陕西省西安名校2019-2020学年高一上学期期中考试数学试卷及答案
- 格式:doc
- 大小:142.50 KB
- 文档页数:6
专题10压轴题题型汇总压轴题型一、保值函数型“保值函数”,又称为“k 倍值函数”,“和谐函数”,“美好区间”等等。
1、现阶段主要是一元二次函数为主的。
核心思路是转化为“根的分布”。
2、函数单调性是解决问题的入口之一。
3、方程和函数思想。
特别是通过两个端点值构造对应的方程,再提炼出对应的方程的根的关系。
如第1题1.(江苏省连云港市市区三星普通高中2020-2021学年高一上学期期中联考)对于区间[,]a b 和函数()y f x =,若同时满足:①()f x 在[,]a b 上是单调函数;②函数(),[,]y f x x a b =∈的值域还是[,]a b ,则称区间[,]a b 为函数()f x 的“不变”区间.(1)求函数2(0)y x x =≥的所有“不变”区间;(2)函数2(0)y x m x =+≥是否存在“不变”区间?若存在,求出实数m 的取值范围;若不存在,请说明理由.2.(北京市昌平区2020-2021学年高一上学期期中质量抽测)已知函数2()f x x k =-.若存在实数,m n ,使得函数()f x 在区间上的值域为,则实数k 的取值范围为()A .(1,0]-B .(1,)-+∞C .2,0]D .(2,)-+∞3.(广东省广州市第一中学2020-2021学年高一上学期11月考试)已知函数221()x f x x-=.(1)判断函数()f x 的奇偶性并证明;(2)若不等式23()1x f x kx x +-≥在1,14x ⎡⎤∈⎢⎥⎣⎦上恒成立,求实数k 的取值范围;(3)当11,(0,0)x m n m n ⎡⎤∈>>⎢⎥⎣⎦时,函数()()1(0)g x tf x t =+>的值域为[23,23]m n --,求实数t 的取值范围.4.(江苏省盐城市实验高级中学2020-2021学年高一上学期期中)一般地,若()f x 的定义域为[],a b ,值域为[],ka kb ,则称[],a b 为()f x 的“k 倍跟随区间”;特别地,若()f x 的定义域为[],a b ,值域也为[],a b ,则称[],a b 为()f x 的“跟随区间”,(1)若[]1,b 为2()22f x x x =-+的跟随区间,则b =______;(2)若函数()f x m =m的取值范围是______.压轴题型二、方程根的个数1.一元二次型“根的分布”是期中考试的一个难点和热点。
陕西省西安市高新一中2019-2020学年上学期期中考试高一数学试题一、选择题:(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列函数中与函数y x =是同一函数的是( ).A.2y = B.3y = C.y = D .2x y x= 2.若一次函数y kx b =+在R 上是增函数,则k 的范围为( ).A .0k >B .0k ≥C .0k <D .0k ≤3.已知集合A 满足{}{}1,2,31,2,3,4A =,则集合A 的个数为( ). A .2 B .4 C .8 D .164.函数2()1f x x =-在[2,0]-上的最大值与最小值之差为( ). A .83 B .43 C .23 D .15.如图是①a y x =;②b y x =;③c y x =,在第一象限的图像,则a ,b ,c 的大小关系为( ).6.已知函数2()8f x x kx =--在[1,4]上单调,则实数k 的取值范围为( ).A .[2,8]B .[8,2]--C .(][),82,-∞--+∞D .(][),28,-∞+∞7.已知函数()f x 是奇函数,在(0,)+∞上是减函数,且在区间[,](0)a b a b <<上的值域为[3,4]-,则在区间[,]b a --上( ). A .有最大值4 B .有最小值4- C .有最大值3- D .有最小值3- 8.设0.60.6a =, 1.50.6b =,0.61.5c =,则a ,b ,c 的大小关系是( ).A .a b c <<B .a c b <<C .b a c <<D .b c a <<9.设x ∈R ,定义符号函数1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩,则( ).A .|sgn |x x x =-B .sgn ||x x x =-C .||||sgn x x x =D .||sgn x x x =10.若在定义域内存在..实数0x ,满足00()()f x f x -=-,则称()f x 为“有点奇函数”,若12()423x x f x m m +=-+-为定义域R 上的“有点奇函数”,则实数m 的取值范围是( ).A .11m ≤B .1m ≤C .m -≤D .1m -≤ 二、填空题:(本大题共4小题,每小题4分,共16分)11.若函数2(4)()1(4)x x f x x x ⎧=⎨+<⎩≥,则[(3)]f f =__________.12.设函数y =A ,函数ln(1)y x =-的定义域为B ,则R A B =ð__________.13.方程23x x k +=的解都在[1,2]内,则k 的取值范围为__________.14.已知函数11()log x a x f x -+=(0a >且1a ≠)有下列四个结论.①恒过定点;②()f x 是奇函数;③当1a >时,()0f x <的解集为{}|0x x >;③当1a >时,()0f x <的解集为{}|0x x >;④若m ,(1,1)n ∈-,那么()()1m n f m f n f mn +⎛⎫+= ⎪+⎝⎭. 其中正确的结论是__________(请将所有正确结论的序号都填在横线上).三、解答题:(本大题共5小题,共44分,解答应写出文字说明、证明过程或演算步骤).15.(本小题满分8分)求下列各式的值:(1)122.5053[(0.064)]π-.(2)2lg5++已知函数1()2axf x ⎛⎫= ⎪⎝⎭,a 为常数,且函数的图象过点(1,2)-. (1)求a 的值.(2)若()42x g x -=-,且()()g x f x =,求满足条件的x 的值.17.(本小题满分8分)已知集合{}2(,)|y 1A x y x mx ==-+-,{}(,)|3,03B x y y x x ==-≤≤.(1)当4m =时,求A B . (2)若A B 是只有一个元素的集合,其实数m 的取值范围.18.(本小题满分10分)定义:已知函数()f x 在[,]()m n m n <上的最小值为t ,若t m ≤恒成立,则称函数()f x 在[,]()m n m n <上具有“DK ”性质.(1)判断函数2()22f x x x =-+在[1,2]上是否具有“DK ”性质?说明理由.(2)若2()2f x x ax =-+在[,1]a a +上具有“DK ”性质,求a 的取值范围.已知函数2()32log f x x =-,2()log g x x =.(1)当[1,4]x ∈时,求函数()[()1]()h x f x g x =+⋅的值域.(2)如果对任意的[1,4]x ∈,不等式2()()()f x f x k g x ⋅>⋅恒成立,求实数k 的取值范围.附加题:1.(本小题满分8分)若定义在(,1)(1,)-∞+∞上的函数()f x 满足2017()220171x f x f x x +⎛⎫+=- ⎪-⎝⎭,则(2019)f =__________. 2.(本小题满分12分)设()|lg |f x x =,a ,b 为实数,且0a b <<,若a ,b 满足()()22a b f a f b f +⎛⎫== ⎪⎝⎭,试写出a 与b 的关系,并证明这一关系中存在b 满足34b <<.陕西省西安市高新一中2019-2020学年上学期期中考试高一数学试题参考答案一、选择题:(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列函数中与函数y x =是同一函数的是( ).A .2y =B .3y =C .y =D .2x y x= 【答案】B【解析】A .此函数的定义域是[)0,+∞与函数y x =的定义域不同,所以这是两个不同的函数; B .此函数的定义域是一切实数,对应法则是自变量的值不变,与函数y x =的定义域和对应法则都相同,所以这是同一个函数;C .此函数的值域是[)0,+∞与函数y x =的值域不同,所以这是两个不同的函数;D .此函数的定义域是(,0)(0,)-∞+∞与函数y x =的定义域不同,所以这是两个不同的函数; 所以B 与函数y x =是同一个函数.2.若一次函数y kx b =+在R 上是增函数,则k 的范围为( ).A .0k >B .0k ≥C .0k <D .0k ≤【答案】A【解析】A .法一:由一次函数的图象可知选A .法二:设1x ∀,2x ∈R 且12x x <,∵()f x kx b =+在R 上是增函数,∴1212()(()())0x x f x f x -->,即212()0k x x ->,∵212()0x x ->,∴0k >.故选A .3.已知集合A 满足{}{}1,2,31,2,3,4A =,则集合A 的个数为( ). A .2 B .4 C .8 D .16【答案】C【解析】∵{}{}1,2,31,2,3,4A =,∴{}4A =;{}1,4;{}2,4;{}3,4;{}1,2,4;{}1,3,4;{}2,3,4;{}1,2,3,4,则集合A 的个数为8,故答案为:8.4.函数2()1f x x =-在[2,0]-上的最大值与最小值之差为( ). A .83 B .43 C .23 D .1【答案】B【解析】由题意可得:∵20x -≤≤,∴22()0(1)f x x '=-<-, ∴()f x 在[2,0]-上单调递减, ∴max 2()(2)3f x f =-=-. min ()(0)2f x f ==-, ∴最大值与最小值之差为24(2)33---=, 综上所述,答案:43.5.如图是①a y x =;②b y x =;③c y x =,在第一象限的图像,则a ,b ,c 的大小关系为( ).A .a b c >>B .a b c <<C .b c a <<D .a c b << 【答案】A【解析】由幂函数图象和单调性可知:1a >,01b <<,0c <.∴a b c >>.6.已知函数2()8f x x kx =--在[1,4]上单调,则实数k 的取值范围为( ).A .[2,8]B .[8,2]--C .(][),82,-∞--+∞D .(][),28,-∞+∞【答案】D 【解析】22b k a -=,12k ≤或42k ≥,2k ≤或8k ≥.7.已知函数()f x 是奇函数,在(0,)+∞上是减函数,且在区间[,](0)a b a b <<上的值域为[3,4]-,则在区间[,]b a --上( ). A .有最大值4 B .有最小值4- C .有最大值3- D .有最小值3-【答案】B【解析】∵0a b <<,∴0a b ->->,∵函数()f x 是奇函数,在(0,)+∞上是减函数,∴()f x 在(,0)-∞上是减函数,∵在区间[,](0)a b a b <<上的值域为[3,4]-,∴()f x 在区间[,]b a --上的值域为[4,3]-,∴()f x 在区间[,]b a --上有最大值为3,最小值为4-,综上所述.故选B .8.设0.60.6a =, 1.50.6b =,0.61.5c =,则a ,b ,c 的大小关系是( ).A .a b c <<B .a c b <<C .b a c <<D .b c a <<【答案】C【解析】解:∵00.61<<,0.6 1.5<,∴0.6 1.510.60.6>>,即a b >,∵1.51>,0.60>,∴0.61.51c =>,∴c a b >>.9.设x ∈R ,定义符号函数1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩,则( ).A .|sgn |x x x =-B .sgn ||x x x =-C .||||sgn x x x =D .||sgn x x x =【答案】A【解析】对于选项A .右边,0|sgn |0,0x x x x x ≠⎧==⎨=⎩,而左边,0||,0x x x x x ⎧==⎨-<⎩≥,显然不正确;对于选项B .右边,0sgn ||0,0x x x x x ≠⎧==⎨=⎩,而左边,0||,0x x x x x ⎧==⎨-<⎩≥,显然不正确; 对于选项C ,右边,0||sgn 0,0x x x x x ≠⎧==⎨≠⎩,而左边,0||,0x x x x x ⎧==⎨-<⎩≥,显然不正确; 对于选项D ,右边,0sgn 0,0,0x x x x x x x >⎧⎪===⎨⎪-<⎩,而左边,0||,0x x x x x ⎧==⎨-<⎩≥,显然正确.10.若在定义域内存在..实数0x ,满足00()()f x f x -=-,则称()f x 为“有点奇函数”,若12()423x x f x m m +=-+-为定义域R 上的“有点奇函数”,则实数m 的取值范围是( ).A.11m ≤B.1m ≤C.m -≤ D.1m -≤ 【答案】B【解析】根据“局部奇函数”的定义可知,函数()()f x f x -=-有解即可,即1212()423(423)x x x x f x m m m m --++-=-+-=--+-,∴2442(22)260x x x x m m --+-++-=,即22(22)2(22)280x x x x m m --+-⋅++-=有解即可,设22x x t -=+,则222x x t -=+≥,∴方程等价为222280t m t m -⋅+-=在2t ≥时有解,设22()228g t t m t m =-⋅+-, 对称轴22m x m -=-=, ①若2m ≥,则2244(28)0m m ∆=--≥,即28m ≤,∴m -≤2m ≤≤②若2m <,要使222280t m t m -⋅+-=在2t ≥时有解,则2(2)00m f <⎧⎪⎨⎪∆⎩≤≥,即211m m m <⎧⎪⎨⎪-⎩≤≤,解得12m <,综上:1m -≤二、填空题:(本大题共4小题,每小题4分,共16分)11.若函数2(4)()1(4)x x f x x x ⎧=⎨+<⎩≥,则[(3)]f f =__________. 【答案】16【解析】∵函数2(4)()1(4)x x f x x x ⎧=⎨+<⎩≥, ∴(3)314f =+=,4[(3)](4)216f f f ===.12.设函数y =A ,函数ln(1)y x =-的定义域为B ,则R A B =ð__________.【答案】[1,2]【解析】240x -≥,22x -≤≤,10x ->,1x <,{}|1R B x x =ð≥,∴[1,2]R A B =ð.13.方程23x x k +=的解都在[1,2]内,则k 的取值范围为__________.【答案】[)5,10【解析】23x k x =-, 1x =时,32k -≥,5k ≥,2x =时,64k -<,10k <,[)5,10k ∈.14.已知函数11()log x a x f x -+=(0a >且1a ≠)有下列四个结论.①恒过定点;②()f x 是奇函数;③当1a >时,()0f x <的解集为{}|0x x >;③当1a >时,()0f x <的解集为{}|0x x >;④若m ,(1,1)n ∈-,那么()()1m n f m f n f mn +⎛⎫+= ⎪+⎝⎭. 其中正确的结论是__________(请将所有正确结论的序号都填在横线上).【答案】①,②,④【解析】(1)解:∵1()log 1ax f x x -=+, ∴10111x x x->⇒-<<+, 故函数()f x 的定义域是|11x x -<<.(2)证明:∵m ,(1,1)n ∈-, ∴1111()()log log log 1111a a a m n m n f m f n m n m n ----⎛⎫+=+=⋅ ⎪++++⎝⎭, 11111log log log 111111a a a mn m n m n m n mn m n mn mn f mn m n m n m n mn mn mn mn+--+---++⎛⎫++==== ⎪++++++++⎝⎭+++, 故()()1m n f m f n f mn +⎛⎫+= ⎪+⎝⎭. (3)解:∵1111()()log log log log 101111aa a a x x x x f x f x x x x x+-+--+=+=⋅==-+-+, ∴()()f x f x -=-, 即()f x 在其定义域(1,1)-上为奇函数.三、解答题:(本大题共5小题,共44分,解答应写出文字说明、证明过程或演算步骤).15.(本小题满分8分)求下列各式的值:(1)122.5053[(0.064)]π-. (2)2lg5++【答案】见解析.【解析】(1)原式12232.55327[(0.8)]18-⎛⎫=-- ⎪⎝⎭, 11=-0=.(2)2lg5++112222(lg 2)lg 2lg5=+⋅+2112lg 2lg 2lg522⎛⎫=+⋅+ ⎪⎝⎭2112lg 2lg 2lg522⎛⎫=+⋅ ⎪⎝⎭11lg 2(lg 2lg5)lg 2122=++- 11lg2lg(25)1lg222=⋅⋅+- 11lg21lg2122=+-=.16.(本小题满分8分) 已知函数1()2axf x ⎛⎫= ⎪⎝⎭,a 为常数,且函数的图象过点(1,2)-. (1)求a 的值.(2)若()42x g x -=-,且()()g x f x =,求满足条件的x 的值.【答案】见解析.【解析】(1)由已知得122a -⎛⎫= ⎪⎝⎭,解得1a =.(2)由(1)知1()2x f x ⎛⎫= ⎪⎝⎭, 又()()g x f x =,则1422x x -⎛⎫-= ⎪⎝⎭, 即112042x x ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭,即2112022x x⎡⎤⎛⎫⎛⎫--=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦, 令12x t ⎛⎫= ⎪⎝⎭,则220t t --=, 即(2)(1)0t t -+=,又0t >,故2t =, 即122x⎛⎫= ⎪⎝⎭,解得1x =-, 满足条件的x 的值为1-.17.(本小题满分8分)已知集合{}2(,)|y 1A x y x mx ==-+-,{}(,)|3,03B x y y x x ==-≤≤. (1)当4m =时,求A B . (2)若A B 是只有一个元素的集合,其实数m 的取值范围.【答案】见解析.【解析】(1)当4m =时,集合{}2(,)|41A x y y x x ==-+-, {}(,)|3,03B x y y x x ==-≤≤,联立得:2341y x y x x =-⎧⎨=-+-⎩, 消去y 得:2341x x x -=-+-, 即(1)(4)0x x --=,解得:1x =或4x =(不合题意,舍去), 将1x =代入3y x =-得2y =, 则{}(1,2)A B =;综上所述:答案为{}(1,2)AB =. (2)集合A 表示抛物线上的点,抛物线21y x mx =-+-,开口向下且过点(0,1)-, 集合B 表示线段上的点,要使A B 只有一个元素,则线段与抛物线的位置关系有以下两种,如图: (i )由图知,在函数2()1f x x mx =-+-中,只要(3)0f ≥,即9310m -+-≥, 解得:103m ≥. (ii )由图知,抛物线与直线在[0,3]x ∈上相切,联立得:213y x mx y x ⎧=-+-⎨=-⎩, 消去y 得:213x mx x -+-=-, 整理得:2(1)40x m x -++=, 当2(1)160m ∆=+-=,∴3m =或5m =-,当3m =时,切点(2,1)适合, 当5m =-时,切点(2,5)-舍去, 综上所述:答案为m 范围为3m =或103m ≥.18.(本小题满分10分)定义:已知函数()f x 在[,]()m n m n <上的最小值为t ,若t m ≤恒成立,则称函数()f x 在[,]()m n m n <上具有“DK ”性质.(1)判断函数2()22f x x x =-+在[1,2]上是否具有“DK ”性质?说明理由. (2)若2()2f x x ax =-+在[,1]a a +上具有“DK ”性质,求a 的取值范围.【答案】见解析.【解析】(1)∵2()22f x x x =-+,[1,2]x ∈, 对称轴1x =,开口向上,当1x =时,取得最小值为(1)1f =, ∴min ()(1)11f x f ==≤,∴函数()f x 在[1,2]上具有“DK ”性质. (2)2()2g x x ax =-+,[,1]x a a ∈+, 其图象的对称轴方程为2a x =. ①当02a ≥,即0a ≥时,22min ()()22g x g a a a ==-+=. 若函数()g x 具有“DK ”性质,则有2a ≤总成立,即2a ≥. ②当12a a a <<+,即20a -<<时, 2min ()224a a g x g ⎛⎫==-+ ⎪⎝⎭. 若函数()g x 具有“DK ”性质,则有224a a -+≤总成立,解得a 无解. ③当12a a +≥,即2a -≤时,min ()(1)3g x g a a =+=+, 若函数()g x 具有“DK ”性质, 则有3a a +≤,解得a 无解. 综上所述,若2()2g x x ax =-+在[,1]a a +上具有“DK ”性质,则2a ≥.19.(本小题满分10分)已知函数2()32log f x x =-,2()log g x x =. (1)当[1,4]x ∈时,求函数()[()1]()h x f x g x =+⋅的值域. (2)如果对任意的[1,4]x ∈,不等式2()()()f x f x k g x ⋅>⋅恒成立,求实数k 的取值范围.【答案】见解析.【解析】(1)2222()(42log )log 2(log 1)2h x x x x =-⋅=--+,因为[1,4]x ∈,所以2log [0,2]x ∈,故函数()h x 的值域为[0,2].(2)由2()()f x f k g x ⋅>⋅得222(34log )(3log )log x x k x -->⋅, 令2log t x =,因为[1,4]x ∈,所以2log [0,2]t x =∈,所以(34)(3)t t k t -->⋅对一切的[0,2]t ∈恒成立.1.当0t =时,k ∈R ;2.当(]0,2t ∈时,(34)(3)t t k t --<恒成立,即9415k t t<+-. 因为9412t t +≥,当且仅当94t t =,即32t =时取等号. 所以9415t t+-的最小值为3-, 综上,(,3)k ∈-∞-.附加题:1.(本小题满分8分)若定义在(,1)(1,)-∞+∞上的函数()f x 满足2017()220171x f x f x x +⎛⎫+=- ⎪-⎝⎭,则(2019)f =__________. 【答案】1344. 【解析】2018()2120171f x f x x ⎛⎫++=- ⎪-⎝⎭, 2x =:(2)2(2019)2015f f +=,① 2019x =:(2019)2(2)2f f +=-,②, ①⨯2-②3(2019)4032f ==, (2019)1344f =.2.(本小题满分12分)设()|lg |f x x =,a ,b 为实数,且0a b <<,若a ,b 满足()()22a b f a f b f +⎛⎫== ⎪⎝⎭,试写出a 与b 的关系,并证明这一关系中存在b 满足34b <<.【答案】见解析.【解析】(1)由()1f x =得,lg 1x =±,所以10x =或110. (2)结合函数图象,由()()f a f b =,可判断(0,1)a ∈,(1,)b ∈+∞, 从而lg lg a b -=,从而1ab =, 又122b a b b ++=, 因为(1,)b ∈+∞,所以12a b +>, 从而由()22a b f b f +⎛⎫= ⎪⎝⎭, 可得2lg 2lg lg 22a b a b b ++⎛⎫== ⎪⎝⎭, 从而22a b b +⎛⎫= ⎪⎝⎭. (3)由22a b b +⎛⎫= ⎪⎝⎭, 得2242b a b ab =++,221240b b b ++-=, 令221()24g b b b b =++-, 因为(3)0g <,(4)0g >,根据零点存在性定理可知, 函数()g b 在(3,4)内一定存在零点, 即方程221240b b b++-=存在34b <<的根.。
2024年高一第一学期期中试卷数学(答案在最后)一、选择题(共10小题,每小题4分,共40分)1.已知集合{}31M x x =-<<,{}14N x x =-≤<,则M N = ()A.{}31x x -<< B.{}3x x >- C.{}11x x -≤< D.{}4x x <2.设命题p : n ∃∈N ,225n n >+,则p 的否定是()A. n ∀∈N ,225n n >+ B. n ∀∈N ,225n n ≤+C.n ∃∈N ,225n n ≤+ D.n ∃∈N ,N 225n n <+3.下列各组函数中,两个函数相同的是()A.3y =和y x=B.2y =和y x=C.y =和2y =D.y =和2x y x=4.下列函数在区间()0,+∞上为增函数的是()A.2xy = B.()21y x =- C.1y x-= D.3xy -=5.若实数a ,b 满足a b >,则下列不等式成立的是()A.a b> B.a c b c+>+ C.22a b > D.22ac bc>6.“4a ≥”是“二次函数()2f x x ax a =-+有零点”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.在下列区间中,一定包含函数()25xf x x =+-零点的区间是()A.()0,1 B.()1,2 C.()2,3 D.()3,48.已知函数()1,01,0x f x x x≤⎧⎪=⎨>⎪⎩,则使方程()x f x m +=有解的实数m 的取值范围是()A.()1,2 B.(),2-∞- C.()(),12,-∞+∞ D.(][),12,-∞+∞ 9.定义在R 上的偶函数()f x 满足:对任意的[)()1212,0,x x x x ∈+∞≠,都有()()21210f x f x x x -<-,且()30f =,则不等式()0f x >的解集是()A.()(),30,3-∞-B.()()3,03,-+∞C.()3,3- D.()(),33,-∞-+∞ 10.现实生活中,空旷田野间两根电线杆之间的电线与峡谷上空横跨深涧的观光索道的钢索有相似的曲线形态,这类曲线在数学上常被称为悬链线.在合适的坐标系中,这类曲线可用函数()()2e 0,e 2.71828ex xa bf x ab +=≠=⋅⋅⋅来表示.下列结论正确的是()A.若0ab >,则()f x 为奇函数B.若0ab >,则()f x 有最小值C.若0ab <,则()f x 为增函数D.若0ab <,则()f x 存在零点二、填空题(共5小题,每小题5分,共25分)11.函数()f x =的定义域为__________.12.已知函数()()1104f x x x x=++>,则当且仅当x =_________时,()f x 有最小值________.13.已知集合{}2,0A a =,{}3,9B a =-,若满足{}9A B = ,则实数a 的值为________.14.已知函数()y f x =在R 上是奇函数,当0x ≤时,()21xf x =-,则()1f =________;当0x >时,()f x =________.15.已知非空集合A ,B 满足以下四个条件:①{}1,2,3,4,5,6A B = ;②A B =∅ ;③A 中的元素个数不是A 中的元素;④B 中的元素个数不是B 中的元素.(ⅰ)如果集合A 中只有1个元素,那么集合A 的元素是__________;(ⅱ)有序集合对(),A B 的个数是__________.三、解答题(共6小题,第16题9分,第17-19题6分,第20题7分,第21题6分)16.已知集合{}14A x x =-≤≤,{}11B x a x a =-≤≤+.(1)若4a =,求A B ;(2)若A B A = ,求a 的取值范围.17.解下列关于x 的不等式:(1)2112x x +≤-(2)213x -≥(3)()()2220ax a x a +--≥∈R 18.已知函数()22xxf x a -=⋅-是定义在R 上的奇函数.(1)求a 的值,并用定义法证明()f x 在R 上单调递增;(2)解关于x 的不等式()()23540f x x f x -+->.19.某工厂要建造一个长方体的无盖贮水池,其容积为34800m ,深为3m ,如果池底造价为每平方米150元,池壁每平方米造价为120元,怎么设计水池能使总造价最低?最低造价是多少?20.已知函数()()21f x mx m x m =--+.(1)若不等式()0f x >的解集为R ,求m 的取值范围;(2)若不等式()0f x ≤对一切()0,x ∈+∞恒成立,求m 的取值范围;21.设k 是正整数,集合A 至少有两个元素,且* N A ⊆.如果对于A 中的任意两个不同的元素x ,y ,都有x y k -≠,则称A 具有性质()P k .(1)试判断集合{}1,2,3,4B =和{}1,4,7,10C =是否具有性质()2P ?并说明理由;(2)若集合{}{}1212,,,1,2,,20A a a a =⋅⋅⋅⊆⋅⋅⋅,求证:A 不可能具有性质()3P ;(3)若集合{}1,2,,2023A ⊆⋅⋅⋅,且同时具有性质()4P 和()7P ,求集合A 中元素个数的最大值.高一第一学期期中试卷数学参考答案与试题解析一、选择题(共10小题)CBAABABDCD二、共填空题(共5小题)11.[)1,+∞12.12;213.-314.12;()12xf x -=-15.5;10三、解答题(共6小题)17.(1){}23A B x x =≤≤ .(2)a 的取值范围是7,2⎛⎤-∞ ⎥⎝⎦.16.(1)()3,2-;(2)(][),12,-∞-+∞ (3)综上所述:当0a =时,不等式解集为(],1-∞-;当0a >时,不等式解集为(]2,1,a ⎡⎫-∞-+∞⎪⎢⎣⎭;当20a -<<时,不等式解集为2,1a⎡⎤-⎢⎥⎣⎦;当2a =-时,不等式解集为{}1-;当2a <-时,不等式解集为21,a⎡⎤-⎢⎥⎣⎦.18.(1)1a =,证明略(2)()()()()()2235403544f x x f x f x x f x f x -+->⇒->--=-∴23542x x x x ->-⇒>或23x <-.19.水池总造价()()16001502331207201600150x f x xy x y x ⎛⎫=⨯++⨯=+⨯+⨯ ⎪⎝⎭72024000057600240000297600≥+=+=元.当且仅当40x m =,40y m =时取等号.∴设计水池底面为边长为40m 的正方形能使总造价最低,最低造价是297600元.20.(1)m 的取值范围为1,3⎛⎫+∞ ⎪⎝⎭;(2)m 的取值范围为(],1-∞-;21.(1)集合B 不具有性质()2P ,集合C 具有性质()2P (2)证明:将集合{}1,2,,20⋅⋅⋅中的元素分为如下11个集合,{1,4},{2,5},{3,6},{7,10},{8,11}.{9,12},{13,16},{14,17},{15,18},{19},{20},所以从集合{}1,2,,20⋅⋅⋅中取12个元素,则前9个集合至少要选10个元素,所以必有2个元素取自前9个集合中的同一集合,即存在两个元素其差为3,所以A 不可能具有性质()3P ;(3)先说明连续11项中集合A 中最多选取5项,以1,2,3……,11为例.构造抽屉{1,8},{2,9},{3,10},{4,11},{5},{6},{7}.①5,6,7同时选,因为具有性质()4P 和()7P ,所以选5则不选1,9;选6则不选2,10;选7则不选3,11;则只剩4,8.故1,2,3……,11中属于集合A 的元素个数不超过5个.②5,6,7选2个,若只选5,6,则1,2,9,10,7不可选,又{4,11}只能选一个元素,3,8可以选,故1,2,3……,11中属于集合A 的元素个数不超过5个.若选5,7,则只能从2,4,8,10中选,但4,8不能同时选,故1,2,3……,11中属于集合A 的元素个数不超过5个.若选6,7,则2,3,10,11,5不可选,又{1,8}只能选一个元素,4,9可以选,故1,2,3……,11中属于集合A 的元素个数不超过5个.③5,6,7中只选1个,又四个集合{1,8},{2,9},{3,10},{4,11}每个集合至多选1个元素,故1,2,3……,11中属于集合A 的元素个数不超过5个.由上述①②③可知,连续11项自然数中属于集合A 的元素至多只有5个,如取1,4,6,7,9.因为2023=183×11+10,则把每11个连续自然数分组,前183组每组至多选取5项;从2014开始,最后10个数至多选取5项,故集合A 的元素最多有184×5=920个.给出如下选取方法:从1,2,3……,11中选取1,4,6,7,9;然后在这5个数的基础上每次累加11,构造183次.此时集合A的元素为:1,4,6,7,9;12,15,17,18,20;23,26,28,29,31;……;2014,2017,2019,2020,2022,共920个元素.经检验可得该集合符合要求,故集合A的元素最多有920个.。
人教A 版师大附中2019-2020学年上学期高一年级期中考试数学试卷 说明:本试卷共150分,考试时间120分钟。
一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设集合S ={1,3,5},T ={3,6},则S T 等于A. φB. {3}C.{1,3,5,6}D. R2. 函数f (x )=x -12的定义域是A. (-∞,1)B. (]1,∞-C. RD. (-∞,1) ()∞+,13. 下列函数中在其定义域上是偶函数的是A. y =2xB. y =x 3C. y =x 21D. y =x 2-4. 下列函数中,在区间(0,+∞)上是增函数的是A. y =-x 2B. y = x 2-2C. y =221⎪⎭⎫ ⎝⎛ D. y =log 2x 1 5. 已知函数f (x )=x +1,x ∈R,则下列各式成立的是A. f (x )+f (-x )=2B. f (x )f (-x )=2C. f (x )=f (-x )D. –f (x )=f (-x )6. 设函数f (x )=a x -(a>0),且f (2)=4,则A. f (-1)>f (-2)B. f (1)>f (2)C. f (2)<f (-2)D.f (-3)>f (-2)7. 已知a =log 20.3,b =23.0,c =0.32.0,则a ,b ,c 三者的大小关系是A. a>b>cB. b>a>cC. b>c>aD. c>b>a8. 函数f (x )=log a (x -2)+3,a>0,a ≠1的图像过点(4,27),则a 的值为 A. 22 B. 2 C. 4 D. 21 9. 当0<a<1时,下列不等式成立的是 A. a 1.0<a 2.0B. log a 0.1> log a 0.2C. a 2<a 3D. log a 2< log a 310. A semipro baseball league has teams with 21 players each. League rules state that aplayer must be paid at least $15,000,and that the total of all players’ salaries for each team cannot exceed $700,000. What is the maximum possible salary ,in dollars ,for a single player ?A. 270,000B. 385,000C. 400,000D. 430,000E.700,000二、填空题:本大题共8小题,每小题4分,共32分。
2019-2020学年陕西省西安市碑林区高一(上)期中数学试卷一、选择题(本大题共12小题,共48.0分)1. 已知全集U = {1,2,3,4,5,6,7,8,9},集合A = {2,4,6,7},B = {3,5,6,7,8},则(∁U A)∩(∁U B)=( ) A. {1,9} B. {2,3,4,5,6,7,8} C. {1,2,3,4,5,8,9} D. {1,6,7,9}2. 设函数f(x)={12x −1x ≥01xx <0.,若f(a)>a ,则实数a 的取值范围是( )A. a >1B. a <−1C. a >1或a <−1D. a <−2或−1<a <13. 已知f(x)=−x −x 3,x ∈[a,b],且f(a)⋅f(b)<0,则f(x)=0在[a,b]内( )A. 至少有一个实数根B. 至多有一个实数根C. 没有实数根D. 有唯一的实数根 4. 已知幂函数y =f(x)的图像过点(2,4),则f(√2)= ( )A. 12 B. √2C. 2√2D. 25. 已知(x,y)在映射f 下的像是(x +y,x −y),则像(1,2)在f 下的原像为( )A. (32,12)B. (−32,12) C. (−32,−12) D. (32,−12)6. 设a =log 23,b =log 35,c =log 54,则( )A. bc <2<acB. ab <2<acC. 2<bc <abD. bc <2<ab 7. 函数f(x)=4x 2−ax −8在区间(4,+∞)上是增函数,则实数a 的取值范围是( )A. a ≤32B. a ≥32C. a ≥16D. a ≤16 8. 函数y =f(x)满足对任意x 1,x 2∈[0,2](x 1≠x 2),f(x 2)−f(x 1)x 2−x 1>0,且函数f(x +2)是偶函数,则下列结论成立的是( )A. f(1)<f(52)<f(72) B. f(72)<f(1)<f(52) C. f(72)<f(52)<f(1)D. f(52)<f(1)<f(72)9. 已知函数y =e x 与函数y =f(x)互为反函数,则( ) A. f(2x)=e 2x (x ∈R) B. f(2x)=ln2⋅lnx(x >0) C. f(2x)=2e x (x ∈R) D. f(2x)=lnx +ln2(x >0)10. 函数f(x)满足f(x)=f(−x),f(x)=f(2−x),当x ∈[0,1]时,f(x)=x 2,过点P(0,−94)且斜率为k 的直线与f(x)在区间[0,4]上的图象恰好有3个交点,则k 的取值范围为( )A. (1,1312)B. [1,1312]C. [2,3]D. (2,3)11. 已知函数f(x)={2x +1,x <1x 2+ax,x ≥1,若f(f(0))=4a ,则函数f(x)的值域( )A. [−1,+∞)B. (1,+∞)C. (3,+∞)D. [−94,+∞)12. 设函数,若f(a)=1,则a =( )A. −1或3B. 2或3C. −1或2D. −1或2或3二、填空题(本大题共4小题,共20.0分) 13. 函数y =√x −1+1lg(3−x)的定义域是______.14. 设函数f(x)={3x −1,x <1,2x ,x ⩾1.则满足f(f(a))=2f(a)时a 的取值范围是____________.15. 设f(x)是R 上的奇函数,且在(0,+∞)内是增函数,又f(−3)=0,则x ⋅f(x)<0的解集是______ . 16. 已知函数f(x)=kx +1,若对于任意的x ∈[−1,1],均有f(x)≥0,则实数k 的取值范围是________. 三、解答题(本大题共5小题,共52.0分) 17. 化简求值:(1)0.064−13−(−18)0+1634+0.2512;18. 已知全集U =R ,集合A ={x|1<x ≤8},B ={x|2<x <9},C ={x|x ≥a}.(1)求A ∩B ,A ∪B ;(2)如果A ∩C ≠⌀,求a 的取值范围. 19. 用单调性定义证明函数f(x)=x+2x−1在(1,+∞)上单调递减.20.已知函数f(x)的定义域为(0,+∞),且f(x)=2f(1)√x−1,求f(x).x21.设函数f(x)=|x−1|+|x−2|.(1)画出函数y=f(x)的图象;(2)若不等式|a+b|+|a−b|≥|a|f(x),(a≠0,a、b∈R)恒成立,求实数x的范围.-------- 答案与解析 --------1.答案:A解析:【分析】本题考查集合运算,属基础题.根据补集,交集定义运算即可.【解答】解:因为全集U={1,2,3,4,5,6,7,8,9},集合A={2,4,6,7},B={3,5,6,7,8},所以∁U A={1,3,5,8,9},∁U B={1,2,4,9},所以(∁U A)∩(∁U B)={1,9},故选A.2.答案:B解析:【分析】先根据分段函数的定义域选择好解析式,分a≥0时,和a<0时两种情况求解,最后取并集.【解答】a−1>a,解得a<−2,当a⩾0时,f(a)=12矛盾,无解当a<0时,f(a)=1a>a,a<−1.综上:a<−1∴实数a的取值范围是(−∞,−1).故选:B.3.答案:D解析:知f(x)是单调减函数,且f(a)⋅f(b)<0,则f(x)=0在[a,b]内有唯一的实数根.4.答案:D解析:【分析】根据幂函数定义求解析式,进一步求函数值,本题考查幂函数定义及函数求值,属基础题目.【解答】解:由题意设函数f(x)=xα,因为幂函数y=f(x)的图像过点(2,4),所以2α=4,即α=2, 所以f (x )=x 2, 则f(√2)=(√2)2=2, 故选D . 5.答案:D解析:解:由题意得:{x +y =1x −y =2,解得:x =32,y =−12,故选:D由题意可得x +y =1,x −y =2,解得x 、y 的值,即可求得原像(x,y). 本题主要考查映射的定义,在映射f 下,像和原像的定义,属于基础题. 6.答案:D解析: 【分析】本题考查对数的运算即对数不等式,属于基础题.根据所给a ,b ,c 利用换底公式化简,比较给个选项即可. 【解答】 解:由题,∴ab =lg5lg2>lg4lg2>2,bc =lg4lg3=2lg2lg3<2,ac =2lg3lg5<2,所以bc <2<ab 正确, 故选D . 7.答案:A解析:解:∵f(x)=4x 2−ax −8在区间(4,+∞)上为增函数, ∴对称轴x =a8≤4,解得:a ≤32,故选:A .先求出函数的对称轴,结合二次函数的性质得到不等式,解出即可. 本题考查了二次函数的性质,单调性问题,本题属于基础题. 8.答案:B解析: 【分析】本题主要考查函数的单调性,奇偶性和对称性的运用,属于中档题. 先根据对任意x 1,x 2∈[0,2](x 1≠x 2),f(x 2)−f(x 1)x 2−x 1>0判断函数的单调性,再根据函数f(x +2)是偶函数判断函数的对称性,即可得解. 【解答】解:因为函数y =f(x)满足对任意x 1,x 2∈[0,2](x 1≠x 2),f(x 1)−f(x 2)x 1−x 2>0,所以函数f(x)在[0,2]单调递增, 又函数f(x +2)是偶函数, 所以f(x)关于x =2对称, ∴f(52)=f(4−52)=f(32),f(72)=f(4−72)=f(12), 又12<1<32,即f(12)<f(1)<f(32) ∴f(72)<f(1)<f(52),故选B . 9.答案:D解析:解:∵函数y =e x 与函数y =f(x)互为反函数,∴将函数y =e x 的x 、y 互换,得x =e y ,解得y =lnx(x >0) 因此,y =f(x)=lnx(x >0),可得f(2x)=ln2x =ln(x ×2)=lnx +ln2,(x >0) 故选:D .由反函数的定义,将函数y =e x 的x 、y 互换,化简得y =lnx ,从而得到f(x)=lnx(x >0),再利用对数的运算性质化简f(2x),即可得到正确答案.本题给出与函数y =e x 互为反函数的函数f(x),求f(x)表达式并化简f(2x),着重考查了反函数的定义与求法、对数的运算性质等知识,属于基础题. 10.答案:A解析:【分析】本题考查函数与方程的综合应用,涉及到动直线和分段函数图象的交点个数问题,我们更多的是从形的角度入手分析,做出分段函数的图象和动直线的图象,通过动态的变化中寻找解题的题眼.本题目中就是k BP <k <k BA . 【解答】解: ∵f(x)=f(−x),f(x)=f(2−x), ∴f(−x)=f(2−x), 即f(x +2)=f(x), ∴函数f(x)的周期为T =2。
2021-2022学年高一上学期期中考试数学试卷一.选择题(共8小题,满分40分,每小题5分)1.设集合A ={x |x >0},B ={x |log 2(3x ﹣2)<2},则( ) A .A ∩B =(0,53] B .A ∩B =(0,13] C .A ∪B =(13,+∞)D .A ∪B =(0,+∞)2.命题p :∀x ∈N ,x 3>x 2的否定形式¬p 为( ) A .∀x ∈N ,x 3≤x 2B .∃x ∈N ,x 3>x 2C .∃x ∈N ,x 3<x 2D .∃x ∈N ,x 3≤x 23.已知p :|m +1|<1,q :幂函数y =(m 2﹣m ﹣1)x m 在(0,+∞)上单调递减,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.已知幂函数f (x )=x 2m﹣1的图象经过点(2,8),则实数m 的值是( )A .﹣1B .12C .2D .35.设集合M ={x |x =4n +1,n ∈Z },N ={x |x =2n +1,n ∈Z },则( ) A .M ⫋NB .N ⫋MC .M ∈ND .N ∈M6.已知a =312,b =log 2√3,c =log 92,则a ,b ,c 的大小关系为( ) A .a >b >c B .a >c >bC .b >a >cD .c >b >a7.函数y =4xx 2+1的图象大致为( ) A .B .C.D.8.给出下列不等式:①a2+3>2a;②a2+b2>2(a﹣b﹣1);③x2+y2>2xy.其中恒成立的个数是()A.0B.1C.2D.3二.多选题(共4小题,满分20分,每小题5分)9.已知关于x的不等式ax2+bx+3>0,关于此不等式的解集有下列结论,其中正确的是()A.不等式ax2+bx+3>0的解集可以是{x|x>3}B.不等式ax2+bx+3>0的解集可以是RC.不等式ax2+bx+3>0的解集可以是{x|﹣1<x<3}D.不等式ax2+bx+3>0的解集可以是∅10.函数f(x)是定义在R上的奇函数,下列命题中正确的有()A.f(0)=0B.若f(x)在[0,+∞)上有最小值﹣1,则f(x)在(﹣∞,0]上有最大值1C.若f(x)在[1,+∞)上为增函数,则f(x)在(﹣∞,﹣1]上为减函数D.若x>0时,f(x)=x2﹣2x,则当x<0时,f(x)=﹣x2﹣2x11.如图,某池塘里浮萍的面积y(单位:m2)与时间t(单位:月)的关系为y=a t.关于下列说法正确的是()A.浮萍每月的增长率为2B.浮萍每月增加的面积都相等C.第4个月时,浮萍面积不超过80m2D.若浮萍蔓延到2m2,4m2,8m2所经过的时间分别是t1,t2,t3,则2t2=t1+t3 12.若集合A={x∈R|ax2﹣3x+2=0}中只有一个元素,则a的取值可以是()A.92B.98C.0D.1三.填空题(共4小题,满分20分,每小题5分)13.若函数f(x)的定义域为[﹣2,2],则函数f(3﹣2x)的定义域为.14.某数学小组进行社会实践调查,了解到某桶装水经营部在为如何定价发愁,进一步调研,了解到如下信息:该经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关系如表:销售单价/元6789101112日均销售量/桶480440400360320280240根据以上信息,你认为该经营部把桶装水定价为元/桶时能获得最大利润.15.不等式0.1x﹣ln(x﹣1)>0.01的解集为.16.对于函数f(x),若在定义域存在实数x,满足f(﹣x)=﹣f(x),则称f(x)为“局部奇函数”.若函数f(x)=4x﹣m•2x﹣3是定义在R上的“局部奇函数”,则实数m的取值范围为.四.解答题(共6小题,满分70分)17.(10分)(1)已知a ≤2,化简:√(a −2)2+√(a +3)33+(14)−12;(2)求值:3−log 32+log 610⋅(lg2+lg3)+log 927.18.(12分)已知全集U =R ,集合A ={x |1≤x <5},B ={x |2<x <8},C ={x |a <x ≤a +3}. (1)求A ∪B ,(∁U A )∩B ;(2)若“x ∈C ”为“x ∈A ”的充分不必要条件,求a 的取值范围.19.(12分)已知函数f(x)=x2−2x+ax.(1)当a=4时,求函数f(x)在x∈(0,+∞)上的最小值;(2)若对任意的x∈(0,+∞),f(x)>0恒成立.试求实数a的取值范围;(3)若a>0时,求函数f(x)在[2,+∞)上的最小值.20.(12分)国家发展改革委、住房城乡建设部于2017年发布了《生活垃圾分类制度实施方案》,规定46个城市在2020年底实施生活垃圾强制分类,垃圾回收、利用率要达35%以上.截至2019年底,这46个重点城市生活垃圾分类的居民小区覆盖率已经接近70%.某企业积极响应国家垃圾分类号召,在科研部门的支持下进行技术创新,新上一种把厨余垃圾加工处理为可重新利用的化工产品的项目.已知该企业日加工处理量x(单位:吨)最少为70吨,最多为100吨.日加工处理总成本y(单位:元)与日加工处理量x之间的函数关系可近似地表示为y=12x2+40x+3200,且每加工处理1吨厨余垃圾得到的化工产品的售价为100元.(Ⅰ)该企业日加工处理量为多少吨时,日加工处理每吨厨余垃圾的平均成本最低?此时该企业处理1吨厨余垃圾处于亏损还是盈利状态?(Ⅱ)为了该企业可持续发展,政府决定对该企业进行财政补贴,补贴方式共有两种.①每日进行定额财政补贴,金额为2300元;②根据日加工处理量进行财政补贴,金额为30x.如果你是企业的决策者,为了获得最大利润,你会选择哪种补贴方式进行补贴?为什么?21.(12分)定义在R上的奇函数f(x)是单调函数,满足f(3)=6,且f(x+y)=f(x)+f(y)(x,y∈R).(1)求f(0),f(1);(2)若对于任意x∈[12,3]都有f(kx2)+f(2x﹣1)<0成立,求实数k的取值范围.22.(12分)已知函数f(x)=2x−12x,g(x)=(4﹣lnx)•lnx+b(b∈R).(1)若f(x)>0,求实数x的取值范围;(2)若存在x1,x2∈[1,+∞),使得f(x1)=g(x2),求实数b的取值范围;2021-2022学年高一上学期期中考试数学试卷参考答案与试题解析一.选择题(共8小题,满分40分,每小题5分)1.设集合A ={x |x >0},B ={x |log 2(3x ﹣2)<2},则( ) A .A ∩B =(0,53] B .A ∩B =(0,13] C .A ∪B =(13,+∞)D .A ∪B =(0,+∞)解:∵集合A ={x |x >0},B ={x |log 2(3x ﹣2)<2}, ∴B ={x |23<x <2},则A ∪B =(0,+∞),A ∩B =(23,2),故选:D .2.命题p :∀x ∈N ,x 3>x 2的否定形式¬p 为( ) A .∀x ∈N ,x 3≤x 2B .∃x ∈N ,x 3>x 2C .∃x ∈N ,x 3<x 2D .∃x ∈N ,x 3≤x 2解:命题p :∀x ∈N ,x 3>x 2的否定形式是特称命题; ∴¬p :“∃x ∈N ,x 3≤x 2”. 故选:D .3.已知p :|m +1|<1,q :幂函数y =(m 2﹣m ﹣1)x m 在(0,+∞)上单调递减,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解:p :|m +1|<1等价于﹣2<m <0,∵幂函数y =(m 2﹣m ﹣1)x m 在(0,+∞)上单调递减, ∴m 2﹣m ﹣1=1,且m <0, 解得m =﹣1,∴p 是q 的必要不充分条件, 故选:B .4.已知幂函数f (x )=x 2m﹣1的图象经过点(2,8),则实数m 的值是( )A .﹣1B .12C .2D .3解:∵幂函数f (x )=x 2m ﹣1的图象经过点(2,8),∴22m ﹣1=8,∴m =2, 故选:C .5.设集合M ={x |x =4n +1,n ∈Z },N ={x |x =2n +1,n ∈Z },则( ) A .M ⫋NB .N ⫋MC .M ∈ND .N ∈M解:①当n =2m ,m ∈Z 时,x =4m +1,m ∈Z , ②当n =2m +1,m ∈Z 时,x =4m +3,m ∈Z , 综合①②得:集合N ={x |x =4m +1或x =4m +3,m ∈Z }, 又集合M ={x |x =4n +1,n ∈Z }, 即M ⫋N , 故选:A . 6.已知a =312,b=log 2√3,c =log 92,则a ,b ,c 的大小关系为( )A .a >b >cB .a >c >bC .b >a >cD .c >b >a解;∵a =312∈(1,2),b=log 2√3>log 2√2=12,∵log 2√3<log 22=1, ∴12<b <1,c =log 92<log 93=12, 则a >b >c , 故选:A . 7.函数y =4xx 2+1的图象大致为( ) A .B.C.D.解:函数y=4xx2+1的定义域为实数集R,关于原点对称,函数y=f(x)=4xx2+1,则f(﹣x)=−4xx2+1=−f(x),则函数y=f(x)为奇函数,故排除C,D,当x>0时,y=f(x)>0,故排除B,故选:A.8.给出下列不等式:①a2+3>2a;②a2+b2>2(a﹣b﹣1);③x2+y2>2xy.其中恒成立的个数是()A.0B.1C.2D.3解:①a2+3﹣2a=(a﹣1)2+2>0恒成立,所以a2+3>2a,故①正确;②a2+b2﹣2a+2b+2=(a﹣1)2+(b﹣1)2≥0,所以a2+b2≥2(a﹣b﹣1),故②正确;③x2+y2≥2xy,当且仅当x=y时等号成立,故③不正确.故恒成立的个数是2.故选:C.二.多选题(共4小题,满分20分,每小题5分)9.已知关于x的不等式ax2+bx+3>0,关于此不等式的解集有下列结论,其中正确的是()A.不等式ax2+bx+3>0的解集可以是{x|x>3}B.不等式ax2+bx+3>0的解集可以是RC.不等式ax2+bx+3>0的解集可以是{x|﹣1<x<3}D.不等式ax2+bx+3>0的解集可以是∅解:在A 项中,依题意可得a =0,且3b +3=0,解得b =﹣1,此时不等式为﹣x +3>0,解得x <3,故A 项错误;在B 项中,取a =1,b =2,可得x 2+2x +3=(x +1)2+2>0,解集为R ,故B 项正确; 在C 项中,依题意可得a <0,且{−1+3=−ba −1×3=3a ,解得{a =−1b =2,符合题意,故C 项正确.在D 选中,当x =0时,ax 2+bx +3=3>0,可得其解集不为∅,故D 选错误; 故选:BC .10.函数f (x )是定义在R 上的奇函数,下列命题中正确的有( ) A .f (0)=0B .若f (x )在[0,+∞)上有最小值﹣1,则f (x )在(﹣∞,0]上有最大值1C .若f (x )在[1,+∞)上为增函数,则f (x )在(﹣∞,﹣1]上为减函数D .若x >0时,f (x )=x 2﹣2x ,则当x <0时,f (x )=﹣x 2﹣2x 解:根据题意,依次分析选项:对于A ,函数f (x )是定义在R 上的奇函数,则f (﹣x )=﹣f (x ),当x =0时,有f (0)=﹣f (0),变形可得f (0)=0,A 正确,对于B ,若f (x )在[0,+∞)上有最小值﹣1,即x ≥0时,f (x )≥﹣1,则有﹣x ≤0,f (﹣x )=﹣f (x )≤1,即f (x )在(﹣∞,0]上有最大值1,B 正确,对于C ,奇函数在对应的区间上单调性相同,则若f (x )在[1,+∞)上为增函数,则f (x )在(﹣∞,﹣1]上为增函数,C 错误,对于D ,设x <0,则﹣x >0,则f (﹣x )=(﹣x )2﹣2(﹣x )=x 2+2x ,则f (x )=﹣f (﹣x )=﹣(x 2+2x )=﹣x 2﹣2x ,D 正确, 故选:ABD .11.如图,某池塘里浮萍的面积y (单位:m 2)与时间t (单位:月)的关系为y =a t .关于下列说法正确的是( )A .浮萍每月的增长率为2B .浮萍每月增加的面积都相等C .第4个月时,浮萍面积不超过80m 2D .若浮萍蔓延到2m 2,4m 2,8m 2所经过的时间分别是t 1,t 2,t 3,则2t 2=t 1+t 3 解:图象可知,函数过点(1,3), ∴a =3,∴函数解析式为y =3t , ∴浮萍每月的增长率为:3t+1−3t3t=2×3t 3t=2,故选项A 正确,∵函数y =3t 是指数函数,是曲线型函数,∴浮萍每月增加的面积不相等,故选项B 错误, 当t =4时,y =34=81>80,故选项C 错误,对于D 选项,∵3t 1=2,3t 2=4,3t 3=8,∴t 1=log 32,t 2=log 34,t 3=log 38, 又∵2log 34=log 316=log 32+log 38,∴2t 2=t 1+t 3,故选项D 正确, 故选:AD .12.若集合A ={x ∈R |ax 2﹣3x +2=0}中只有一个元素,则a 的取值可以是( ) A .92B .98C .0D .1解:∵A ={x ∈R |ax 2﹣3x +2=0}中只有一个元素,∴若a =0,方程等价为﹣3x +2=0,解得x =23,满足条件. 若a ≠0,则方程满足△=0,即9﹣8a =0,解得a =98.故选:BC .三.填空题(共4小题,满分20分,每小题5分)13.若函数f (x )的定义域为[﹣2,2],则函数f (3﹣2x )的定义域为 [12,52] . 解:∵函数f (x )的定义域为[﹣2,2], ∴由﹣2≤3﹣2x ≤2,解得12≤x ≤52.∴函数f (3﹣2x )的定义域为[12,52].故答案为:[12,52].14.某数学小组进行社会实践调查,了解到某桶装水经营部在为如何定价发愁,进一步调研,了解到如下信息:该经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关系如表: 销售单价/元 6 7 8 9 10 11 12 日均销售量/桶480440400360320280240根据以上信息,你认为该经营部把桶装水定价为 11.5 元/桶时能获得最大利润. 解:由表可知,销售单价每增加1元,日均销售就减少40桶. 设每桶水的价格为(6+x )元,公司日利润为y 元,则y =(6+x ﹣5)(480﹣40x )﹣200=﹣40x 2+440x +280=﹣40(x −112)2+1490, 所以当x =5.5时,y 取得最大值,所以每桶水定价为11.5元时,公司日利润最大. 故答案为:11.5.15.不等式0.1x ﹣ln (x ﹣1)>0.01的解集为 (1,2) . 解:设函数f (x )=0.1x ﹣ln (x ﹣1), ∵y =0.1x 和y =﹣ln (x ﹣1)均为减函数, ∴函数f (x )为减函数,∵f (2)=0.01,且函数的定义域为(1,+∞), ∴原不等式等价于f (x )>f (2), ∴1<x <2,∴不等式的解集为(1,2). 故答案为:(1,2).16.对于函数f (x ),若在定义域存在实数x ,满足f (﹣x )=﹣f (x ),则称f (x )为“局部奇函数”.若函数f (x )=4x ﹣m •2x ﹣3是定义在R 上的“局部奇函数”,则实数m 的取值范围为 [﹣2,+∞) .解:根据题意,由“局部奇函数”的定义可知:若函数f (x )=4x ﹣m •2x ﹣3是定义在R 上的“局部奇函数”,则方程f (﹣x )=﹣f (x )有解; 即4﹣x ﹣m •2﹣x ﹣3=﹣(4x ﹣m •2x ﹣3)有解;变形可得4x +4﹣x ﹣m (2x +2﹣x )﹣6=0,即(2x +2﹣x )2﹣m (2x +2﹣x )﹣8=0有解即可;设2x +2﹣x =t (t ≥2),则方程等价为t 2﹣mt ﹣8=0在t ≥2时有解;设g (t )=t 2﹣mt ﹣8=0,必有g (2)=4﹣2m ﹣8=﹣2m ﹣4≤0, 解可得:m ≥﹣2,即m 的取值范围为[﹣2,+∞); 故答案为:[﹣2,+∞).四.解答题(共6小题,满分70分) 17.(10分)(1)已知a ≤2,化简:√(a−2)2+√(a +3)33+(14)−12;(2)求值:3−log 32+log 610⋅(lg2+lg3)+log 927. 解:(1)∵a ≤2, ∴√(a −2)2+√(a +3)33+(14)−12, =2﹣a +a +3+2=7;(2)3−log 32+log 610⋅(lg2+lg3)+log 927, =12+log 610⋅lg6+32, =12+1+32=3.18.(12分)已知全集U =R ,集合A ={x |1≤x <5},B ={x |2<x <8},C ={x |a <x ≤a +3}. (1)求A ∪B ,(∁U A )∩B ;(2)若“x ∈C ”为“x ∈A ”的充分不必要条件,求a 的取值范围.解:(1)∵集合A ={x |1≤x <5},B ={x |2<x <8}∴A ∪B ={x |1≤x <8},(∁U A )={x |x <1或x ≥5},(∁U A )∩B ={x |5≤x <8}(2)∵“x ∈C ”为“x ∈A ”的充分不必要条件,C ={x |a <x ≤a +3}∴C ⫋A ,∴{a +3<5a ≥1,解得1≤a <2,故a的取值范围是[1,2).19.(12分)已知函数f(x)=x2−2x+ax.(1)当a=4时,求函数f(x)在x∈(0,+∞)上的最小值;(2)若对任意的x∈(0,+∞),f(x)>0恒成立.试求实数a的取值范围;(3)若a>0时,求函数f(x)在[2,+∞)上的最小值.解:(1)当a=4时,f(x)=x−2x+4x=x+4x−2,当x∈(0,+∞)时,f(x)=x+4x−2≥2√x×4x−2=2,当且仅当x=4x即x=2时等号成立,所以f(x)的最小值为2.(2)根据题意可得x2﹣2x+a>0在x∈(0,+∞)上恒成立,等价于a>﹣x2+2x在x∈(0,+∞)上恒成立,因为g(x)=﹣x2+2x在(0,1)上单调递增,在(1,+∞)上单调递减,所以g(x)max=g(1)=1,所以a>1.(3)f(x)=x+ax−2,设0<x1<x2<√a,f(x1)﹣f(x2)=x1﹣x2+ax1−a x2=(x1﹣x2)(1−ax1x2)=(x1−x2)(x1x2−a)x1x2,∵0<x1<x2<√a,∴x1x2<a,∴f(x1)﹣f(x2)>0,即f(x1)>f(x2),∴f(x)在(0,√a)单调递减,同理可证f(x)在(√a,+∞)单调递增,当0<a≤4时,0<√a≤2,函数f(x)在[2,+∞)上单调递增,f(x)min=f(2)=a 2,当a>4时,√a>2,函数f(x)在[2,√a)上单调递减,在(√a,+∞)上单调递增,f(x)min=f(√a)=2√a−2.所以f(x)min={a2(0<a<4)2√a−2(a>4).20.(12分)国家发展改革委、住房城乡建设部于2017年发布了《生活垃圾分类制度实施方案》,规定46个城市在2020年底实施生活垃圾强制分类,垃圾回收、利用率要达35%以上.截至2019年底,这46个重点城市生活垃圾分类的居民小区覆盖率已经接近70%. 某企业积极响应国家垃圾分类号召,在科研部门的支持下进行技术创新,新上一种把厨余垃圾加工处理为可重新利用的化工产品的项目.已知该企业日加工处理量x (单位:吨)最少为70吨,最多为100吨.日加工处理总成本y (单位:元)与日加工处理量x 之间的函数关系可近似地表示为y =12x 2+40x +3200,且每加工处理1吨厨余垃圾得到的化工产品的售价为100元.(Ⅰ)该企业日加工处理量为多少吨时,日加工处理每吨厨余垃圾的平均成本最低?此时该企业处理1吨厨余垃圾处于亏损还是盈利状态?(Ⅱ)为了该企业可持续发展,政府决定对该企业进行财政补贴,补贴方式共有两种. ①每日进行定额财政补贴,金额为2300元; ②根据日加工处理量进行财政补贴,金额为30x .如果你是企业的决策者,为了获得最大利润,你会选择哪种补贴方式进行补贴?为什么? 解:(Ⅰ)由题意可知,每吨厨余垃圾平均加工成本为yx=x 2+3200x+40,x ∈[70,100],而x2+3200x +40≥2√x 2⋅3200x+40=2×40+40=120,当且仅当x2=3200x,即x =80时,每吨厨余垃圾的平均加工成本最低.因为80<100,所以此时该企业处理1吨厨余垃圾处于亏损状态.(Ⅱ)若该企业采用补贴方式①,设该企业每日获利为y 1,y 1=100x −(12x 2+40x +3200)+2300=−12x 2+60x −900=−12(x −60)2+900, 因为x ∈[70,100],所以当x =70吨时,企业获得最大利润,为850元. 若该企业采用补贴方式②,设该企业每日获利为y 2,y 2=130x −(12x 2+40x +3200)=−12x 2+90x −3200=−12(x −90)2+850, 因为x ∈[70,100],所以当x =90吨时,企业获得最大利润,为850元.结论:选择方案一,当日加工处理量为70吨时,可以获得最大利润;选择方案二,当日加工处理量为90吨时,获得最大利润, 由于最大利润相同,所以选择两种方案均可.21.(12分)定义在R 上的奇函数f (x )是单调函数,满足f (3)=6,且f (x +y )=f (x )+f (y )(x ,y ∈R ). (1)求f (0),f (1);(2)若对于任意x ∈[12,3]都有f (kx 2)+f (2x ﹣1)<0成立,求实数k 的取值范围. 解:(1)因为R 上的奇函数f (x )是单调函数,满足f (3)=6,且f (x +y )=f (x )+f (y ).令x =y =0可得f (0)=2f (0), 所以f (0)=0,令x =1,y =1,可得f (2)=2f (1),令x =2,y =1可得f (3)=f (1)+f (2)=3f (1)=6, 所以f (1)=2;(2)∵f (x )是奇函数,且f (kx 2)+f (2x ﹣1)<0在x ∈[12,3]上恒成立, ∴f (kx 2)<f (1﹣2x )在x ∈[12,3]上恒成立,且f (0)=0<f (1)=2; ∴f (x )在R 上是增函数,∴kx 2<1﹣2x 在x ∈[12,3]上恒成立, ∴k <(1x )2−2(1x )在x ∈[12,3]上恒成立, 令g(x)=(1x )2−2(1x )=(1x −1)2−1. 由于12≤x ≤3,∴13≤1x≤2.∴g (x )min =g (1)=﹣1,∴k <﹣1,即实数k 的取值范围为(﹣∞,﹣1). 22.(12分)已知函数f (x )=2x −12x ,g (x )=(4﹣lnx )•lnx +b (b ∈R ). (1)若f (x )>0,求实数x 的取值范围;(2)若存在x 1,x 2∈[1,+∞),使得f (x 1)=g (x 2),求实数b 的取值范围;解:(1)f(x)>0⇔2x−12x>0,∴2x>2﹣x,∴x>﹣x,即x>0.∴实数x的取值范围为(0,+∞).(2)设函数f(x),g(x)在区间[1,+∞)的值域分别为A,B.∵f(x)=2x−12x在[1,+∞)上单调递增,∴A=[32,+∞).∵g(x)=(4﹣lnx)•lnx+b=﹣(lnx﹣2)2+b+4(b∈R).∵x∈[1,+∞),∴lnx∈[0,+∞),∴g(x)≤b+4,依题意可得A∩B≠∅,∴b+4≥32,即b≥−32.∴实数b的取值范围为[−32,+∞).。
2019-2020学年度第一学期期中测试高一数学试卷(西郊中学)(本试卷满分150分 考试时间120分钟)一、选择题(共12小题,每小题5分,共60分)1.已知全集{}7,6,5,4,3,2,1=U ,{}5,4,3=A ,{}6,3,1=B ,那么集合{}7,2是( ) A.B A B.B A C.()B A C U D.()B A C U3.若函数()x f 满足()8923+=+x x f ,则()x f 的解析式是( )A.()89+=x x fB.()23+=x x fC.()43--=x x fD.()23+=x x f 或()43--=x x f 4.已知()()3312++-=mx x m x f 为偶函数,则()x f 在区间()2,4-上为( )A.增函数B.减函数C.先递增再递减D.先递减再递增5.某企业去年销售收入1000万元,年成本为生产成本500万元与年广告成本200万元两部分.若年利润必须按p %纳税,且年广告费超出年销售收入2%的部分也按p %纳税,其他不纳税.已知该企业去年共纳税120万元.则税率p %为( )A.10%B.12%C.20%D.25%6.已知()()()()⎩⎨⎧<+≥-=6265x x f x x x f ,则()3f 为( ) A.2 B.3 C.4 D.5A.0B.2或0C.2D.-2或08.函数x x 28log 3+-的零点一定位于区间( )A.()6,5B.()4,3C.()3,2D.()2,1A.2B.3C.4D.与a 无关10.定义在R 上的偶函数在[0,7]上是增函数,在[]∞+,7上是减函数,又()67=f ,则有关()x f 的叙述正确的是( )A.在[]0,7-上是增函数,且最大值是6B.在[]0,7-上是减函数,且最大值是6C.在[]0,7-上是增函数,且最小值是6D.在[]0,7-上是减函数,且最小值是611.已知y =f (x )与y =g (x )的函数图像如下图:则F (x )=f (x )·g (x )的图像可能是下图中的( )二、填空题(共4小题,每小题5分,共20分)13、若函数 y =f (x )的定义域是[0,2] ,则函数1)2()(-=x x f x g 的定义域是. 14、函数y =lnx 的反函数是.15、函数x y 21log =的递增区间是. 16、若直线y =a 与曲线12+-=x x y 有四个交点,求a 的取值范围.三、解答题(共6小题,共70分)17、(10分)(1)计算:31021)6427()5lg 972-++()( (2)解方程3)96(log 3=-x 18、(12分)讨论函数xa x x f +=)((a >0)在),[+∞∈a x 的单调性并证明.19、(12分)已知函数⎪⎩⎪⎨⎧<+=>+-=0,0,00,2)(22x mx x xx x x x f 是奇函数。
专题4.3 对数1对数的概念(1)概念一般地,如果a x=N(a>0 , 且a≠1),那么数x叫做以a为底N的对数,记作x=log a N. (a底数,N真数,log a N对数)解释对数log a N中对底数a的限制与指数函数y=a x中对a的限制一样.(2)两个重要对数常用对数以10为底的对数,log10N记为lgN;自然对数以无理数e为底的对数的对数,log e N记为ln N.(3)对数式与指数式的互化x=log a N⟺a x=N对数式指数式如43=64⇔log464=3;log525=2⇔52=25.(4)结论①负数和零没有对数②log a a=1,log a1=0.特别地,lg10=1,lg1=0,lne=1,ln1=0.解释∵a x=N>0,∴log a N中N>0,如log2(−3)没意义;由对数式与指数式的互化得a1=a⇒log a a=1,a0=1⇒log a1=0.2 对数的运算性质如果a>0,a≠ 1,M>0,N>0 , 有①log a(MN)=log a M+log a N②log a MN=log a M−log a N③log a M n=n log a M(n∈R)④a log a M=M(每条等式均可证明)比较对数的运算法则与指数的运算法则的联系指数对数a m⋅a n=a m+n log a(MN)=log a M+log a Na m a n =a m−n log aMN=log a M−log a N(a m)n=a mn log a M n=n log a M特别注意:log a MN ≠ log a M ⋅ log a N ,log a (M ±N )≠ log a M ± log a N .一、单选题1.若1log 327x =-,则x =( )A .81B .181C .13D .3【答案】D【解析】解:因为1log 327x =-,所以3127x -=,即327x =,所以3x =,故选:D.2.已知()2350a a =>,则log 5a =( )A .2B .3C .32D .23【答案】D【解析】因为()2350a a =>,所以2log 53a =.故选:D3.已知函效()2222,4()log 12,4x e x f x x x -ì<ï=í-³ïî则((4))f f =( )A .1B .2C .e D .2e【来源】吉林省长春市十一高中2021-2022学年高一上学期第二学程考试数学试题【答案】B【解析】由题意知,222(4)log (412)log 42f =-==,22((4))(2)22f f f e -===.故选:B4.已知函数()f x 是定义在R 上的奇函数,当0x ³时,()42xf x m =++(m 为常数),则4(log 8)f -的值为( )A .4B .4-C .7D .7-【来源】广东省广州市八校联考2021-2022学年高一下学期期末数学试题【答案】D【解析】根据题意,函数()f x 是定义在R 上的奇函数,当0x ³时,()42x f x m =++,必有(0)120f m =++=,解可得:3m =-,则当0x ³时,()41=-x f x ,有()4log 8817f =-=,又由函数()f x 是定义在R 上的奇函数,则()()44log 8log 87f f -=-=-.故选:D5.计算:0ln 221.1e 0.5lg 252lg 2-+-++=( )A .0B .1C .2D .3【来源】山西省长治市第四中学校2021-2022学年高一上学期期末数学试题【答案】B【解析】解:0ln 221.1e 0.5lg 252lg 2-+-++1242lg 52lg 2=+-++()12lg 52121=-+´=-+=;故选:B6.已知函数()31,02log ,0xx f x x x ìæö£ïç÷=íèøï>î,则12log 3f f éùæö=êúç÷êúèøëû( )A .18B .1-C .1D .3【来源】云南省昆明市2021-2022学年高一下学期期末质量检测数学试题【答案】C【解析】因为12221log 3log log 313==-<-,所以12log 3121log 323æöæö=ç÷ç÷èøèø=f ,()3log 313==f ,则12log 31éùæö=êúç÷êúèøëûf f.故选:C .7.设3log 6a =,5log 20b =,则2log 15(= )A .()()311a b a b +---B .()()211a b a b +---C .()()2311a b a b +---D .()()2311a b a b +---【答案】D【解析】33log 61log 2a ==+Q ,512log 2b =+,21log 31a \=-,22log 51b =-,则222log 15log 3log 5=+=()()12231111a b a b a b +-+=----.故选D.8.设25a b m ==,且111a b +=,则m =( )AB .10C .20D .100【来源】陕西省西安市雁塔区第二中学2021-2022学年高一下学期第二次月考数学试题 【答案】B【解析】因为25a b m ==,所以25log ,log a m b m ==,所以11log 2log 5log 101m m m a b+=+==,又0m >Q ,10m \=.故选:B.9.若()()()2log 1,01,0x x f x g x x ì--<ï=í-³ïî是奇函数,则()7g =( )A .2B .2-C .3D .5【来源】河南省豫北名校2021-2022学年高一下学期第一次联考数学试题【答案】B【解析】依题意得:()()()()2788log 812g f f ==--=--=-.故选:B10.函数()()()22log 2log 4f x x x =×的最小值为( )A .1B .13C .12-D .14-【来源】河北省保定市2021-2022学年高一上学期期末数学试题【答案】D【解析】由题意得()()()()222222231log 1log 2log 3log 2log 24f x x x x x x æö=++=++=+-ç÷èø,当23log 2x =-时,()f x 的最小值为14-.故选:D11.牛顿冷却定律描述物体在常温环境下的温度变化:如果物体的初始温度为0T ,则经过一定时间t 分钟后的温度T 满足()012tha a T T T T æö-=-ç÷èø,h 称为半衰期,其中a T 是环境温度.若25a T =℃,现有一杯80℃的热水降至75℃大约用时1分钟,那么水温从75℃降至55℃,大约还需要(参考数据:lg 30.48»,lg 50.70»,lg11 1.04»)( )A .3.5分钟B .4.5分钟C .5.5分钟D .6.5分钟【来源】陕西省西安市长安区第一中学2021-2022学年高一下学期期末数学试题【答案】C【解析】:由题意,25a T =℃,由一杯80℃的热水降至75℃大约用时1分钟,可得()11752580252hæö-=-ç÷èø,所以11501025511hæö==ç÷èø,又水温从75℃降至55℃,所以()1552575252h t æö-=-ç÷èø,即13032505th æö==ç÷èø,所以11110322115tt t hh éùæöæöæöêú===ç÷ç÷ç÷êúèøèøèøëû,所以10113lg3lg 3lg 50.480.75log 5.51051lg111 1.04lg 11t --===»=--,所以水温从75℃降至55℃,大约还需要5.5分钟.故选:C.12.正数a ,b 满足1+log 2a =2+log 3b =3+log 6(a +b ),则11a b+的值是A .112B .16C .13D .12【答案】A【解析】依题意,设1+log 2a =2+log 3b =3+log 6(a +b )=k ,则a =2k ﹣1,b =3k ﹣2,a +b =6k ﹣3,所以33312121211666611223232323k k k k k k a b a b ab ---------++=====×××××.故选:A .13.已知函数()y f x =为R 上的偶函数,若对于0x ³时,都有()()2f x f x +=-,且当[)0,2x Î时,()()2log 1f x x =+,则()()20212022f f -+等于( )A .1B .-1C .2log 6D .23log 2【来源】四川省自贡市2021-2022学年高一上学期期末数学试题【答案】A【解析】当0x ³时,(2)()f x f x +=-,则(4)(2)()f x f x f x +=-+=,所以当0x ³时,(4)()f x f x +=,所以(2021)(2017)(1)f f f ===L又()f x 是偶函数,(2)(0)f f =-,所()()20212022(2021)(2022)(1)(2)f f f f f f -+=+=+22log (11)(0)1log (01)1f =+-=-+=.故选:A .14.随着社会的发展,人与人的交流变得广泛,信息的拾取、传输和处理变得频繁,这对信息技术的要求越来越高,无线电波的技术也越来越成熟,其中电磁波在空间中自由传播时能量损耗满足传输公式:32.4420lg 20lg L D F =++,其中D 为传输距离,单位是km ,F 为载波频率,单位是MHz ,L 为传输损耗(亦称衰减)单位为dB .若传输距离变为原来的4倍,传输损耗增加了18dB ,则载波频率变为原来约( )倍(参考数据:lg 20.3,lg30.5»»)A .1倍B .2倍C .3倍D .4倍【来源】广东省广州市华南师范大学附属中学2021-2022学年高一下学期期末数学试题【答案】B【解析】设L ¢是变化后的传输损耗,F ¢是变化后的载波频率,D ¢是变化后的传输距离,则18L L ¢=+,4D D ¢=,1820lg 20lg 20lg 20lg 20lg20lg D F L L D F D F D F¢¢¢¢¢=-=+--=+,则20lg1820lg 1840lg 26F D F D ¢¢=-=-»,即lg 0.3lg 2F F¢»»,从而2F F ¢»,即载波频率变为原来约2倍.故选:B .二、填空题15.已知函数(),()log xa f x a g x x ==(0a >且1a ¹),且()f M N =,则()g N =___________.【答案】M【解析】因为()f M N =,则M a N =,化为对数式,可得log a N M =,所以()g N M =,故答案为:M .16.计算:()()1132540282.25+9.621log log 572-æö--+çèø×÷=_________.【来源】四川省泸州市泸县第一中学2021-2022学年高一下学期开学考试数学试题【答案】34【解析】原式12(25232111log 2log 52322´-æö=+--´´´ç÷èø2211334=+--34=.故答案为:3417.若1a >,1b >且lg 1lg b b a æö+=ç÷èø,则()()lg 1lg 1a b -+-的值___.【答案】0【解析】1a >Q ,1b >且lg 1lg b b a æö+=ç÷èø,1bb a\+=,a b ab \+=,()()()()()lg 1lg 1lg 11lg 1lg10a b a b ab a b éù\-+-=--=--+==ëû.故答案为:0.18.()220231lg2lg5lg200.0273--æö+´++´=ç÷èø___.【答案】102【解析】()220231lg2lg5lg200.0273--æö+´++´ç÷èø=()()()2233lg2lg52lg2lg510.3-éù+´+++´ëû9()21lg2lg5190.09=+++´11100=++102=.故答案为:102.1900.53(2(0.01)5--= ________【来源】第11讲 对数-【暑假自学课】2022年新高一数学暑假精品课(苏教版2019必修第一册)【答案】212-()00.52332122log 5log 7320.01110125log 53log 7-׿ö+-=+-ç÷èø-×32323log 5log 7132199log 5log 7222׿ö×--=--=-ç÷×èø故答案为:212-20.|1lg 0.001|lg 6lg 0.02+-=__________.【来源】河南省信阳市信阳高级中学2021-2022学年高一下学期第一次月考数学(理科)试题【答案】621.如果关于x 的方程()()2lg lg 3lg 5lg lg 3lg 50x x +++×=的两根分别是,a b ,则a b ×的值是__________.【来源】第4章 指数与对数综合测试-【暑假自学课】2022年新高一数学暑假精品课(苏教版2019必修第一册)【答案】115【解析】∵,a b 是关于x 的方程()()2lg lg 3lg 5lg lg 3lg 50x x +++×=的两根∴lg ,lg a b 是一元二次方程()2lg 3lg 5lg 3lg 50x x +++×=的两根∴()1lg lg lg 3lg 5lg15lg 15a b +=-+=-=,()1lg lg 15a b ×=∴115a b ×=.故答案为:11522.已知定义在R 上的函数()f x 满足(2)2()f x f x +=,且当[0,2]x Î时,()22x f x =-,若对任(,]x m Î-¥都有()6f x £,则m 的取值范围是_________.【来源】河南省信阳市信阳高级中学2021-2022学年高一下学期第一次月考数学(理科)试题【答案】(-¥,274log ]2+.【解析】:因为()f x 满足(2)2()f x f x +=,即1()(2)2f x f x =+;又由(2)2()f x f x +=,可得()2(2)f x f x =-,画出当[0x Î,2]时,()|22|x f x =-的图象,将()f x 在[0,2]的图象向右平移2(N*)k k Î个单位(横坐标不变,纵坐标变为原来的2倍),再向左平移2(N*)k k Î个单位(横坐标不变,纵坐标变为原来的12倍),由此得到函数()f x 的图象如图:当[4x Î,6]时,4[0x -Î,2],4(4)|22|x f x --=-,又11(4)(2)()24f x f x f x -=-=,所以4()4|22|(46)x f x x -=-……,令()6f x =,由图像可得56x <<,则44(22)6x --=,解得274log 2x =+,所以当274log 2m +…时,满足对任意的(x Î-¥,]m ,都有()6f x …,故m 的范围为(-¥,274log ]2+.故答案为:(-¥,274log ]2+.23.已知函数()21x f x =-,函数()g x 满足(1)()g x g x +=.当[0,1)x Î时,()()g x f x =,则()2log 20g =________.【来源】浙江省“新高考名校联盟”2021-2022学年高一下学期5月检测数学试题【答案】14##0.25【解析】:因为函数()g x 满足(1)()g x g x +=,又2224log log 20log 32516=<<=,则20log 2041<-<,又[0,1)x Î时()2()1x f x g x ==-所以()()224log 204log 20221log 20log 20421212016142g g -=-=-=--¸=¸=;故答案为:1424.19世纪,美国天文学家西蒙·纽康在翻阅对数表时,偶然发现表中以1开头的数出现的频率更高.约半个世纪后,物理学家本福特又重新发现这个现象,从实际生活得出的大量数据中,以1开头的数出现的频率约为总数的三成,接近期望值19的3倍,并提出本福特定律,即在大量b 进制随机数据中,以n 开头的数出现的概率为()1log b b n P n n +æö=ç÷èø,如斐波那契数、阶乘数、素数等都比较符合该定律.后来常有数学爱好者用此定律来检验某些经济数据、选举数据等大数据的真实性.根据本福特定律,若()1012i 3ni P =£∑,则n 的最大值为______.【来源】河南省许昌市2021-2022学年高一下学期期末数学理科试题【答案】3【解析】由()1log b b n P n n +æö=ç÷èø可得,()()10101log lg 1lg i P i i i i +æö==+-ç÷èø,所以()()101i lg 1ni P n ==+∑,又()1012i 3ni P =£∑,所以,()2lg 13n +£,即()31100n +£ 所以,1,2,3n =则n 的最大值为3.故答案为:3.。
西安市第一中学
2019-2020学年度高一第一学期期中考试
数 学
一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1. 设集合U={1,2,3,4,5},A={1,3,5},B={2,3,5},则图中阴影部分表示的集合是( )
(A){1,2,4} (B){4} (C){3,5} (D)∅
2. 函数x x y 32+-=,{x Z ∈21≤≤-x }的值域是( )
(A)-4,0,2 (B)-4≤y ≤2 (C){-4,0,2} (D)[-4,2] 3. 如图所示,设A={x|0≤x ≤2},B={y|1≤y ≤2},能表示从集合A 到集合B 的函数的是( )
4. 下列各组函数中,表示同一个函数的是( )
(A )y=2x 1
x 1
--与y=x+1 (B )y=x 与y=log a a x (a >0,a ≠1)
(C )y=2x -1与y=x-1 (D )y=lgx 与y=1
2lgx 2
5. 函数y=1x -+ln(2x-1)的定义域为( )
(A)(1
2
,1]
(B)[12,1] (C)(1
2
,1)
(D)[1
2
,1)
6. 若100a =5,10b =2,则2a+b=( ) (A)0
(B)1
(C)2
(D)3
7. 已知a=log 20.3,b=20.1,c=0.21.3,则a,b,c 的大小关系是( ) (A )a <b <c
(B )c <a <b (C )a <c <b
(D )b <c <a
8. 已知二次函数y=-x 2-2ax+1在区间(2,3)内是单调的,则实数a 的取值范围是( ) (A) -3≤a ≤-2 (B)2≤a ≤3 (C)a ≤2或a ≥3 (D) a ≤-3或a ≥-2 9. 如图,与函数y=a x ,y=log a x,y=log (a+1)x,y=(a-1)x 2依次对应的图像是( )
(A)①②③④(B)①③②④
(C)②③①④ (D)①④③②
10. 衣柜里的樟脑丸随着时间会挥发而体积缩小,刚放进的新丸体积为a ,经过t 天后
体积与天数t 的关系式为:V=a ·e -kt .若新丸经过50天后,体积变为4
9a ,则一个新丸体
积变为
8
27
a 需经过的天数为( ) (A)125天
(B)100天
(C)75天
(D)50天
11. 下列函数中,是偶函数且在区间(0,+∞)上单调递减的是( ) (A )y=-3|x|
(B )y=1
3
x (C )y=log 3x 2 (D )y=x-x 2
12. 已知函数f (x )=x 2+ax+b ,且对任意实数x 都有f (x )=f (-m-x ),其中m ∈(0,2),那么( )
(A) f (2)<f (0)<f (-2) (B) f (0)<f (-2)<f (2) (C) f (0)<f (2)<f (-2) (D) f (-2)<f (0)<f (2)
二、填空题(本大题共5小题,每小题4分,共20分,请把正确的答案填在答题卡上对应题号的横线上)
13. 函数x x y 22+-=的图像向左平行移动4个单位,向上平行移动1个单位,所得图像对应的函数解析式是___________.
14.设函数f(x)=x x,x 0,1(),x 0,2
⎧≥⎪
⎨⎪⎩< 则f(f(-4))=_________.
15.已知函数f(x)=log a (2x-1)(a >0,a ≠1)的图像恒过定点P ,则P 点的坐标是________. 16.若f(a+b)=f(a)·f(b),且f(1)=2,则
()()()()()
()
f 2f 3f 2 012f 1f 2f 2 011++⋯+
=___________. 17. 若函数f(x)为定义在R 上的奇函数,且x ∈(0,+∞)时,f(x)=2x .则f(x)= .
三、解答题(本大题共4小题,共44分,解答时应写出必要的文字说明、证明过程或演算步骤)
18.(10分)集合P={x|a+1≤x ≤2a+1},Q={x|01032≥++-x x }. (1)若a=3,求集合(P)∩Q; (2)若P ⊆Q ,求实数a 的取值范围.
19.(10分)(1)求值:lg25+23
lg8+lg5×lg20+(lg2)2
;
(2)解方程:12)321(log 3+=⋅-x x .
20.(12分)已知函数f(x)=x m-4
x
,且f(4)=3.
(1)求m的值;
(2)判断f(x)的奇偶性;
(3)判断f(x)在(0,+∞)上的单调性,并应用单调性的定义给予证明.
21.(12分)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(1)当0≤x≤200时,求函数v(x)的表达式;
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大,并求出最大值.(精确到1辆/小时)
西安市第一中学2019-2020学年度高一第一学期期中考试
数学试题参考答案
二、填空题
13. 2)3(2++-=x y 或762---=x x y 14. 4 15. )0,
1( 16. 4022 17. ⎪⎪⎪⎩⎪
⎪⎪⎨⎧
<⎪⎪⎭⎫ ⎝⎛-=>=0,210,00,2x x x y x
x
三、解答题
18.解: (1)∵a=3,P={x|4≤x ≤7},P={x|x <4或x >7},Q={x|-2≤x ≤
5},
∴(P)∩Q={x|-2≤x <4}. (2)∵P ⊆Q ,∴对P 分情况进行讨论.
①当P ≠∅时,a 12,
2a 15,0a 2;2a 1a 1,+≥-⎧⎪+≤∴≤≤⎨⎪+≥+⎩
②当P=∅时,2a+1<a+1,∴a <0. 综上实数a 的取值范围为(-∞,2].
19.解:(1)3 ;(2)1-=x
20. 解:(1)∵f(4)=3,∴4m -4
4
=3,∴m=1.
(2)因为f(x)=x-4x
,定义域为{x|x ≠0},关于原点成对称区间,又
f(-x)=-x-4x - =-(x-4
x
)=-f(x),所以f(x)是奇函数. (3)f(x)在(0,+∞)上单调递增.
证明:设x 1>x 2>0,则f(x 1)-f(x 2)=x 1-
14x -(x 2-24x )=(x 1-x 2)(1+12
4x x ). 因为x 1>x 2>0,所以x 1-x 2>0,1+
12
4
x x >0,所以f(x 1)>f(x 2), 因此f(x)在(0,+∞)上为单调递增的.
21.解: (1)由题意知当0≤x ≤20时,v(x)=60;当20≤x ≤200时,
设v(x)=ax +b (a ≠0),再由已知得200a b 020a b 60⎧⎨⎩+=,+=,解得1a .3
200
b 3⎧⎪⎪⎨
⎪⎪⎩
=-,= 故函数v(x)的表达式为v(x)=600x 20.
1(200x)20x 2003≤≤⎧⎪
⎨≤⎪⎩, ,-, <
(2)依题意并由(1)可得f(x)=60x 0x 201
x(200x)20x 200.3
≤≤⎧⎪⎨≤⎪⎩, ,
-, < 当0≤x ≤20时,f(x)为增加的,故当x =20时,其最大值为60×20=1 200;当20<x ≤200时,f(x)=1
3
x(200-x)=-13
(x-100)2+
10 000
3
, 所以,当x =100时,f(x)在区间(20,200]上取得最大值10 000
3
. 综上,当x =100时,f(x)在区间[0,200]上取得最大值
10 000
3
≈3 333,即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3 333辆/小时.。