聚合物基复合材料自修复的研究进展
- 格式:pdf
- 大小:251.97 KB
- 文档页数:5
人体自我修复词汇1.Research Progress In Self-Healing Polymer Composites聚合物基自修复复合材料的研究进展2.Experimental Research On Intelligent Self-Monitoring And Self-Repairing Of Concrete Beam With SMA;SMA复合混凝土梁智能自监测目修复试验研究3.Study On The Self-Healing Polymer Material With Microcapsulated Healing Agent;基于微胶囊技术的自修复材料的研究4.Functional Mechanism And Experimental Research OfSelf-Repairing Concrete;自修复混凝土的工作机理及试验研究5.Study Of PS/PDMS Self-Healing Material;聚苯乙烯/PDMS共聚物自修复材料的研究6.Bending Test Of Biomimetic Self-Repair Concrete Pole仿生自修复混凝土梁的弯曲试验研究7.Function Point Slicing Model For IT System Self-Healing 用于IT系统自修复的功能点切片模型8.Self-Monitoring And Repairing Based On Crack Of Concrete Beam Embedded With SMASMA混凝土梁的裂缝监测及自修复9.Synthetic And Characterization Of Microcapsules For Self-Healing Polymer Composite;复合材料自修复用微胶囊的制备及性能表征10.Wearing Self-Repairing And Tribological Properties Of Al Complex Ad ditives铝复合添加剂的磨损自修复和摩擦学特性。
自修复环氧防腐涂层的研究进展目录1. 内容综述 (2)1.1 研究背景与意义 (3)1.2 国内外研究现状概述 (4)2. 自修复环氧防腐涂层材料的设计与制备 (5)2.1 材料选择与改进 (6)2.2 涂层制备方法与优化 (8)2.3 涂层性能评价标准建立 (8)3. 自修复环氧防腐涂层的机理研究 (9)3.1 自修复机制的探究 (10)3.2 防腐效果的评估方法 (12)3.3 涂层与基材的界面结合分析 (13)4. 自修复环氧防腐涂层在典型环境中的应用 (14)4.1 在金属腐蚀环境中的应用 (15)4.2 在化工环境污染环境中的应用 (17)4.3 在海洋工程防腐环境中的应用 (18)5. 自修复环氧防腐涂层的性能改进与优化 (18)5.1 提高耐磨性、耐腐蚀性和耐候性 (20)5.2 优化涂层结构与成分以提高整体性能 (21)5.3 涂层的多功能化与集成化研究 (22)6. 实际应用案例分析 (23)6.1 工程实例介绍 (25)6.2 应用效果与评价 (26)6.3 经验教训与发展建议 (27)7. 结论与展望 (28)7.1 研究成果总结 (29)7.2 存在问题与挑战 (31)7.3 未来发展方向与前景展望 (32)1. 内容综述随着科技的不断发展,自修复环氧防腐涂层作为一种新型环保型涂料,逐渐受到人们的关注和重视。
自修复环氧防腐涂层具有优异的耐磨、耐腐蚀、抗老化等性能,能够有效地延长物体的使用寿命,降低维修成本,减少对环境的污染。
国内外学者在自修复环氧防腐涂层的研究方面取得了一系列重要进展。
自修复环氧防腐涂层的制备工艺得到了不断的优化,研究人员通过采用不同的成膜基料、添加剂和分散剂等,成功地实现了不同类型自修复环氧防腐涂层的制备。
还研究了纳米颗粒、微米级颗粒等特殊功能填料在自修复环氧防腐涂层中的应用,进一步提高了涂层的性能。
自修复环氧防腐涂层的性能研究取得了显著成果,研究人员通过对不同种类的自修复环氧防腐涂层进行对比试验,发现其具有较高的抗划伤性、耐磨性和耐腐蚀性,能够有效抵抗各种恶劣环境的侵蚀。
混凝土自我修复技术的革命:重塑建筑的未来在现代建筑领域,混凝土作为一种广泛使用的建筑材料,其耐久性和可持续性一直是工程师和科学家们关注的焦点。
近年来,随着自我修复技术的出现,这一领域迎来了一场革命。
自我修复混凝土通过模拟生物体的自愈能力,能够在受到损伤后自动恢复其结构和功能,这一概念不仅令人着迷,更具有改变游戏规则的潜力。
自我修复技术的核心在于其能够在混凝土结构中嵌入一种特殊的“愈合剂”,这种愈合剂在裂缝形成时被激活,进而填充裂缝并恢复混凝土的原始机械特性。
这一过程可以分为两个主要类型:自主修复和工程修复。
自主修复依赖于水泥基复合材料固有的机制,而工程修复则是一个经过设计的工程过程。
尽管这一领域的研究工作已经取得了大量进展,但自我修复技术的潜力尚未完全实现。
自我修复技术的发展,不仅仅是对传统建筑材料的一种补充,它更是对建筑行业可持续发展理念的一种践行。
通过在混凝土中添加如包裹聚合物、矿物质或细菌等愈合剂,可以在特定条件下触发自我修复过程。
例如,当裂缝打开胶囊时,释放的愈合剂就会启动修复机制。
此外,通过添加矿物质添加剂、结晶性掺合料、超吸水剂或其他聚合物,可以刺激自主修复过程。
这种智能的修复方法不仅能够延长混凝土结构的使用寿命,还能减少对环境不友好的修复材料的使用。
在自我修复技术的研究中,环境因素和材料特性的相互作用是关键。
例如,环境友好的细菌如芽孢杆菌可以替代常用的环氧树脂和丙烯酸树脂等修复材料,这些材料不仅对环境不友好,而且可能导致混凝土与修复材料之间的裂缝和剥离。
此外,自我修复的智能方法还包括通过内部或添加化学物质来提供钙离子,这有助于刺激裂缝愈合过程。
自我修复技术的有效性评估通常涉及对恢复的相关机械特性的评估。
在压缩、弯曲和扭转测试中,自我修复混凝土试样的应力-应变关系显示出在损伤后经过愈合处理,其强度恢复率可以达到显著的水平。
这些结果表明,自我修复技术不仅能够提高结构的耐久性,还能够在一定程度上恢复材料的性能。
FEATURE ARTICLESelf-healing Polymers and CompositesCapsules, circulatory systems and chemistry allow materials to fix themselvesScott R. White, Benjamin J. Blaiszik, Sharlotte L. B. Kramer, Solar C. Olugebefola, Jeffrey S. Moore, Nancy R. SottosNothing lasts forever. Any humanmade material, used in anything from toys to bridges, will eventually fail, if not maintainedand repaired. Traditionally, this problem has been addressed through extensive inspection and expensive replacement ofdamaged parts. Biological systems, however, have evolved to include alternative ways to repair internal and external damagevia healing mechanisms. Materials researchers worldwide, including those in our group, have been working on methods tomimic these healing abilities in polymers, composites and other synthetic materials. Such self-healing materials, whentriggered by a crack or tear, can repair themselves and recover their original functionality using only the materials that areinherently available to them. They offer a new means to achieve safer and longer-lasting products and components, and signala shift in the traditional paradigms of material design and engineering.The guiding principles for synthetic self-healing are seen in biological systems. Damage that causes injury triggers the firstresponse, inflammation and blood clotting. This initiating step is followed by cell proliferation at the site of injury, whichdeposits a matrix for the repair. The final stage of healing, matrix remodeling, is the regrowth of new tissue to fill in the wound. This process can take place over a longer period, months to possibly years, depending on the severity of the injury.In synthetic systems, there is a similar cascade of events, but it is more simplistic and takes place at a faster rate. At first, damage actuates the start of the process, then new materials are transported to the site rapidly, and healing occurs as the material reacts to form an adhesive bond with the damaged area. Most often the healing agent is made of two types of liquid materials that solidify when mixed. Finally comes a chemical repair process, analogous to matrix remodeling; its timescale varies depending on the type of healing mechanism, but it occurs in the range of hours to several days at most. The goal ofself-healing is to match the rate of repair with that of the damage, thereby achieving a state of stasis in the material. The rate of damage is largely controlled by external factors, such as the material’s strain rate, how frequently it experiences loading and the magnitude of the loading. However, the healing rate can be adjusted by, for example, varying temperature or chemical- reaction rates through control of raw-material types and concentrations.Research on self-healing materials is relatively new, with most of the progress coming within the last decade.Although in theory any material can self-heal, the results for polymers and fiber-reinforced composites arerelatively more mature in comparison with efforts in ceramics, metals and other materials. Whatever the classof material, self-healing mechanisms can be broadly classified into three groups: capsule-based, vascular andintrinsic. Each group differs by the method used to sequester the material’s healing functionality until it istriggered by damage. The groups also vary by the different amounts of damaged volume that they can heal,as well as the repeatability of healing in the same location and the rate of healing. Thus each approach has itsown challenges and advantages.Capsule-based materials incorporate a healing agent that is held and protected in discrete spherical shells,which are ruptured by damage. The self-healing mechanism is activated by the release and reaction of thehealing agent at the damage site. However, after release, the healing agent is depleted, so it only works for asingle local healing.Vascular materials carry the healing agent in a network of capillaries or hollow channels, which may be singletubes, discrete planes of interconnected tubes, or three-dimensional networks of channels. When damageruptures the vasculature and delivers the healing agent, the network can be refilled (either from an externalsource or from undamaged, connected channels), so it can support multiple local-healing events.Intrinsic materials instead have a latent self-healing ability, usually built into the chemical network of thepolymer material, rather than a separate, sequestered healing agent. They rely on repairs made through molecular-scale mechanisms, such as hydrogen bonding, ionic interactions or polymer-chain mobility and entanglement. Each of these mechanisms is reversible, making multiple healings possible.Raw MaterialsFor capsule-based materials, there are a number of techniques for creating polymer shell walls that protect the reactivematerials inside them. The most common methods involve forming a shell at the interface of droplets in an oil-in-wateremulsion. In this case, the resulting shell will be thin and brittle, like that of an egg, and it will rupture when force is applied.Another procedure involves emulsifying a melted polymer so that it forms droplets, which are then solidified by a temperaturechange or by the removal of a solvent, creating a thick protective sphere around the core. Once the healing agent is protectedinside capsules, the next step is to incorporate them into a polymer. In practice, capsules have been shown to survive shearforces, temperature changes and other processing conditions encountered during mixing with various matrices, or bodymaterials, at multiple scales. After the capsules are integrated, the composite material can be characterized, as the capsulescan affect the mechanical properties of the material, such as its strength, fracture toughness and elasticity. The effectivenessof the triggering mechanism and healing performance can be validated after the fact using a number of imaging methods, suchas optical microscopy, infrared or x-ray spectroscopy, or scanning electron microscopy.Each healing event requires at least two materials: the healing agent and a polymerizer, which makes it solidify. With capsules,several arrangements can be used to ensure that the materials don’t come into contact until healing is needed. In all cases,the healing agent is placed in capsules, but there are different methods for incorporating the polymerizer. For instance, thecatalyst simply can be distributed freely through the bulk of the main material. Several types of materials, including epoxiesand fiber-reinforced composites, have been tried with this arrangement, and our group has found that the resulting materialshave high healing efficiencies and have extended lifespans when subjected to fatigue loading. A variation on this method is toenclose the polymerizer in wax spheres that protect the relatively sensitive chemical from the harsh matrix environment.Another approach is to sequester both the healing agent and the polymerizer in separate capsules. This method provesparticularly useful when there are more than two materials required in order to make a repair. The capsules for the differentYou can find this online at /issues/num2/2011/5/self-healing-polymers-and-composites/1© Sigma Xi, The Scientific Research SocietyBelow is given annual work summary, do not need friends can download after editor deleted Welcome to visit againXXXX annual work summaryDear every leader, colleagues:Look back end of XXXX, XXXX years of work, have the joy of success in your work, have a collaboration with colleagues, working hard, also have disappointed when encountered difficulties and setbacks. Imperceptible in tense and orderly to be over a year, a year, under the loving care and guidance of the leadership of the company, under the support and help of colleagues, through their own efforts, various aspects have made certain progress, better to complete the job. For better work, sum up experience and lessons, will now work a brief summary.To continuously strengthen learning, improve their comprehensive quality. With good comprehensive quality is the precondition of completes the labor of duty and conditions. A year always put learning in the important position, trying to improve their comprehensive quality. Continuous learning professional skills, learn from surrounding colleagues with rich work experience, equip themselves with knowledge, the expanded aspect of knowledge, efforts to improve their comprehensive quality.The second Do best, strictly perform their responsibilities. Set up the company, to maximize the customer to the satisfaction of the company's products, do a good job in technical services and product promotion to the company. And collected on the properties of the products of the company, in order to make improvement in time, make the products better meet the using demand of the scene.Three to learn to be good at communication, coordinating assistance. On‐site technical service personnel should not only have strong professional technology, should also have good communication ability, a lot of a product due to improper operation to appear problem, but often not customers reflect the quality of no, so this time we need to find out the crux, and customer communication, standardized operation, to avoid customer's mistrust of the products and even the damage of the company's image. Some experiences in the past work, mentality is very important in the work, work to have passion, keep the smile of sunshine, can close the distance between people, easy to communicate with the customer. Do better in the daily work to communicate with customers and achieve customer satisfaction, excellent technical service every time, on behalf of the customer on our products much a understanding and trust.Fourth, we need to continue to learn professional knowledge, do practical grasp skilled operation. Over the past year, through continuous learning and fumble, studied the gas generation, collection and methods, gradually familiar with and master the company introduced the working principle, operation method of gas machine. With the help of the department leaders and colleagues, familiar with and master the launch of the division principle, debugging method of the control system, and to wuhan Chen Guchong garbage power plant of gas machine control system transformation, learn to debug, accumulated some experience. All in all, over the past year, did some work, have also made some achievements, but the results can only represent the past, there are some problems to work, can't meet the higher requirements. In the future work, I must develop the oneself advantage, lack of correct, foster strengths and circumvent weaknesses, for greater achievements. Looking forward to XXXX years of work, I'll be more efforts, constant progress in their jobs, make greater achievements. Every year I have progress, the growth of believe will get greater returns, I will my biggest contribution to the development of the company, believe inyourself do better next year!I wish you all work study progress in the year to come.。
石墨烯/聚氨酯复合材料的研究进展石墨烯体现出独有的二维结构和优良导热性、导电性,正是这种良好性能的存在,使其与聚氨酯复合的时候诞生出新型功能的高分子材料,体现出广阔的发展前景。
本文将重点分析石墨烯及聚氨酯复合材料的研究进展,结合石墨烯和聚氨酯复合材料的制备方式,明确其具体的应用领域。
标签:石墨烯;聚氨酯;复合材料;研究进展石墨烯主要是由单层碳原子凭借着sp2杂化的方式连接起蜂窝状的二维平面材料,拥有着巨大的比表面积,同时体现出良好的电热学性能及导热系数。
良好性能和二维结构使得复合材料成为国内外争相研究的热点。
聚氨酯属于分子结构中包含软段及硬段的嵌段共聚物,因此制备材料的可选范围较广,同时相对应的结构灵活多变,具体的产品性能千变万化。
石墨烯和聚氨酯实现复合的材料属于一个新的尝试,是石墨烯一個迈向实际应用的研究趋势,在相对应的结构、性能等方面彰显出优异特性,在短时间内成为了功能性复合材料的研究热点。
一、石墨烯/聚氨酯复合材料的制备石墨烯本身的性能优异,因此制备的过程所产生的成本相对低廉,在改性之后的石墨烯可以适当的采用溶液加工方式加以处理,同时适用在开发功能性聚合物复合材料中。
(一)共混法,这种方式主要是制备石墨烯/聚氨酯复合材料,而且属于最简便的方式,通过将溶液共混、熔融共混等完成制备。
共混之前,还是应该对石墨烯做好表面的处理,这样就能适当的提升复合体系中的分散性。
有专家学者使用溶液共混的方式,将GO和PU进行复合,同时适当的加入少量肼进行加热处理。
合理的利用还原氧化石墨烯中的含氧官能团实现与PU链端的酰胺基团形成氢键,保证rGO 在体系中实现分子级的分散。
经过一系列的操作,使得复合材料的弹性模量提升了21倍,相对应的拉伸强度也提升了9倍。
(二)接枝共聚法,接枝共聚法主要是在聚氨酯分子完成了相应的聚合之后,与表面已经接受过处理的石墨烯形成相对稳定的化学键。
有专家学者运用重氮化对氧化石墨烯开始展开功能化的处理,然后和异氰酸酯封端的聚氨酯预聚体实现有效的接枝共聚,制备出功能化的石墨烯/聚氨酯纳米复合材料。
化工进展Chemical Industry and Engineering Progress2023 年第 42 卷第 7 期基于动态共价键自修复的光固化高分子材料研究进展余希希1,张金帅2,雷文1,刘承果2(1 南京林业大学理学院, 江苏 南京 210037;2 中国林业科学研究院林产化学工业研究所,江苏 南京 210042)摘要:光固化技术的高效、适应性广、经济、节能与环境友好等特点使得近年来光固化高分子材料在人类生产生活中被广泛应用。
然而,光固化高分子材料的结构稳定性使得材料表面或内部一旦出现破损便难以修复,造成大量资源浪费与环境污染。
动态共价键可以在外界刺激作用下(光照、加热等)发生可逆的断裂和重组,从而导致分子拓扑结构的动态调整,赋予光固化高分子材料结构可调整、可循环利用和自修复性能等。
本文综述了近些年来基于酯键、Diels-Alder 反应、二硫键、硼酸酯键、位阻脲键等可逆共价键自修复的光固化高分子材料设计与制备,对近年来不同类型动态共价键光固化高分子材料的优缺点和应用进行了评述,最后指出动态共价键光固化高分子材料力学性能的弱势以及基于动态共价键修复的单一性,并对该领域未来的研究方向作了展望。
关键词:动态共价键;修复;光固化;聚合物;合成中图分类号:TB381 文献标志码:A 文章编号:1000-6613(2023)07-3589-11Research progress of self-healing photocuring polymeric materials basedon dynamic covalent bondsYU Xixi 1,ZHANG Jinshuai 2,LEI Wen 1,LIU Chengguo 2(1 College of Science, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; 2 Institute of Chemical, Industry ofForest Products, Chinese Academy of Foresty, Nanjing 210042, Jiangsu, China)Abstract: Photocuring technology is highly efficient, adaptable, economical, energy-saving and environmentally friendly, making photocuring polymeric materials widely used in human production and life in recent years. However, the structural stability of Photocuring polymeric polymers makes it difficultto repair the materials once they are broken on the surface or inside, resulting in a large amount of wasted resources and environmental pollution. Dynamic covalent bonds can be reversibly broken and reorganized under the action of external stimuli (light, heating, etc .), which leads to dynamic adjustment of molecular topology and gives light-cured polymer materials structural adjustability, recyclability and self-healing properties. This paper reviewed the design and preparation of photocuring polymeric materials based on ester bonds, Diels-Alder reaction, disulfide bonds, borate ester bonds, site-resistant urea bonds and other reversible covalent bond self-repairs in recent years, summarized the advantages, disadvantages andapplications of different types of dynamically covalently bonded photocuring polymeric materials in recent综述与专论DOI :10.16085/j.issn.1000-6613.2022-1608收稿日期:2022-08-31;修改稿日期:2022-10-23。
聚合物基复合材料自修复的研究进展顾海超1,2,杨 涛1,2,申艳娇2
(1 天津市现代机电装备技术重点实验室,天津300387;2
天津工业大学机械工程学院,天津300387
)
摘要
复合材料的自修复功能已成为智能材料研究的重点之一。自修复主要包括外援型自修复和本征型自
修复,外援型自修复种类主要包括微胶囊型、中空纤维型以及微脉管型自修复;本征型自修复主要包括可逆共价键和可逆非共价键自修复。系统地阐述了这几种典型自修复方法的研究进展及其优势和不足,展望了自修复复合材料的发展及应用前景。关键词
复合材料 微胶囊型自修复 中空纤维型自修复 微脉管型自修复 可逆共价键自修复 可逆非共价键自修复
中图分类号:TB332 文献标识码:A
Research Progress in Self-healing of Polymer Matrix Composites
GU Haichao1,2,YANG Tao1,2,SHEN Yanjiao2(1 Advanced Mechatronics Equipment Technology Tianjin Area Major Laboratory,Tianjin 300387;2 School of
Mechanical Engineering,Tianjin Polytechnic University,Tianjin 300387)
Abstract Composite materials with self-healing function have become one of the key research of intelligent ma-
terials.The extrinsic self-healing mainly include microcapsule self-healing,hollow fiber self-healing,microvascular
self-healing.The intrinsic self-healing mainly include reversible covalent bond self-healing and reversible non-c
ovalent
bond self-healing.This paper systematically expounds the research progress of these methods,and analyzes the advan-
tages and disadvantages of these methods,and prospects the development prospect of self-healing of composite mate-
rials.Key words composites,microcapsule self-healing,hollow fiber self-healing,microvascular self-healing,re-
versible covalent bond self-healing,reversible non-covalent bond self-healin
g
顾海超:男,1991年生,硕士生,研究方向为复合材料成型技术与装备 E-mail:guhaichao00158@163.com 杨涛:通讯作者,男,1970年生,教授,研究方向为碳纤维复合材料自修复技术 E-mail:yangtao1900@126.com
0
引言
纤维增强复合材料因具有较高的比强度、比刚度而越来越广泛地应用在航空航天、汽车等领域,发展前景良好。但其基本构造形式大多为层合结构,而层合结构铺层之间缺少增强纤维,铺层过程中存在气泡或其他杂质等问题。当层合板承受外部载荷时很容易发生层间开裂,从而降低结构的整体刚度和强度,甚至损坏层合板,使其应用受到限制。为了解决这个问题,众多学者进行了复合材料层合板自修复方面的研究,通过自修复的方法对裂纹及损伤的部位进行修复,进而延长材料的使用寿命[1,2]。
复合材料的自修复是依据仿生学的原理研制出来的,是
一种新颖的智能化方法。它针对材料出现的破损进行自修复,恢复材料本身的功能。按照复合材料自修复时是否需要从外界添加修复剂,自修复体系分为两大类:本征型和外援型[3]。
本征型修复方法包括可逆共价键自修复和可逆非共
价键自修复[4]。
可逆共价键自修复是利用聚合物基复合材
料本身的可逆化学反应而进行的自修复,这些化学反应包括
Diels-Alder
反应、双硫键反应、动态共价化学、
π-π堆叠和离
子聚合物等[1,5,6],
而可逆非共价键自修复则是利用体系中的
氢键作用、疏水作用、大分子扩散作用等机理来实现的[4]。
外援型修复方法主要包括微胶囊型、中空纤维型、微脉管型等修复方法。
1
本征型自修复
1.1
可逆共价键
Diels-Alder反应是一种环加成的可逆有机反应,其反应机理如图1所示。杨莉等[7]合成了呋喃封端的聚乙二醇和
含有3个马来酰亚胺官能团的小分子交联剂三胺,通过二者
的反应制备了具有可再加工性能及自修复性能的聚合物材料,样品在100℃发生可逆Diels-Alder反应实现自修复。伍
梅银等[8]通过N,N′-羰基二咪唑直接将聚己二酸丁二醇酯与
糠胺相连制备得到呋喃环封端的聚氨酯预聚物,之后再用双马来酰亚胺制备了聚氨酯热熔胶。章明秋课题组[9,10]提出利
用含有双环氧官能团和呋喃基团的单体合成含有热可逆Diels-Alder键的环氧树脂网络,其特点是在热可逆修复过程中可以克服由热而造成环氧树脂材料软化的缺点。双硫键反应是一种可在低温下且不需光照即可实现的
·473·
材料导报
2016年11月第30卷专辑28可逆反应。雷州桥等[11]研究了含双硫键脂肪族小分子之间的交换反应,材料的剪切流变特性和蠕变行为对大分子可逆反应的依赖性。Guohua Deng等[12]利用酰腙和双硫键的各自交换反应制备了一种具有修复能力的水凝胶。图1 Diels-Alder反应原理图Fig.1 The principle of Diels-Alder酰腙键在酸性环境下,其形成是可逆的,反应原理如图2所示。在以前的研究中,是通过酰肼和醛基的缩合反应制得酰腙键。张云飞课题组[13]基于酰腙键制得了具有可自愈功能的凝胶,如图3所示。2015年,吕展等[14]通过合成丙烯酰胺和双丙酮丙烯酸胺的共聚物与己二酰肼反应,制得含酰腙可逆共价键的水凝胶。图2 酰腙键的交换反应原理图Fig.2 The exchange reaction principle ofacylhydrazone bond图3 具有可自愈功能的凝胶Fig.3 Gel with self-healing function1.2 可逆非共价键氢键作用自修复是利用氢键的可逆功能实现自修复。晏苗[15]利用RAFT聚合方法把基于甲基丙烯酸酯的含偶氮液晶基元的单体合成了均聚物PMAzoC4(SI),并将其与甲基丙烯酸己酯(HMA)进行共聚,合成了侧链型液晶共聚物(PMAzoC4-co-PHMAx,x=2、3、4,以下简称Sx)。随后,将共聚物Sx作为大分子链转移剂与含有氢键作用的单体M(NCP)A进行共聚合,得到Sx-BCP-y。对S2-BCP-y和S3-BCP-y两组样品进行自愈合性能的测试,结果表明,两组共聚物在适当升温的情况下可以在断裂面通过氢键的重新连接而进行自愈合。崔玉琳[16]利用氢键与疏水聚集作用间的协同增强效应,采用传统聚氨酯脲(PUU)的反应机理,制备了PUU超分子水凝胶。实验结果表明,所合成的PUU超分子水凝胶具有较高的机械强度。疏水作用自修复是利用高分子链中的疏水基团,通过疏水作用形成具有可逆交联点的三维网络结构,当基体遭到破坏时,疏水链能够自由流动,而形成新的三维网络结构,实现材料的自修复[4]。郝翔[17]通过席夫碱还原反应,对壳聚糖进
行疏水改性,并将其引入十二烷基三甲基溴化铵/5-
甲基水杨
酸复配形成的囊泡溶液中,得到了具有热响应和对应力快速自修复能力的囊泡凝胶体系。Jiang G
等[18
]将溶于十二烷基
硫酸钠(SDS)中的辛基酚局氧乙烯醚丙烯酸酯(OP-4-AC)
和
丙烯酰胺(AM)
进行胶束聚合反应得到一种具有自修复功能
的高强度水凝胶。
2
外援型自修复
2.1
微胶囊型
微胶囊型自修复是将含有修复剂的微胶囊预先埋入复合材料中,不需外在干预,直接由裂纹扩展实现的自修复[19
]。
微胶囊型自修复是目前研究较为成熟且应用较为广泛的一
种修复方法,其最具代表性的是双环戊二烯(DCPD)
修复剂
和Grubbs催化剂组成的修复体系。2001年,White等[19
]首
次制备了以双环戊二烯(DCPD)修复剂为芯材、
以脲醛树脂
为囊壁的微胶囊,并将其与Grubbs催化剂一起加入到环氧树脂基体中。复合材料在外力作用下产生裂纹,裂纹不断扩展,在扩展力的作用下微胶囊发生破裂,DCPD得到释放,与催化剂进行开环易位聚合反应,修复裂纹,起到自修复的目的,如图4所示。Blaiszik B J等[20,21
]预先在环氧树脂基体中
埋入含有DCPD
修复剂的聚脲甲醛微胶囊,裂纹产生后发生
扩展,使微胶囊几乎全部破裂,DCPD得到释放,达到了自修复的目的。
图4 微胶囊自修复原理图Fig.4 The principle of microcapsule self-healing
国内,袁彦超等[22]用环氧树脂-四氢邻苯二甲基缩水甘油酯(DTP)代替DCPD作为微胶囊的芯材,用聚氰胺
-甲醛
树脂(PMF)代替脲醛树脂作为微胶囊的囊壁,
采用改进的原
位聚合法得到环氧树脂微胶囊(单囊结构)。此种微胶囊,囊粒较小、囊壁较薄且具有较好的密封性和耐热性。朱孟花等[23
]探讨了以双环戊二烯(
DCPD)为芯材、
以脲醛树脂为壁
材的微胶囊在反应的过程中脲醛用量及乳化剂用量对微胶
·573·
聚合物基复合材料自修复的研究进展/顾海超等