当前位置:文档之家› 自修复超分子材料

自修复超分子材料

自修复超分子材料
自修复超分子材料

自修复超分子材料

摘要:针对材料使用期限要求的增加,以及材料微观损伤难以检测,人们提出了自修复超分子材料的概念,本文先对自修复超分子材料进行了基本的介绍,再综述了近年来基于氢键;离子键;金属键;π-π堆砌作用的自修复材料的研究进展,并展望其发展方向。

关键词:自修复超分子氢键

一.前言

“资源问题”是人类目前面对的日益严重的问题之一,对于这个问题的解决一般有两个方法,即开源节流,所谓开源就是发展和发现新材料以代替目前所用的材料,减少对目前材料的依赖程度,而节流则是增加材料的使用期限,使材料更换速度减缓,因此自修复材料的概念孕育而生[1-3]。所谓自修复材料是指这样一种材料,当材料的损伤发生时,这些损伤能反过来刺激材料的材料进行自我修复[4]。

为了实现自修复,研究者们提出了以下几种方案来实现材料的自修复,一个简单的方法来实现热塑性材料的损伤就是将材料的损伤部位加热或者溶于适当的溶剂之中,使材料表面重排、分子链重新缠结[5]。而这种方法的最大缺陷就是修复过程非常慢,并且对于复合材料非常的不用[6]。另一个方法就是制作核壳结构的材料,壳为聚合后的材料,而核则为材料的单体,当材料的损伤发生时,核中的单体能流出来再发生聚合作用,从而修复损伤部位[7]。尽管这种方法可以快速实现材料的修复,但是随着材料修复次数的增加,核中的单体材料逐渐减少,材料的自修复能力就随之减弱。为了解决这些问题,研究者们利用了超分子键之间形成的网络来实现材料的自修复[8],[9]。超分子自修复材料的的概念是利用非共价键形成交联网络,当材料受到损伤时,非共价键之间通过重新的排列达到动力学平衡,从而修复受损的材料部位[10]-[15]。

实现材料的自修复的超分子键主要有4种,如图1所示,即①氢键;②离子键;③金属键;④π-π堆砌作用。而现阶段发现的基于上述四种键的材料分子分别列于表1中。对于自修复超分子材料的修复机理可用超分子的动力学特征来解释。对于特定的超分子键,一般都包含两种互补的基团A和基团B,A和B可

能存在的结合方式如图2所示。除了形成A-B键之外,每个基团之间还可能形成二聚体,A-A和B-B。且每种组分在材料中都是动力学平衡的,以K

assn

表征A-B

之间的缔合常数,以K

dim 表征A-A和B-B之间的二聚常数。由于超分子间的K

assn

(通常为103-1012M-1)相对于K

dim

(通常小于100M-1)较大,因此分子之间的二聚

通常不被考虑。当超分子材料受到损伤时,材料损伤处表面的K

assn

平衡被打破,

Figure 1 . Supramolecular network formation via ( i ) hydrogen bonding, ( ii ) ionomers,( iii ) metal bonding, or ( iv ) π–πstacking.

Figure 2. Mode of aggregation in solution for supramolecular groups A and B

因此,当材料再被加热或糅合在一起时,分子之间的超分子键通过重新结合,将破损处的表面再次缝合在一起。但材料破损后应当及时进行修复,否则损坏处的超分子键通过自身的重排,再次在各自的区域重新达到平衡,此时材料破损处已无未结合的基团A或B,因此无法再进行修复。

在自修复超分子材料中,研究材料的修复效率一般以下式表示:

二.基于氢键的超分子自修复材料

2000年时,Meijier、Sijbesma及其合作者们,将Upy做为端基引入聚硅氧烷[16]和PE-CO-B[17]的聚合物中,引入Upy后,原本易于流动的高聚物由于氢键的相互作用而形成了高弹体,这种超分子使得分子量低的(小于5000g/mol)的低聚物也能拥有大分子量高聚物般的机械性能,如储存模量G’=106pa[18],不同于共价键形成的高分子,这种由于氢键形成的超分子聚合物的表观聚合物在一定条件下可以改变,如改变温度,以改变氢键之间的缔合常数,从而改变表观聚合度。以Upy为端基而制成的自修复超分子聚合物已有商品化的产品,即Suprapolix,图3是这种超分子聚合物在熔融、固体和溶液中的状态。图4则是Suprapolix子25°C发生损伤后,加热到140°C后,材料自修复的图示。

Figure 3. Example of the phase change behaviour between the melt,

solid and solution states of Suprapolix materials.

2007年时,Leibler及其合作者利用多氢键制成了一种能经历多次损伤-修复循环的超分子材料[19]。这是一种含有不同程度支化的酰胺低聚物,并且分子量约为104Da。2012年,Guan及其合作者研究了一种利用氢键相互连结的微观相

Figure 4. Thermally induced crack healing of a Suprapolix UPy based supramolecular polymer (left hand micrograph taken at 25℃; right hand image at 140℃).

离的刷状聚合物,其骨架为聚苯乙烯,支链为聚丙烯酰酸-胺的分子[20]。在固体状态时,聚苯乙烯聚集为核,支链以氢键将整个材料连结在一起,将这这种材料切成两半,再用手将它们糅合在一起,修复效率随时间增加(24h后达92%)。

三.基于π-π堆叠的超分子自修复材料

利用超分子π-π堆叠效应来改善双组分共混聚合物的相容性,为合成具有独特性能的聚合物提供了一种很好的方法。Burattini等[21]利用π-π堆叠的原理,以缺电子的聚酰亚胺和以富π电子的芘基封端的有机硅聚合物,制备了一种双组份共混自修复聚合物。在溶液中,缺π电子和富π电子基团迅速发生可逆的络合作用,而在固体状态下,则显示了对温度变化敏感的自修复性能。当温度升高,超分子膜分子间的交联被破坏,同时玻璃化转变温度较低的有机硅组分开始流动。而当温度降低后,π-π堆叠效应就会促使聚合物形成新的交联网络,从而显示出很好的自修复能力。

四.基于离子键的超分子自修复材料

离子聚合物是指在主链上至少包含20mol%离子基团的共聚物,并且这些离子基团可以聚集在一起,起到可逆交联的作用[22;23]。这类聚合物在1960s年代就已经出现了,但在近几年才被用于自修复方面。离子聚合物一般用于修复比较宏观的冲击破坏。这种修复方法与其他自修复方法的性能和机理不同,可分为弹性响应和粘滞响应两部分[24]。材料受到冲击破坏后开始的变形,裂纹会剧烈延伸,

但材料本身的弹性却使开始变形的部分尽可能地回缩。当温度升高时,材料内部分子链由有序向无序转变,聚集的离子基团也开始向无序转变。温度继续升高,离子基团之间的价键重新连接,分子链相互缠结交联,导致基体固化,实现修复。

五.总结与展望

聚合物自修复方法比较多,除了以上介绍的方法外,还有分子扩散、光引发及形状记忆等自修复方法。因为外加修复及的方法修复效率高,目前国内在自修复方面的研究主要集中在使用微胶囊等抱在修复剂进行自修复方面。而目前开发出来的修复材料比较少,所以未来发展应该是开发更多的修复材料。同时在超分子自修复方面由于现存的自修复超分子聚合物多为高弹体,无法满足高模量使用材料的要求,所以未来的另一个发展趋势必将是发展自修复超分子混合材料。

参考文献

[1] M. M. Caruso , D. A. Davis , Q. Shen , S. A. Odom , N. R. Sottos , S. R. White , J. S. Moore , Chem. Rev. 2009 , 109 , 5755 .

[2] E. B. Murphy , F. Wudl , Prog. Polym. Sci. 2010 , 35 , 223 .

[3] S. Burattini , H. M. Colquhoun , B. W. Greenland , W. Hayes ,in Supramolecular Chemistry (Eds: P. Gale , J. Steed ), John Wiley & Sons, Ltd , New York 2012 .

[4] W. Binder , Self-Healing Polymers. From Principles to Applications, Wiley-VCH , Weinheim , submitted, ISBN: 978-3-527-33439-1.

[5] K. Jud, H. H. Kausch and J. G. Williams, J. Mater. Sci., 1981, 16, 204–210

[6] Y. H. Kim and R. P. Wool, Macromolecules, 1983, 16, 1115–1120.

[7] S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. Sriram, E. N. Brown and S. Viswanathan, Nature, 2001, 409, 794–797.

[8] K. S. Toohey, N. R. Sottos, J. A. Lewis, J. S. Moore and S. R. White, Nat. Mater., 2007, 6, 581–586.

[9] K. S. Toohey, C. J. Hansen, J. A. Lewis, S. R. White and N. R. Sottos, Adv. Funct. Mater., 2009, 19, 1399–1405.

[10] W. Binder , R. Zirbs , in Hydrogen Bonded Polymers, Advanced Polymer Science (Ed: W.

Binder) , Springer-Verlag, Berlin Heidelberg 2007 , p. 1 .

[11] W. H. Binder , C. Enders , F. Herbst , K. Hackethal , in Complex Macromolecular Architectures: Synthesiss, Characterization and Self Assembly (Eds: N. Hadjichristidis , Y. Tezuka , A. Hirao) , John Wiley & Sons (Asia) Pte Ltd , Singapore 2011 , p. 53 .

[12] A. Bosman , R. P. Sijbesma , E. W. Meijer , Mater. Today 2004 , 7 , 34.

[13] L. Brunsveld , B. J. B. Folmer , E. W. Meijer , R. P. Sijbesma , Chem. Rev. 2001 , 101 , 4071 .

[14] T. F. A. de Greef , E. W. Meijer , Nature 2008 , 453 , 171 .

[15] F. J. M. Hoeben , P. Jonkheijm , E. W. Meijer , A. P. H. J. Schenning , Chem. Rev. 2005 , 105 , 1491 .

[16] J. H. K. K. Hirschberg, F. H. Beijer, H. A. van Aert, P. C. M. M. Magusin, R. P. Sijbesma and

E. W. Meijer, Macromolecules, 1999, 32, 2696–2705.

[17] B. J. B. Folmer, R. P. Sijbesma, R. M. Versteegen, J. A. J. Van der Rijt and E. W. Meijer, Adv. Mater., 2000, 12, 874–878.

[18] G. M. L. van Germert, J. W. Peeters, S. H. M. S¨ontjens, H. M. Janssen and A. W. Bosman, Macromol. Chem. Phys., 2012, 213, 234–242.

[19] P. Cordier, F. Tournilhac, C. Souli′e-Ziakovic and L. Liebler, Nature, 2008, 451, 977–980.

[20] Y. Chen, A. M. Kushner, G. A. Williams and Z. Guan, Nat. Chem., 2012, 4, 467–472.

[21] Burattini S., Greenland B.W, Merino D H, Weng W G, Seppala J, Colquhoun H M., Hayes W, Mackay M E, Hamley I W, Rowan S J. Am. Chem. Soc., 2010,132: 12051-12058

[22] Blaiszik B J, Kramer S L B, Olugebefola S C, Moore J S, Sottos N R, White S R. Annu. Rev. Mater. Res., 2010, 40: 179-211

[23] Varley R J, van der Zwang S. Acta Materialia, 20008, 56: 5737-5750

[24] Varley R J, van der Zwang S. Polym. Test., 2008, 27: 11-19

复合材料修复资料

玻璃纤维材料的修复 -----------------------------------------------------------------------------------------其他行业的玻璃纤维修复 1.汽车保险杠是玻璃钢的,损坏了只能用玻璃纤维和树脂来修补,首先你需要买树脂和玻璃纤维毡,这些卖玻璃钢产品的门市都有的,树脂论公斤卖的,叫他们给你配好了,因为其实它有三种材料:树脂、催干剂和固化剂,问清楚怎么用?因为都是化学材料,三者放在一起会起化学反应,放热的,量大的话还会爆炸的,所以要注意安全,不要被烫到了,不要被溅到眼睛里;玻璃纤维布注意最好买毡,因为毡是丝状的,可以一根根抽出来,便于修复修平汽车保险杠表面。两者都买好了,开始修理了:拿个容器另外装树脂,少装些,别一次倒完了,然后再放几滴固化剂,注意搅拌均匀,固化剂可以少放,因为他起固化作用,少放固化慢一些就是了,放多了几分钟就完全固化了,你还没来的及修补呢!用个毛刷刷到到损坏的地方,然后贴些玻璃纤维毡,再刷些树脂上去,刷一次贴一次就可以了!干了以后打磨表面,最后喷漆就可以了!做玻璃这行看起来简单,其实也是技术活,要熟练才刷的平,没有空隙才行!液体是不饱和聚酯树脂【型号一般时191和196】但是要加固化剂和促进剂【俗称红水和白水】比例根据温度而不同,调和后要在规定时间内糊完,否则就会固化 2.买玻璃丝布,环氧树脂,固化剂和柔软剂,先把破口处理一下,再刷环氧树脂混合液,后铺玻璃丝布,这样做三脂两布,固化后,打磨平整。 玻璃钢(FRP)亦称作GFRP,即纤维强化塑料,一般指用玻璃纤维增强不饱和聚酯、环氧树脂与酚醛树脂基体。以玻璃纤维或其制品作增强材料的增强塑料,称谓为玻璃纤维增强塑料,或称谓玻璃钢,注意与钢化玻璃区别开来。由于所使用的树脂品种不同,因此有聚酯玻璃钢、环氧玻璃钢、酚醛玻璃钢之称。质轻而硬,不导电,性能稳定.机械强度高,回收利用少,耐腐蚀。可以代替钢材制造机器零件和汽车、船舶外壳等。 3.树脂和纤维都是玻璃钢的原材料,在混合固化剂和促进剂、在一定温度作用下,粘有树脂的玻璃纤维,因树脂的固化而被粘合在一起,就形成了玻璃钢材质。玻璃钢具有高强、轻质、耐腐蚀的特点,属于复合材料,也就是集合了多种材料的优点而制作出的一种材料。玻璃钢有狭义范畴和广义范畴的说法,狭义就是指玻璃纤维和树脂制作而成的,而广义的玻璃钢,还包括树脂和其它纤维制作成的复合材料,比如碳纤维玻璃钢(比如多数钓鱼竿)、涤纶纤维玻璃钢等等。 4.玻璃钢开裂怎么办 沿着裂缝周围用粗砂纸磨成粗糙,后用树脂和玻璃钢纤维补上 那如果非要修的话,也不是没有办法。树脂选用好点的,一般的也行,还有促进剂、固化剂、优质玻璃纤维布。粉子就不要放了。现在是秋季,温度低,所以固化剂要比夏天时多放,至于精确的比例,我随便估摸一下应该是:固化剂、促进剂、树脂;1:1.5:8 配合玻璃纤维缠在管道上,要让配好的玻璃钢迅速的涂在玻璃纤维布上,要让玻璃钢把玻璃纤维布充分浸透,等待玻璃钢充分固化后,再反复做上几层。就会结实了 航空复合材料结构修理方法 --------------------------------------------------------------------------------------适用于整流罩和玻璃纤维蒙皮1. 1复合材料的缺陷/ 损伤与修理容限

自修复高分子材料的研究现状及发展

自修复高分子材料的研究现状及发展 发表时间:2020-01-15T14:41:52.863Z 来源:《科学与技术》2019年17期作者:李果兴陈恒 [导读] 近年来,智能自修复高分子材料越来越引人注目 摘要:近年来,智能自修复高分子材料越来越引人注目。未来的开发阶段包括(1)改进的维修效率和维修,以便快速维修。(2)简化合成工艺,降低材料成本;(3)绿色环保,开展符合环境保护的可持续发展项目。综上所述,聚合物自修复材料具有非常广泛的发展前景。但是我国这个领域的研究还与世界先进水平有所不同,因此我们需要继续进行更深入的研究,将其迅速应用到科学技术和商业市场,以谋求全人类的利益。本文基于自修复高分子材料的研究现状及发展展开论述。 关键词:自修复;高分子材料;研究现状及发展 引言 今天,随着社会的快速发展,对材料的性能要求越来越高。自修复聚合物材料由于其自修复功能性质,具有延长材料寿命和降低材料使用过程中维护和维护成本的优点,因此自修复聚合物材料在未来的各个领域具有良好的应用和发展前景。 1自修复高分子材料概述 自修复型高分子材料是指高分子材料在受到损伤后可在宏观和微观自行修复,并在一定程度上恢复其力学性能的一类高分子材料。依据修复的特征,自修复型高分子材料可分为本征型和外援型两大类。外援型聚合物自修复材料通常是指向聚合物基体中引入包覆有修复剂的微胶囊、微管或中空纤维等的复合材料。当材料受到损伤时,包覆层破裂并释放出修复剂,修复剂之间相互反应从而完成修复过程。如White等首次向环氧树脂中同时引入了包覆有环戊二烯修复剂的微胶囊和分散于基体中的Grubbs催化剂,当复合体系受到损伤时,微胶囊破裂,修复剂释放出来并与催化剂反应,形成新的聚合物从而实现裂纹的修复。本征型聚合物自修复材料则是指聚合物通过大分子链自身的运动、缠结或可逆的化学反应(Diels-Alder反应、可逆酰腙键的形成、可逆双硫键的形成、硼酸酯键的形成等)、非共价键作用(超分子相互作用,如氢键、离子键、π-π堆叠等)而引发修复功能的一类高分子材料。外援型自修复材料由于受修复剂的限制而无法实现多次修复,且修复的效果强烈依赖于修复剂的包覆效果。 2外植型自修复材料 外植体自修复材料系统主要是微胶囊自修复系统和液芯纤维自修复系统[。微胶囊法,顾名思义,起恢复作用的是事先在身体里的微胶囊。内部含有治愈剂,出现裂纹时,裂纹尖端的应力作用释放出内部治愈剂,与埋在材料内部的催化剂发生化学反应,达到修复裂纹的目的。其优点是能更好地防止微裂纹扩散,有效地提高聚合物材料的寿命。微胶囊自我治愈的概念首先由白色等[2]提出,这种微胶囊材料的保守剂内层是双环戊二烯(DCPD),外层用脲醛树脂包裹。然后将微胶囊与Grubbs催化剂均匀分散在环氧树脂体系中。微胶囊方法也有缺点。因为可以将治愈剂事先埋在材料中,然后在材料准备中添加催化剂,从而修复裂纹。因此,还有很多要考虑的因素,包括微裂纹扩展速度、治愈剂是否与催化剂反应良好、治愈剂是否扩展良好等。催化剂对治愈剂反应非常有效,只有当材料中的裂纹扩展速度高于材料内部的裂纹时,才能很好地防止裂纹的扩散,从而有效地保证了具有高分子材料的性能。由于修复核纤维的系统与微胶囊系统具有相同的机制,当材料出现裂缝时,会释放修复的物质并修复材料缺口。但是,液体的核纤维类型是将还原的材料倒入纤维材料中,然后将其隐藏在材料中。纤维素型是微胶囊自我修复系统的扩展。 3本征型自修复高分子材料 本征型自修复高分子材料是一种在外力或外能作用下被一定程度的破坏后,无需施加能量和力量即可自我修复的材料。目前,国内外相关团队都进行了大量自我修复材料的研究,开发出的自我修复聚合物材料大致分为具有可逆共享耦合的自我修复聚合物材料两种。具有可逆非共结的聚合物材料 3.1可逆Dieal-Alder(DA)反应自修复 DA反应是一种受温度影响的可逆化学反应,其作用原理的本质是加成成环反应受温度控制的可逆反应。具体是一个含有活泼双键或三键的化合物与共轭二烯类化合物进行加成成环反应,此反应活化能低,反应速度快,当温度升高,反应方向调转,生成活性基团。所以,在温度的影响下,DA可逆反应便是该高分子材料的自修复原理。 3.2基于酰腙键型的自修复高分子材料 基于酰肼结合的价耦合自愈系统的机理是醛固反应产生的酰肼结合断裂后自发生长。s . BOD等,如果ph大于4,则转换为凝胶状态;如果ph小于4,则转换为溶胶状态;如果调整ph值,则可以自我修复。这种材料在聚乙二醇两端修改二苯甲酰肼后,与3[(4-醛基苯氧化物-甲基]乙烷反应,从而在缩合反应机制中产生自修复聚合物。如果系统ph值在一定范围内发生变化,酰九头蛇关键点将被破坏和重建,宏观上表现为材质的自愈行为。 3.3可逆N-O键自修复 可逆N-O键是一种键能比较低的化学键,在60℃便可发生热可逆反应,因此只需要外界提供较少的能量就能重新成键,来达到自修复的效果。Otsuka等将烷氧胺基(C-O-N)单元创造性地与高分子材料结合,使得原来无法进行自修复的高分子材料具有了自修复的能力,并且还保留了该种高分子原有的可降解的性能。Sakai等在C-O-N重复单元与单体进行共聚,形成了一种嵌段共聚物,这种高分子材料可以通过烷氧胺基的断裂与重组来实现自修复行为。但是,此种材料的自修复温度要达到126℃,并且需要修复6~12h才能完成,修复温度较高且修复时间较长,这一自修复条件限制了该种材料的应用前景。 4自修复高分子材料的应用 科学家们不断改善其性能,以满足人类日常需求,从而大规模应用聚合物自修复材料。善俊基等制造了模拟荷叶表面蜡治疗的自愈超水性涂料,刮伤表面后光的氧化会削弱超疏水性的氟硅烷群疏水性,开始吸收环境中的水,然后将材料内部的氟硅烷群移到表面,恢复涂层的超疏水性功能。haraguchi等制造了具有有机聚合物-无机粘土网络结构的纳米复合水凝胶,当材料横截面接触时,表面的聚合物链相互交织,通过氢键形成新的共享键合,从而恢复断裂链接。智能自修复聚合物材料目前在人工肌肉等生物工程领域以及宇宙飞船、火箭发动机零部件等航天领域初次使用。另外,墙壁结构、桥梁建设等建筑领域也在逐渐发挥其优越性。相信不久将给全人类带来技术革命。 结束语 材料在使用的过程中使用时间、温度和其他因素,则会出现材料损坏、疲劳等现象,主要是裂纹,如果出现裂纹,则会降低材料的机

自修复聚合物的研究进展

自愈合聚合物材料 2011011743 分1 黄浩 一、背景 众所周知,高分子材料的老化和机械损伤是影响其寿命的两个重要因素,经过几十年的工艺积累,技术人员在防老化和提高机械性能上已经为其进行了大量的改进。但这些研究工作都是对其损伤进行预防,而一旦损伤产生,则就会产生薄弱点,后续破坏会更加集中于这部分微裂纹中,并可能引发宏观断裂。如下图所示: 因此对微裂纹的早期发现和修复是一个非常实际的问题。肉眼能发现的分层或由冲击所导致的宏观裂纹不难发现, 并能通过手工进行修复。常用的观察内部损伤的技术手段有超声波和射线照相术等,但由于这些技术的局限性, 加上聚合物的裂纹往往在本体深处出现, 如基体的微开裂等微观范围的损伤就很难被发现。 与合成的材料相比, 许多活着的生物系统能够对外应力以及损伤产生反应, 生物体的损伤部位会自愈合。通常这些植物体或者动物体在体系受伤时会分泌出不同的液体在受伤部位结痂或者重建。根据这种思路,现在兴起了自愈合高分子材料的研究热潮,目前研究的主要修复方法有微胶囊法、空芯纤维法、毛细血管网络法、热可逆交联反应修复法和利用弱相互作用修复等等。 二、发展概况 自愈合高分子材料的定义为:能对外界环境变化因素产生感知, 自动做出适应、灵敏和恰当的响应, 并具有自我诊断、自我调节、自我修复等功能的高分子材料。 自愈合材料的概念是由美国军方在20 世纪80 年代中期首先提出来的。 1997年美国国家自然科学基金会提出将自修复和自愈合技术列为研究重点之一。 2002年美国把军用装备的自修复、自愈合材料研究列为提升装备性能的关键技术之一,并提出了开发基于生物有机体损伤愈合原理的生物机敏材料, 旨在革新和发展新一代航空航天材料。 三、愈合方法及其研究成果 目前研究的主要修复方法有微胶囊法、液芯纤维法、毛细血管网络法、热可逆交联反

自修复聚氨酯材料

the formation of prenucleation clusters with dimen-sions of 0.6to 1.1nm (step 0).In analogy to the chemistry of calcium phosphate (31),we consider them to be the smallest stable agglomerates of CaCO 3present from the beginning of the reaction.Aggregation of these clusters in solution leads to the nucleation of ACC nanoparticles with a size distri-bution centered around 30nm (step 1).Association of these particles with the template surface initiates the growth of ACC (step 2),using the nanoparticles in their neighborhood as feedstock.Next,randomly oriented nanocrystalline domains are formed inside the otherwise amorphous particles (steps 3and 4).On the basis of the model of Zhang et al .(23),we expect these domains to be unstable and in equi-librium with the amorphous phase.In the last steps,the orientation that is stabilized through the inter-action with the monolayer becomes dominant (step 5)and develops into a single crystal (step 6).This single crystal probably grows by the further addition and incorporation of ions and clusters from solution.The initial experiments of Mann and co-workers showed that the present system could produce cal-cite (11.0)or vaterite (00.1)depending on the pre-cise conditions (16,32).Later,it was demonstrated that rapid CO 2evaporation favors the kinetic product,vaterite (21,22),whereas lower evaporation rates lead to the calcitic form (21).These results are confirmed by our finding of (00.1)oriented vaterite in the present work (i.e.,in a fast-outgassing thin film)and the formation of (11.0)oriented calcite in crystallization dishes (fig.S7)(15)from which CO 2outgassing is slower.Moreover,the observation of randomly oriented vaterite crystals also puts in perspective the synchrotron x-ray scattering exper-iments that showed the formation of randomly oriented crystals from the same system (22). The nanoscopic prenucleation clusters that we visualized are the smallest stable form of CaCO 3and are likely the building blocks of the amorphous precursor particles observed in biomineralization;such particles are also observed in many synthetic systems and are not restricted to calcium carbonate (13,31).As a consequence of their aggregation,ACC nucleates in solution and subsequently assembles at the template.There,it is present as a temporarily stabilized but transient phase that mediates the trans-fer of information from the template to the mineral phase.This occurs through the selective stabiliza-tion of only one of the orientations present,leading to the development of a single crystal. References and Notes 1.H.A.Lowenstam,S.Weiner,On Biomineralization (Oxford Univ.Press,New York,1989). 2.M.E.Davis,Science 305,480(2004). 3.B.L.Smith et al .,Nature 399,761(1999). 4.J.Aizenberg et al .,Science 309,275(2005). 5.J.R.Young,J.M.Didimus,P.R.Bown,B.Prins,S.Mann,Nature 356,516(1992). 6.L.Addadi,D.Joester,F.Nudelman,S.Weiner,Chem.Eur.J.12,980(2006). 7.N.A.J.M.Sommerdijk,G.de With,Chem.Rev.108,4499(2008). 8.M.Volmer,Kinetik der Phasenbildung (Steinkopff,Dresden,1939). 9.Y.Politi,T.Arad,E.Klein,S.Weiner,L.Addadi,Science 306,1161(2004). 10.E.Beniash,J.Aizenberg,L.Addadi,S.Weiner,Proc.R. Soc.London Ser.B 264,461(1997). 11.B.P.Pichon,P.H.H.Bomans,P.M.Frederik, N.A.J.M.Sommerdijk,J.Am.Chem.Soc.130,4034(2008).12.J.R.I.Lee et al .,J.Am.Chem.Soc.129,10370(2007).13.D.Gebauer,A.V?lkel,H.C?lfen,Science 322,1819(2008).14.C.L.Freeman,J.H.Harding,D.M.Duffy,Langmuir 24, 9607(2008). 15.See supporting material on Science Online. 16.S.Mann,B.R.Heywood,S.Rajam,J.D.Birchall,Nature 334,692(1988). 17.S.Nickell,C.Kofler,A.P.Leis,W.Baumeister,Nat.Rev. Mol.Cell Biol.7,225(2006). 18.The sedimentation coefficient s is defined as the velocity v t of the particle per unit gravitational acceleration (centrifugal acceleration:w 2r ,where w is angular velocity and r is the radial distance to the rotation axis).19.F.M.Michel et al .,Chem.Mater.20,4720(2008).20.D.Quigley,P.M.Rodger,J.Chem.Phys.128,221101(2008).21.E.Loste,E.Diaz-Marti,A.Zarbakhsh,F.C.Meldrum, Langmuir 19,2830(2003). 22.E.DiMasi,M.J.Olszta,V.M.Patel,L.B.Gower, CrystEngComm 5,346(2003). 23.T.H.Zhang,X.Y.Liu,J.Am.Chem.Soc.129,13520(2007).24.Y.Politi et al .,Adv.Funct.Mater.16,1289(2006)https://www.doczj.com/doc/f915181785.html,m,J.M.Charnock,A.Lennie,F.C.Meldrum, CrystEngComm 9,1226(2007). 26.J.Aizenberg,D.A.Muller,J.L.Grazul,D.R.Hamann, Science 299,1205(2003). 27.R.Tang et al .,Angew.Chem.Int.Ed.43,2697(2004).28.G.Luquet,F.Marin,C.R.Palevol 3,515(2004). 29.L.Brecevic,A.E.Nielsen,J.Cryst.Growth 98,504(1989).30.J.J.J.M.Donners,B.R.Heywood,E.W.Meijer,R.J.M.Nolte, N.A.J.M.Sommerdijk,Chem.Eur.J.8,2561(2002).31.A.S.Posner,F.Betts,Acc.Chem.Res.8,273(1975).32.S.Rajam et al .,J.Chem.Soc.Faraday Trans.87,727(1991).33.Supported by the European Community (project code NMP4-CT-2006-033277)and the Netherlands Organization for Scientific Research (NWO).We thank A.V?lkel and H.C?lfen for performing and evaluating the ultracentrifugation measurements;D.Gebauer and A.Verch for time-dependent solution composition determination of the mineralization solutions; F.L.Boogaard,E.J.Creusen,J.J.van Roosmalen,and P.Moeskops for their contribution to the 3D reconstructions of the tomograms;and P.T.K.Chin for providing the CdSe nanorods. Supporting Online Material https://www.doczj.com/doc/f915181785.html,/cgi/content/full/323/5920/1455/DC1Materials and Methods SOM Text Table S1 Figs.S1to S7 5December 2008;accepted 30January 200910.1126/science.1169434 Self-Repairing Oxetane-Substituted Chitosan Polyurethane Networks Biswajit Ghosh and Marek W.Urban * Polyurethanes have many properties that qualify them as high-performance polymeric materials,but they still suffer from mechanical damage.We report the development of polyurethane networks that exhibit self-repairing characteristics upon exposure to ultraviolet light.The network consists of an oxetane-substituted chitosan precursor incorporated into a two-component polyurethane.Upon mechanical damage of the network,four-member oxetane rings open to create two reactive ends.When exposed to ultraviolet light,chitosan chain scission occurs,which forms crosslinks with the reactive oxetane ends,thus repairing the network.These materials are capable of repairing themselves in less than an hour and can be used in many coatings applications,ranging from transportation to packaging or fashion and biomedical industries. W hen a hard or sharp object hits a ve-hicle,it is likely that it will leave a scratch,and for this reason the auto-motive industry looks for coatings with high scratch resistance.Because of their hardness and elasticity,polyurethanes exhibit good scratch re-sistance but can still suffer from mechanical dam-age.An ideal automotive coating would mend itself while a vehicle is driven.To heal mechan-ical damage in plants,suberin,tannins,phenols,or nitric oxide are activated to prevent further lesions (1–3),whereas in a human skin,the outer flow of blood cells is arrested by the crosslink network of fibrin,giving rise to wound-healing (4,5).Concentration gradients or stratification in living organisms inspired the development of spa-tially heterogeneous remendable polymers (6,7),composites containing micro-encapsulated spheres (8–11),encapsulated fibers (12–14),reversible cross-linking (15,16),and microvascular networks (17).One example is epoxy matrices containing a glass hollow fiber filled with a monomer and an initiator with the “bleeding ”ability to heal poly-mer networks during crack formation (12).A sim-ilar phenomenon was used in another approach,in which a micro-encapsulated dicyclopentadiene monomer was introduced in a catalyst-embedded polymer matrix,which healed the crack near the ring opening of the monomer (8–11).Reversibil-ity of Diels-Alder reactions resulted in another approach to thermally repair damaged areas,and approach using malemide-furan adducts (15,16).Mimicking of microvascular structures (17),water-responsive expandable gels (7),and formation of supramolecular assemblies (18)are other ave-nues of remendability. This study departs from previous approaches and reports the development of heterogeneous School of Polymers and High Performance Materials,Shelby F.Thames Polymer Science Research Center,The University of Southern Mississippi,Hattiesburg,MS 39406,USA.*To whom correspondence should be addressed.E-mail:marek.urban@https://www.doczj.com/doc/f915181785.html, 13MARCH 2009VOL 323 SCIENCE https://www.doczj.com/doc/f915181785.html, 1458 REPORTS

自修复材料涂层发展及应用概述

自修复材料涂层发展及应用概述 二十世纪六十年代,“自我修复材料”的设想被提出,但由于当时科技水平的限制,其并未受到过多的关注,知道进入二十一世纪,其在技术上得以突破和进展。自我修复材料是一种在物体受损时能够进行自我修复的新型材料。本文从自修复材料的分类及修复原理着手,介绍目前自修复材料涂层的发展及应用。 自修复材料领域中,主要分为本征型自修复高分子材料以及复合型自修复高分子材料。前一种是指材料本身具有修复性能,经定型后,性质稳定,但制备工艺较为复杂,成本较高;后一种是指在具有导电性质的聚合物中掺杂可修复的微胶囊或者在具有修复性能的聚合物中形成导电纳米颗粒,进而达到修复效果,生产周期短,效益高。下面对这两种修复材料进行详细的说明。 本征型自修复高分子材料是一类在外部力量或者外加能量作用时,高分子基体受到一定程度破坏后可以在没有外加能量与作用力的情况下做到自我愈合的材料。目前,国内外相关团队都进行了关于自修复材料的大量研究,开发的自修复聚合物材料主要分为两种,以其中修复的键为区分依据,分为带有可逆共价键的自修复材料和带有可逆非共价键的自修复材料。 分别以基于酰腙键型的自修复材料和基于氢键型的自修复材料为例。基于酰腙键型的价键自修复材料的机理,是醛基与酰肼反应生成的酰腙键断裂后可自发生长。修复时,pH值发生变化时,酰腙键会发生断裂和重组,其在宏观上就表现为了材料的自修复行为。氢键型自修复材料是通过在高分子中引入可逆氢键来实现自修复的一类高分子材料,此类材料分子量较高,修复效率快。该类自修复材料在加热条件下完成自我修复,修复方式简单快捷,发展及应用前景较好。除上述所说的两种修复材料外,还有基于双硫键型的自修复高分子材料,基于氮氧键型的自修复高分子材料,基于Dieal-Alder (DA) 型的修复高分子材料,基于超疏水型自修复高分子材料,基于离子作用的自修复高分子材料,基于配位键金属有机自修复高分子材料,前三种属于可逆共价键类型的材料,后两种为可逆非共价键类型的材料。 与本征型的自修复高分子材料不同,复合型的自修复高分子材料是通过在高分子基体中加入固化剂使破裂处的位置迅速固化从而实现自修复效果的。固化剂的添加方式有很多种。其中较为普遍且易于操作的有两种:一种是在高分子基体中直接埋置微胶囊;第二种则是在在高分子基体中加入仿生人体血管一类的仿生结构,当高分子基体在受冲击破裂时,仿生血管破裂,流出固化剂使得在破裂处自行修复。前一种最主要的特点便是其只可以修复一次,为弥补前一种修复方式的不足,便出现了仿生人体血管型自修复材料,其修复原理与第一种相同,改变的时固化剂的填充方式,经测试评价,该材料的自我愈合效果显著,可以进行多次的自我疗伤,其修复率都高达50%以上,重复次数大于7次。 自修复材料的应用十分广泛,作为涂层是其中一种最为高效的利用方式。其大到应用于航空航天,小到应用于手机等电子产品,其产生的效益都十分巨大。以最近几年的应用为例,2015年一月LG G Flex 2手机发布,其中的一个亮点便是其搭配了可自我修复的手机后壳,虽然按照官方说提供的材料来看,其修复方式与上文所提到的修复方式具有一定的差异,但其效果依旧使得该款手机在CES2015大会上吸引了众多媒体。自修复,意味着手机更好的抗磨损性能,无论是后壳,还是屏幕的疏油层,都是自修复涂层的应用方式,且能带来

聚合物基自修复复合材料的国内外研究进展

聚合物基自修复复合材料的国内外研究进展 【摘要】目前具有自诊断、自修复功能的智能复合材料已成为新材料领域研究的重点之一。本文通过介绍微胶囊、液芯纤维等不同类型的聚合物基自修复复合材料的制备方法和自修复的基本原理总结了微胶囊和液芯纤维在聚合物基自修复复合材料中的详细应用和研究进展 【关键词】微胶囊;液芯纤维;自修复;聚合物基符合材料 智能材料是指能模仿生命系统 ,同时具有感知和激励双重功能的材料。自愈合(自修复)是生物的重要特征之一。材料一旦产生缺陷,在无外界作用的情况下材料本身具有自我恢复的能力称为自修复。自修复复合材料的自修复机理就是源于生物体系损伤后自动愈合的原理。聚合物基复合材料的自修复功能是通过在复合材料中埋置包覆有修复剂的微胶囊或填充有修复剂的液芯纤维等来实现的。1. 自修复填充材料 1.1 微胶囊 1.1.1 微胶囊的特殊性能 用于聚合物基自修复复合材料的微胶囊具有良好的热稳定性、适当的力学性能、与聚合物基体具有良好的相容性等。在制备这类微胶囊时,壁材与囊芯原料的选择十分严格。选择的囊芯应该具有良好的稳定性和较低的粘度,当微胶囊破裂时,能适时流出并填充裂纹,以便有效粘结裂纹。微胶囊壁材应具有良好的密封性、热稳定性和适当的力学性能,这样才能保护囊芯及微胶囊在复合材料制备过程中的完整性与使用性。同时壁材与树脂基体之间应有较好的相容性,以利于微胶囊与基体界面粘接强度的提高。 1.1.2微胶囊的制备方法 微胶囊的制备方法有很多,大致可分为物理法、物理化学法、化学法3类。物理法有空气悬浮法、喷雾干燥法、包结络合法等,物理化学法有相分离法、熔化分散法和 冷凝法等,化学法主要有界面聚合法、原位聚合法等。 1.2 液芯纤维 1.2.1 液芯纤维的制备方法 制备用于聚合物基自修复复合材料的液芯玻璃纤维时,需选择合适直径和容积的空心玻璃纤维,并在其中注入修复剂单体。可选择的修复剂主要有环氧树脂、苯乙烯等。 1.2.1 液芯纤维的制备难点 制备液芯纤维自修复复合材料的主要难点是玻璃纤维在树脂基体中的排列,需要考虑纤维的排列方向、纤维之间的间距等问题。 2. 自修复复合材料的国内外研究成果 2.1微胶囊型自修复材料 在聚合物基自修复材料领域,微胶囊是研究和应用相对较多的一种填充材料。用于复合材料自修复的微胶囊主要是聚脲甲醛包覆双环戊二烯微胶囊[36-38]、聚脲甲醛包覆环氧 树脂微胶囊等[20]。其中报道较多的是用聚脲醛树脂包覆双环戊二烯(DCPD)微胶囊和Grubbs催化剂组成的自修复体系制得的自修复材料。Blaiszik B J等[22]在环氧树脂基体中加入聚脲甲醛包覆DCPD纳米微胶囊时,发现微胶囊几乎可以全部破裂,修复剂充分释放,达到较好的修复效果,但是这种微胶囊的加入会使材料的弹性模量和拉伸模量有一定程度的降低。Keller M W等[39]将微胶囊化的聚二甲基硅氧烷(PDMS)和微胶囊化的交联剂埋覆在PDMS基体中,通过拉伸实验发现,加入该微胶囊体系的基体拉伸形变达到50%时 无明显损伤,并且拉伸强度恢复率可达70%,可见微胶囊的加入不仅能实现材料的自修复,还能提高材料的抗拉强度。对于纤维增强复合材料,纤维之间的空隙可以成为微胶 囊天然的保护场所,因此制备纤维增强的自修复复合材料较为简便。Kessler M R等[36]在纤

新型智能材料-自修复复合材料的进展

实验名称:新型智能材料指导教师:殷陶 学院:建筑与城市规划学院专业:风景园林 年级班别:2014级1班学生姓名:梁挚呈 学号:3114009992 论文选题:自修复复合材料的进展 智能材料是指能模仿生命系统,同时具有感知和激励双重功能的材料。自诊断与自修复是智能材料的重要功能。 智能自修复材料的研究是一门新兴的综合科学技术。自修复又称自愈合,是生物的重要特征之一,人们把产生缺陷时在无外界作用的情况下,材料本身自我判断、控制和恢复的能力称为自修复。 材料在使用过程中不可避免地会产生局部损伤和微裂纹,并由此引发宏观裂缝而发生断裂,影响材料正常使用和缩短使用寿命。裂纹的早期修复,特别是自修复是一个现实而重要的问题。 目前,具有自诊断、自修复功能的智能自修复材料已成为新材料领域的研究重点之一,自修复的核心是能量补给和物质补给,其过程由生长活性因子来完成。模仿生物体损伤愈合的原理,使得复合材料对内部或者外部损伤能够进行自修复自愈合,从而消除隐患,增强材料的机械强度,延长使用寿命,在军工、航天、电子、仿生等领域显得尤为重要。 智能自修复材料的自修复原理有分子间相互作用的修复机理、内置胶囊仿生自修复机理、液芯纤维自修复机理、热可逆交联反应修复机理。 热可逆交联反应修复机理是目前最新的技术。近年来,出现了一种高交联度的真正具有自修复能力的透明聚合物材料,这种材料只要施以简单的热处理就可以在材料需要修补的地方形成共价键,并能多次对裂纹进行修复而不需添加额外的单体。文献以呋喃多聚体和马来酰亚胺多聚体进行Diels Alder(DA)热可逆共聚,形成的大分子网络直接由具有可逆性的交联共价键相连,可以通过DA逆反应实现热的可逆性。这种材料的力学性能可与一般的树

(整理)协同超分子聚合.

协同超分子聚合的一般原理 超分子聚合物的协同生长的分子动力可以分为三类:静电作用(包括短程极化和长程静电作用),结够作用(包括旋转形成和),和疏水作用。在这篇文章中,我们将讨论这三种不同的作用影响并给出具体例子。 一电子作用 在可逆线性超分子聚合物通过氢键聚合时,电子作用会促进协同上升。早在1956年,Davies和Thomas就报道在苯中用蒸发压研究超分子聚合时,用单个等同常数表示合成常数不足以解释实验结果。接下来Laplanche对N单取代的自组装的热动力研究和相关研究表明,在所有情况中,两个平衡常数对于描述实验数据是必要的。在研究中都发现相对于延长,开始的不倾向于进行二聚合,表明是协同超分子聚合过程。在非极性溶剂中对N的甲基乙酰胺 进一步热力学研究。Davies、Thomas和Laplanche用介电谱 , FT-IR和 PGSE NMR衍射进行测量得到了总体结果。在报道的二聚平衡常数和伸长平衡常数研究的基础上,对于通过amide氨化物氢键聚合体系且6值在10-1到10-3之间可以计算出来。相对的,在非极性溶液中用FT-IR对N,N二烷基脲的超分子聚合进行研究,6的值数量级为10-1,比通过amide氨化物氢键合成的体系高了很多。 相对于伸长平衡常数,作为对低二聚平衡常数的justification证实,Laoplanche和他的同事们认为这两个等同常数的差异认为 是一个熵效应,因为当两个单体合成一个二聚体时失去的熵比只有一个单体和一个更 高的聚合物要大,这与Sarole′a-Mathot对associated络合溶液的数据处理一致。Sarole′a-Mathot的处理中,二聚平衡常数比伸长平衡常数小一个p因子,这里p是单体的possible energetically equivalent orientations。按照这种观点,氢键体系的协同作用根源是由熵的原因引起的。但是最近ab initio和DFT计算表明,在氢键体系的超分子合成中经常遇到的高水平的协同作用,由于电子作用,也有arising焓的贡献。特别的,Dannenberg和他的同事们对包含有链状的urea脲和formamide甲酰胺分子的线性氢键体系进行了广泛的HF DFT和MP2计算。 在这些计算的基础上,二聚体相互作用能的200%协同效应施加在长氢键甲酰胺链中,而对于urea脲链,这个数值小很多(46%), 与上述实验结果相符。另外,对不同长度的甲酰胺链的计算表明,当链中单体数量增加变长时,氢键变短,但链的总的偶极矩以非线性方式增长到an asymptotic value。就像Dannerberg讨论的那样,在甲酰胺链之间的不同寻常的强的氢键作用是由电子作用引 起的:(1)成对静电作用(主要指长程偶 极子偶极子作用)(2)非成对短程极化作 用(3)氢键的助震动。在后两种情况,由 于链的电子密度的重新分配,氢键作用增强,Dannenberg用一个成对模型模拟长程偶极 子偶极子相互作用,Dannenberg估计非成对电子相互作用对于整个的氢键的协同作用 贡献达到75%.最近在a螺旋的模型中对氢键 协同效应的计算表明,非成对电子作用占了整个协同作用的一半。然而对 1,2-ethanediols and 1,3-propanediones 的氢键链的DFT和MP2计算表明,随链中更多的monomer,氧的天然键轨道(NBO)电荷变得更负,这是链的电子重新分配的一个明显的信号。考虑所有的理论结果,可以得出结论通过氢键进行可逆聚合的超分子聚合物,电子效应对协同作用有很大的贡献且通过 一个灵活的spacer氢键末端不被分开。 2,结构作用 在超分子聚合物生长过程中,通过两个本质不同的现象,结构作用引起的协同作用可以增加,那就是合成一个有序的螺旋或管状结构或者别构作用,在链的生长过程中构象的变化改变了部件的亲和力。这两种不同协同的原因将会被更加详细的讨论。 合成有序螺旋状和管状的超分子聚合 物的协同作用从重复单元的堆积引起,其原因是在达到一个临界低聚物低聚体长度时,每个单体同时和多个重复单元接触(图33)在这个点上,区分单链和多超分子是非常重要的。对于准一维单旋转链strand超分子聚合物(图33a),第一步包括等键聚合,其 平衡常数为Kn。当加入另外一份单体时完成第一轮的螺旋,然后,以单体增加的平衡常数为Ke继续延长聚合物。由于非相连单元的额外相互作用,Ke比Kn高,整个螺旋合成过程是协同的。超分子结合的额外能量优势是由于,相对于分子内相互作用,自由能的 形成不包括来自cratic entropy损失那部分得贡献。

相关主题
文本预览
相关文档 最新文档