一个难题。
面对复杂的数学知识和繁琐的计算,很多考生感到无从下手。
本文旨在为西藏自治区的考研数学考生提供一些复习资料的重点解析和高分技巧,帮助考生更好地备战考试。
一、集合与函数集合与函数是数学的基础,在考研数学中也占有重要地位。
在复习过程中,考生需要重点关注以下几个重难点:1. 集合的基本概念和运算规律:掌握集合的定义、元素与子集的关系、集合的运算规律等。
熟练掌握这些基本知识是解题的基础。
2. 映射与函数:对于映射与函数的概念要有清晰的理解,包括定义、性质、一一对应、满射、单射等。
重点掌握复合函数、反函数和函数的图像和性质等内容。
3. 二元关系与等价关系:了解二元关系的定义和性质,掌握等价关系、等价类和商集的相关概念。
重点学习等价关系的判定条件和性质。
二、数列与级数数列与级数是数学中常见且重要的概念,在考研数学中也会经常遇到。
考生需要有以下几个方面的重点解析与技巧:1. 数列的概念和性质:了解数列的定义和基本性质,包括数列的递推公式、通项公式、等差数列与等比数列等。
学会应用这些性质解决数列相关的题目。
2. 数列的极限:掌握数列极限的定义和相关性质,包括收敛数列与发散数列的判定准则,数列极限的性质等。
尤其要注意掌握夹逼准则和单调有界原理。
3. 级数的概念和性质:了解级数的定义和基本性质,掌握无穷级数的和的概念和判敛条件。
尤其要注意学习常用级数的收敛性和求和方法。
三、导数与微分导数与微分是数学中的重难点,也是考研数学中的高频考点。
考生需要重点关注以下几个方面:1. 导数的定义和性质:理解导数的定义,掌握导数的四则运算法则和基本公式。
特别要注意理解导函数与原函数的关系。
2. 高阶导数与隐函数求导:学会求高阶导数和利用隐函数求导公式解题。
特别要注意掌握常见的隐函数求导技巧。
3. 微分中值定理与泰勒公式:掌握拉格朗日中值定理、柯西中值定理和泰勒公式的条件和应用。
考研数学复习中的重难点整理与总结考研是许多大学生的选择,也是众多人追求升学和就业竞争力的必经之路。
数学作为考研的必修科目,对于学生来说是难点较多的科目之一,需要花费较多时间进行复习。
因此,针对考研数学的复习中,整理和总结数学的重难点是至关重要的。
本文将从以下几个方面对考研数学的重难点进行整理和总结。
一、高等数学中的重难点高等数学是考研数学的核心考点之一,也是考研数学难度最大的部分之一。
以下是高等数学中的一些重难点。
1. 极限的概念和性质:极限是高等数学中的基础性概念,需要考生掌握。
在极限运算的过程中,需要注意一些常用的极限公式和定理,如夹逼准则和洛必达法则等。
2. 一元函数微分学:数学中的微分学也是考研难点之一,需要考生掌握一定的微积分知识。
包括导数的定义、导数的运算法则、高阶导数等。
3. 一元函数积分学:积分与微分是一对相互依存的概念。
需要掌握定积分和不定积分概念、性质以及积分的计算公式。
二、线性代数中的重难点线性代数是考研数学中的另一大重点,以下是线性代数中的一些重难点。
1. 行列式的定义和性质:行列式是线性代数中的关键概念,需要考生掌握其定义和基本性质,如行列式的计算方法、逆矩阵与行列式的关系。
2. 矩阵和向量的乘法:矩阵和向量的乘法是线性代数的基础内容。
需要考生掌握矩阵和向量的定义及其乘法的规则和运算法则。
3. 特征值和特征向量:特征值和特征向量是矩阵的重要性质。
需要考生掌握对角化的概念和方法,即如何通过特征向量和特征值将矩阵对角化。
三、概率统计中的重难点概率统计是考研数学中的另一难点,以下是概率统计中的一些重难点。
1. 随机变量及其分布函数:随机变量是概率统计的核心概念之一,需要掌握随机变量的概念、离散型和连续性随机变量的概率密度函数和分布函数等。
2. 参数估计:参数估计是概率统计中的一个重要内容,主要包括点估计和区间估计法。
需要掌握最大似然估计法、矩估计法和贝叶斯估计法等。
3. 假设检验:假设检验是概率统计中的关键方法之一,该方法主要用于检验数据分布的准确性。
考研数学复习有哪些重点难点对于众多考研学子来说,数学往往是备考过程中的一座大山。
要想成功翻越这座山,就必须清楚了解复习中的重点难点,并采取有效的策略加以攻克。
高等数学部分,函数、极限与连续是基础中的基础。
极限的计算方法多种多样,包括利用等价无穷小替换、洛必达法则、泰勒公式等,这部分内容不仅在选择题和填空题中经常出现,也是后续章节的重要工具。
导数与微分的概念和应用是重点之一,要熟练掌握求导公式和法则,能够运用导数解决函数的单调性、极值、最值等问题。
积分是高等数学的核心内容,不定积分的计算方法、定积分的应用以及反常积分的概念和计算都是需要重点关注的。
多元函数的微积分学也是难点所在,比如复合函数求偏导、多元函数的极值与条件极值等。
线性代数部分,矩阵和行列式的运算规则及性质是必须牢记的基础知识。
向量组的线性相关性是一个重点也是难点,需要理解线性相关和线性无关的概念,掌握判断向量组线性相关性的方法。
线性方程组的求解是线性代数中的核心内容,要熟练掌握用矩阵和行列式的方法求解线性方程组,并理解其解的结构。
特征值和特征向量的计算以及矩阵的相似对角化是考试的高频考点,这部分内容对于理解矩阵的性质和应用具有重要意义。
概率论与数理统计部分,随机事件和概率的基本概念和计算方法是基础。
随机变量及其分布是重点,要熟悉常见的离散型和连续型随机变量的分布,如二项分布、正态分布等。
多维随机变量及其分布也是难点之一,特别是边缘分布和条件分布的计算。
数字特征,如期望、方差、协方差等的计算和性质需要重点掌握。
大数定律和中心极限定理的理解和应用也是概率论中的重要内容。
在复习过程中,要注重基础知识的巩固。
很多同学在追求难题的解答时,却忽略了基础知识的重要性。
实际上,考研数学的大部分题目都是对基础知识的考查和应用。
因此,要对基本概念、定理、公式等进行深入理解和记忆,做到能够熟练运用。
同时,要注重练习。
通过大量的练习题,可以提高解题的速度和准确性,熟悉各种题型和解题方法。
考研数学复习应该注重哪些重点难点对于众多考研学子来说,数学往往是一块难啃的“硬骨头”。
要想在考研数学中取得理想的成绩,明确复习的重点难点并采取有效的策略至关重要。
首先,函数与极限这一板块是基础中的重点。
函数的性质,如单调性、奇偶性、周期性等,以及极限的计算方法,包括四则运算、洛必达法则等,都是必须熟练掌握的内容。
在函数部分,复合函数的求导、反函数的求导以及函数的连续性等知识点经常出现在考题中。
而对于极限,除了掌握常见的求极限方法,还需理解极限的定义和性质,能够灵活运用极限的思想解决问题。
其次,一元函数微分学也是重点之一。
导数的定义、几何意义以及各种函数的求导法则都要烂熟于心。
利用导数判断函数的单调性、极值和最值是常见的考点。
同时,中值定理,如罗尔定理、拉格朗日中值定理和柯西中值定理,是比较难理解但又经常考查的内容。
这部分要求我们能够准确地理解定理的条件和结论,并能熟练运用定理进行证明和计算。
一元函数积分学同样不容忽视。
不定积分和定积分的计算方法是基础,包括换元积分法、分部积分法等。
定积分的应用,如求平面图形的面积、旋转体的体积、曲线的弧长等,也是考试的重点。
此外,反常积分的概念和计算方法也需要掌握。
多元函数微积分学是考研数学中的一个难点。
偏导数和全微分的概念及计算,多元函数的极值和条件极值,二重积分、三重积分的计算方法,以及曲线积分和曲面积分等内容,不仅知识点繁多,而且计算复杂。
在复习这部分时,要多做练习题,加深对概念的理解,提高计算能力。
无穷级数也是一个重要的考点。
数项级数的收敛性判别,幂级数的收敛半径、收敛区间和函数的求法,以及傅里叶级数的展开等内容,需要我们有较强的逻辑思维和推理能力。
线性代数部分,矩阵的运算、逆矩阵的求解、向量组的线性相关性、线性方程组的解的结构以及特征值和特征向量等都是重点。
特别是矩阵的特征值和特征向量,以及二次型的相关内容,经常出现在考题中。
这部分的知识点相互关联紧密,需要形成一个完整的知识体系。
陕西省考研数学复习重难点剖析与解题技巧分享陕西省考研数学科目一直以来都是考生们备考的重点和难点之一。
本文将对陕西省考研数学复习过程中的重难点进行剖析,并分享一些解题技巧,帮助考生们更好地备考。
一、复习重难点剖析1. 线性代数线性代数作为数学的一个重要分支,也是陕西省考研数学科目中的一大难点。
在复习过程中,应重点关注以下内容:(1)矩阵与向量的基本概念及性质:矩阵的运算法则、矩阵的特征值和特征向量等。
(2)线性方程组的解法:高斯消元法、矩阵的初等变换法等。
(3)矩阵的特征值与特征向量:特征值与特征向量的求解方法,特征值与特征向量的性质及应用等。
2. 高等数学高等数学作为数学的基础课程,也是陕西省考研数学科目中的一大重点。
在复习过程中,应重点关注以下内容:(1)极限与连续:函数极限的概念与性质、无穷小与无穷大、函数连续性及其判定等。
(2)一元函数微分学:导数的定义、导数的基本性质、高阶导数、隐函数与参数方程的导数等。
(3)一元函数积分学:不定积分的概念与性质、定积分的概念与性质、牛顿—莱布尼茨公式、定积分的计算等。
3. 概率统计概率统计作为应用数学的一门重要课程,在陕西省考研数学科目中也占有一定的比重。
在复习过程中,应重点关注以下内容:(1)随机事件与概率:事件的概念与运算、概率的定义与性质、条件概率、全概率公式、贝叶斯公式等。
(2)随机变量与概率分布:随机变量的概念、离散型随机变量、连续型随机变量、常见离散型和连续型概率分布等。
(3)参数估计与假设检验:点估计与区间估计、参数的最大似然估计、假设检验的基本原理和步骤等。
二、解题技巧分享1. 理清知识框架在复习过程中,首先要理清相应学科的知识框架,建立起完整的知识体系。
通过对知识点的整理和归纳,掌握各个知识点之间的联系和衔接,从而更好地理解和掌握相关知识。
2. 多练习、多总结针对陕西省考研数学科目的复习,多做题是非常重要的。
通过做题,可以帮助巩固知识,加深对知识的理解,并提高解题能力。
考研数学备考重点难点剖析与攻克方法在考研备考过程中,数学科目一直是令考生头疼的难关之一。
无论是数学基础薄弱还是题目难度大,考生都需要采取一些有效的方法来应对考试。
本文将从数学备考的重点和难点入手,分析其原因并提供相应的攻克方法,帮助考生更好地备考数学科目。
一、数学备考重点分析1. 数学分析数学分析作为考研数学的重点部分,涉及极限、连续、微分和积分等基础概念和定理。
在备考过程中,需要重点关注以下几个方面:(1)极限与函数:理解极限的概念、性质和运算法则,掌握常见函数的极限和函数的连续性。
(2)一元函数微分学:掌握导数的定义、运算法则和应用,熟悉常见函数(如幂函数、指数函数、对数函数和三角函数)的导数计算方法。
(3)一元函数积分学:了解积分的定义、性质和基本公式,熟练掌握函数的不定积分和定积分的计算方法。
2. 线性代数线性代数是考研数学中占比较大的部分,备考时需要重点掌握矩阵、向量和线性方程组等内容。
(1)矩阵与行列式:了解矩阵的基本概念、运算规则和性质,熟练计算行列式的值和求解矩阵的逆。
(2)向量空间与线性变换:理解向量空间的定义和性质,熟悉线性变换的概念和基本性质。
(3)线性方程组:掌握线性方程组的解的判定定理和求解方法,熟练求解齐次和非齐次线性方程组。
二、数学备考难点剖析1. 概念理解不清数学备考中的一个常见难点是对概念的理解不清晰。
有时候,考生对于某个概念的定义和性质掌握不够,导致在解题过程中产生困惑。
2. 解题思路错误在备考数学时,有些考生在解题过程中容易陷入思维定式,没有灵活运用所学知识,导致无法找到合适的解题思路。
此外,考生对于一些题目的解题思路没有完全掌握,也是备考中的难点之一。
三、数学备考攻克方法1. 扎实基础,理清概念数学备考的第一步是扎实基础,确保对数学的基本概念和定理有清晰的理解。
可以通过参考相关教材或参加一些数学辅导班来加强基础知识的学习。
在学习过程中,要注意理清各个概念之间的关系,形成系统的知识结构。
考研数学强化复习:知识点重点、难点、
疑点清晰化
进入到八月可以说是已经进入到考研备考强化阶段的后期,这个备考时期尤为重要,对于考研数学的复习,你是否在思考着明明勤学苦练,却没有达到预期的复习成果呢,太奇考研专家认为,没有达成理想的复习效果,没有真正抓住复习的诀窍,致使学习效率上不去,在这里建议同学们,这段时间备考重点第一应当将知识点的重点、难点、疑点清晰化,在练习中强化技巧。
一、解题思路和方法要注意的细节问题
要做到对知识点清晰分层,实际上不是一个简单的过程,考研数学历来以考试内容多、知识面广、综合性强。
所以建议考生应当深刻理解考试大纲、深刻了解自己的基础情况。
且不能仅想通过一些“解题技巧”成功,要清楚任何知识的积累都是长期努力的结果,都是需要我们踏踏实实来努力的,切勿投机。
有些同学在考场上,不知道怎样下手,不知道该用哪个公式。
这些都是因为考生对数学基本概念掌握不够牢固,理解不够透彻。
所以,建议考生在数学复习中一定要重视基础知识,要复习所有的公式、定理、定义,多做一些基础题来帮助巩固基本知识,在复习基础知识的时候也要学会找出各知识点的内在联系。
例如:线性代数的内容不多,但基本概念和性质较多,他们之间的联系也比较多。
考生特别要根据每年线性代数考试的两个大题内容,找出所涉及到的概念与方法之间的联系与区别。
向量的线性表示与非齐次线性方程组解的讨论之间的联系;向量的线性相关(无关)与齐次线性方程组有非零解(仅有零解)的讨论之间的联系;实对称阵的对角化与实二次型化标准型之间的联系等。
掌握他们之间的联系与区别,对大家做线性代数的两个大题在解题思路和方法上会有很大的帮助。
二、如何培养逻辑思维能力和综合应用能力
对于数学复习本阶段最明显的作用是强化技巧,发现自己的薄弱环节。
数学能力的提高,是建立在一定的题量上的,所以一定要做习题。
但是,同样的做了很多题,有的人成绩迅猛提高,有的人却止步不前,原因就是方法和总结。
因此,考生在日常复习过程中要善于梳理知识点,适当的进行习题训练,对于同类型的题目,考生要尽量完整地做,包括所需的公式,各步的计算,千万不能眼高手低,有时候一看题觉得自己会做就放弃演算过程,这是不好的习惯。
只有每次在做题时善始善终,才能提高做题的准确程度,甚至发现自己的一些思维漏洞。
对于数学复习只有及时配合做题加以巩固,方可透彻理解各章节的知识点及其应用,达到相辅相成的理想效果。
此外,考生要对自己做错的题目要特别用心,通过做题来查缺补漏,训练思维。
提高解题速度、计算准确率,培养自己的逻辑思维能力和综合应用能力。
尤其是计算准确率,数学真题80%都是计算题,所以计算准确率和解题速度是争取数学高分的一个重要前提。
另外,大家要学会使知识系统化。
善于总结也是需要十分强调的一点。
因为很多同学做题的过程就到对过答案或是纠正过错误就结束了,一套题的价值也就到此为止了。
因此大家在纠正完错误之后,需要再把这套试题从头看一遍,总结一下自己都在哪些方面出错了,原因是什么,这套题中有没有出现你不知道的新的方法、思路,新推导出的定理、公式等,并把这些有用的知识全都写到你的笔记本上,以便随时查看和重点记忆。
海天考研辅导专家提醒考生,对于大题的解题方法,要仔细想一想,都涉及到哪些科目和章节了,这些知识点之间有哪些联系等,从而使自己所掌握的知识系统化,以达到融会贯通。
只有这样,才能使
你做过的题目实现其最大的价值。
三、发挥考研真题最大价值
考研复习过程中,做历年真题是必经阶段,不光要做,还要做到熟练。
真题中每一道题的解题思路、所考查知识点都应熟练掌握。
做真题不仅可以了解命题特点,也可检测出自己的薄弱点,针对性复习,以达到更好的复习效果。
所以要求考生重视历年真题。
做真题可分两步,第一步一套套地做,这样一是可以检验复习水平,发现不足的地方。
另外为合理安排考场上答题时间积累经验。
第二步,按照章节进行做,在第一步基础上,有些题目有可能会做错,接下来,在各个章节中在专题中做,把该类型的题目,最近十年考试题好好研究,弄清楚常考的是哪些情况,有可能怎么变化,还有可能怎么考。
另外,要求考生通过对考研的试题类型、特点、思路进行系统的归纳总结,有意识地重点解决问题对提高考生解题的速度和准确性是有很大帮助的。
对于那些具有很强的典型性、灵活性、启发性和综合性的题,要特别注重解题思路的培养,尽管试题千变万化,其知识结构基本相同,题型相对固定。
小提示:目前本科生就业市场竞争激烈,就业主体是研究生,在如今考研竞争日渐激烈的情况下,我们想要不在考研大军中变成分母,我们需要:早开始+好计划+正确的复习思路+好的辅导班(如果经济条件允许的情况下)。
2017考研开始准备复习啦,早起的鸟儿有虫吃,一分耕耘一分收获。
加油!。