最新cox回归结果解析
- 格式:doc
- 大小:21.50 KB
- 文档页数:3
cox回归多分类变量结果解读Cox回归是一种常用的生存分析方法,用于研究事件发生时间与多个预测变量之间的关系。
在Cox回归中,我们可以使用多分类变量作为预测变量,以探究其对事件发生时间的影响。
本文将介绍如何解读Cox回归多分类变量的结果。
首先,我们需要了解Cox回归的基本原理。
Cox回归基于半参数模型,它假设预测变量对事件发生时间的影响是通过一个风险比例函数来描述的。
这个风险比例函数可以解释为某一组别相对于参考组别的风险。
因此,Cox回归的结果通常以风险比例(Hazard Ratio,HR)的形式呈现。
在Cox回归中,多分类变量的结果解读与二分类变量类似。
我们可以通过HR来衡量不同组别之间的风险差异。
如果HR大于1,表示该组别的风险高于参考组别;如果HR小于1,表示该组别的风险低于参考组别。
同时,HR的置信区间也是解读结果的重要指标,它可以帮助我们评估结果的可靠性。
除了HR,Cox回归还提供了其他一些重要的统计指标,如p值和95%置信区间。
p值可以用来判断预测变量是否对事件发生时间有显著影响。
通常,如果p值小于0.05,我们认为结果是显著的,即预测变量与事件发生时间存在关联。
而95%置信区间可以帮助我们评估HR 的精确程度,如果置信区间较窄,说明结果较为可靠。
在解读Cox回归多分类变量的结果时,我们还需要考虑一些其他因素。
首先,我们需要注意样本的选择和数据的质量。
如果样本具有代表性,并且数据质量良好,那么结果的可靠性会更高。
其次,我们需要考虑调整变量的影响。
Cox回归可以同时考虑多个预测变量,但我们需要确保这些变量之间不存在共线性。
如果存在共线性,结果的解释可能会出现偏差。
此外,我们还可以通过绘制Kaplan-Meier曲线来进一步解读Cox回归的结果。
Kaplan-Meier曲线可以帮助我们观察不同组别之间的生存曲线差异。
如果曲线之间存在明显的分离,说明预测变量对事件发生时间有显著影响。
最后,我们需要注意Cox回归的局限性。
患者生存状态的影响因素分析——生存资料的COX回归分析1、问题与数据某研究者拟观察某新药的抗肿瘤效果,将70名肺癌患者随机分为两组,分别采用该新药和常规药物进行治疗,观察两组肺癌患者的生存情况,共随访2年。
研究以死亡为结局,两种治疗方式为主要研究因素,同时考虑调整年龄和性别的影响,比较两种疗法对肺癌患者生存的影响是否有差异。
变量的赋值和部分原始数据见表1和表2。
表1. 某恶性肿瘤的影响因素与赋值表2. 两组患者的生存情况group gender age time survival0 1 0 22 10 1 1 10 10 1 1 64 10 1 1 12 10 1 0 17 11 0 0 19 11 1 1 4 11 0 1 12 01 0 0 5 01 1 1 27 02、对数据结构的分析该研究以死亡为结局,治疗方式为主要研究因素,每个研究对象都有生存时间(随访开始到死亡、失访或随访结束的时间),同时考虑调整年龄和性别的影响。
欲了解两种疗法对肺癌患者生存的影响是否有差异,可以用Cox比例风险模型(Cox proportional-hazards model,也称为Cox回归)进行分析。
实际上,Cox回归的结局不一定是死亡,也可以是发病、妊娠、再入院等。
其共同特点是,不仅考察结局是否发生,还考察结局发生的时间。
在进行Cox回归分析前,如果样本不多而变量较多,建议先通过单变量分析(KM法绘制生存曲线、Logrank检验等)考察所有自变量与因变量之间的关系,筛掉一些可能无意义的变量,再进行多因素分析,这样可以保证结果更加可靠。
即使样本足够大,也不建议把所有的变量放入方程直接分析,一定要先弄清楚各个变量之间的相互关系,确定自变量进入方程的形式,这样才能有效的进行分析。
单因素分析后,应当考虑应该将哪些自变量纳入Cox回归模型。
一般情况下,建议纳入的变量有:1)单因素分析差异有统计学意义的变量(此时,最好将P值放宽一些,比如0.1或0.15等,避免漏掉一些重要因素);2)单因素分析时,没有发现差异有统计学意义,但是临床上认为与因变量关系密切的自变量。
筛选变量的方法:第一步,结合临床,临床认为有关的变量均筛选出来。
第二步.应用双变量的相关分析,把显著相关的变量筛选出来,保留临床意义更大的那个。
第三步,应用Kaplan-Meier法对每个危险因素的两个暴露水平做生存曲线,若曲线存在交叉,则不能应用Cox生存分析(Cox生存分析也称比例风险回归,它包含一个假定,即在随访期间暴露于预后因素与非暴露的风险比例维持恒定),这类变量需应用更复杂的非比例风险回归模型,这里将不详述了。
第四步,单因素分析。
可应用COX生存分析的第0步结果作为单因素分析的结果。
可在SPSS的Cox回归里选择任何一种前进法,在Option中选择at each step,取因子筛选第0步的Score检验结果作为单因子Cox回归分析的结果。
也有文章的单因素分析对于离散型变量应用卡方检验和连续型变量应用t检验,等级资料应用双变量相关分析。
最后,将进行Cox回归分析。
应用SPSS中analysis-survival-cox regression.在time一栏中选择生存时间;在state一栏中选择数据状态(在数据编码中已经介绍),在激活的define event一栏中设定single value为1。
这里要强调几个小问题:1,SPSS可以支持研究者做两个或以上的变量的共同效应,需在主对话框中同时选中需研究的变量两个或两个以上,这样协变量框中的>a*b>才会被激活。
2,分类变量,在这里被称为哑变量,需单击categorical,然后将分类变量选入对话框。
最后得到的结果,B为协变量的系数,Exp(B)为相对危险度。
可得到比例风险模型:h(t,x)=h0(t)exp(Σβ ixi)公式1-1预后指数也称预后得分,PI(prognostic index)= (Σβ ixi)PI=0代表危险率处于平均水平,PI<0,代表危险率低于平均水平;PI>0,代表危险率高于平均水平。
生存分析之COX回归分析1.生存分析,是将终点事件出现与否与对应时间结合起来分析的一种统计方法;2.生存时间,是从规定的观察起点到某一特定终点事件出现的时间,如膀胱癌术后5年存活率研究,及膀胱癌手术为观测起点,死亡为事件终点,两点为生存时间;3.完全数据,观测起点到终点事件所经历的时间,上述例子即膀胱癌手术到因膀胱癌死亡的时间;4.删失数据,因失访、研究结束终点事件未发生或患者死于规定的终点事件以外的原因而终止观察,不能确定具体生存时间的一类数据;5.生存概率,表示某时段开始存活的个体到该时段结束仍存活的概率,p=活满某时段的人数/该时段期初有效人口数;6.生存率,为观察起点起到研究时间点内各个时段的生存概率的累积概率,S(tk)=p1.p2.pk=S(tk-1).pk;7.生存曲线,以生存时间为横轴,将各个时间点的生存率连在一起的曲线图;8.中位生存期,又称半数生存期,表示50%的个体存活的时间;9.PH假定(等比例风险假定),某研究因素对生存的影响不随时间的改变而改变,是COX回归模型建立的前提条件。
1.Cox回归分析及其SPSS操作方法概述前面我们已经讲过生存分析及KM法的内容,详细可以回复数字26-28查看。
但有对统计不太熟悉的“微粉”还不太明白生存分析与一般统计的区别,不知道如何区别Cox回归与Logistic回归。
在我们做研究时,有时我们不仅关心某种结局是否出现,还会关心结局出现的时间,例如肺部手术后观察五年生存率,一个有在1年之后死亡,另外一个人在在4.5后死亡,如果只看第5年时的结局,两者是一样的(均死亡),但是实际我们认为后者的治疗效果可能优于前者,即生存分析同时考虑结局和结局出现的时间,而一般分析只考虑结局。
另外在队列随访时,可能有人在没有到5年时就失访了,如迁徙或者电话更改,我们不了解其结局如何,在一般的分析中这种病例无法使用,而中间失访的病例结局可能更差,如果直接扔掉,可能会产生偏倚;而用生存分析,这种病例可以给我们提供部分资料,即我们记录最后一次随访时病例的状态,失访前的资料可以用于分析。
cox回归模型的评价指标一、引言在统计学中,cox回归模型是一种非常重要的生存分析工具,广泛应用于医学、生物学、社会学等领域。
为了评估cox回归模型的应用效果,需要使用一系列评价指标。
本文将详细介绍几个常用的cox 回归模型的评价指标,帮助读者全面了解模型的性能。
二、评价指标1.模型拟合度:模型的拟合度是评估cox回归模型效果的重要指标,常用的有C指数、Akaike信息准则(AIC)和贝叶斯信息准则(BIC)。
C指数用于评估生存模型的预测能力,数值越接近1表示预测能力越强;AIC和BIC则用于评估模型的复杂度,数值越小表示模型拟合度越高。
这些指标能够直观地反映模型拟合的效果,为模型的改进提供方向。
2.生存函数变化:生存函数描述了观察对象在一定时间点上处于存活状态的概率。
通过比较原始数据和模型预测的生存函数变化,可以评估模型的改进效果。
如果模型能够显著提高生存函数的预测精度,说明模型的应用效果较好。
3.假设检验:在进行cox回归模型构建时,需要进行一系列假设检验,包括生存时间独立性检验、协变量独立性检验等。
通过这些检验结果可以评估模型的稳健性和准确性。
如果检验结果符合预期,说明模型具有较好的适用性。
4.预测精度:预测精度是评估cox回归模型的重要指标之一,常用的有标准误差(SE)和置信区间(CI)。
SE可以帮助我们了解预测值的不确定性,而CI则可以更直观地反映预测的准确性。
5.解释性分析:除了上述定量指标外,解释性分析也是评估cox 回归模型的重要手段。
通过对模型的变量重要性进行评估,可以了解哪些因素对生存结果产生了影响,为进一步研究提供思路。
三、评估流程1.数据收集和处理:收集用于模型构建和评估的数据,并进行必要的预处理。
2.建立cox回归模型:根据研究问题选择合适的cox回归模型,进行参数估计和模型拟合。
3.评价指标计算:根据上述评价指标,对模型的拟合度、生存函数变化、假设检验、预测精度和解释性进行分析和评估。
生存分析COX回归,小心你的数据不符合应用条件4. Cox回归的应用条件SPSS 教程 28讲:Cox回归的应用条件COX回归,全称为COX比例风险模型,主要用于带有时间的生存结局的影响因素研究,或评价某个临床治疗措施对患者生存的影响。
最近几年,由于队列研究的大量开展,COX回归广泛获得应用。
特别是临床病人随访研究,十之八九采用的统计学方法便是COX回归。
COX对因变量和自变量要求都不高,只要求结局指标既要有生存的二分类结局,也要有生存时间,对生存时间也没有分布的要求,对自变量要求更低,什么类型的自变量都可以。
此外,COX回归要求观察值残差分布同样满足独立性的要求(一般情况下都不成问题,开展回归分析可以基本忽略本要求)然而,尽管COX回归不用考虑生存数据分布,但有一点还是得明确,cox回归绝不是适用于所有生存数据的多因素分析。
至少有2个关键的条件,COX回归必须考虑,也必须满足,第一,等比例风险(Proportional hazards)假定。
第二,当自变量是连续型变量时,Cox回归中自变量与因变量的关系--一种转换后线性关系,也必须满足。
接下来,我沿用上一讲的案例,来稍微详细解释下两个条件这是一项关于胰腺癌病人术后生存时间的队列研究。
该研究的终点为死亡,包括很多可能影响生存的因素。
数据库见pancer.sav等比例风险假定什么是等比例风险?举个例子:现在研究术中放疗这一手术方式对胰腺癌患者生存(OS)的影响,在研究方案中,设定术中放疗为治疗组,未术中放疗未对照组,患者接受随访,得到生存结局,开展生存分析。
术中放疗和没有接受术中放疗者在生存时间和结局的差别,这个差别初步可以绘制生存曲线来标的。
可以看出,放疗者和未放疗组,随着时间的推移,其生存率在下降,下降的速度即为单位时间死亡率,或者称之为死亡速率,在生存分析中称之为风险值。
两组在任何一个时间都存在着风险率,比如第一个月的风险率、第1年内的风险率、第90天风险率,反映的是不同时间的死亡速度。
COX比例风险回归模型是一种常用的生存分析方法,它能够对生存时间或事件发生时间进行建模,并且能够考虑到不同个体的观测时长不同这一特点。
在研究中,COX比例风险回归模型通常被用来探究某种因素对于生存时间或事件发生时间的影响程度。
本文将以COX比例风险回归模型为主题,深入探讨其原理、应用、结果解读和个人理解。
一、COX比例风险回归模型原理COX比例风险回归模型是由David R. Cox于1972年提出的,它是一种半参数模型,既考虑了危险比的比例关系,又不需要对基本风险函数作出严格的假设。
模型的基本形式为:$$ h(t|x) =h_0(t)exp(\beta_1x_1+\beta_2x_2+...+\beta_px_p) $$ 其中,h(t|x)为在给定协变量x情况下,观测到时间t的瞬时事件发生率;h0(t)为基础风险函数,与协变量无关;β1, β2,…, βp为协变量的回归系数;x1, x2,…, xp为对应的协变量。
二、COX比例风险回归模型应用COX比例风险回归模型主要适用于生存分析领域,例如医学、流行病学和生态学等研究中。
研究者可以利用COX比例风险回归模型来探究不同因素对于生存时间或事件发生时间的影响情况。
这种模型在临床试验中也得到了广泛的应用,可以用来评估治疗效果、预测疾病风险等。
三、COX比例风险回归模型结果解读在进行COX比例风险回归模型分析后,我们通常会得到各个协变量的回归系数、危险比和相应的置信区间。
这些结果对于理解不同因素对生存时间或事件发生时间的影响至关重要。
如果某个协变量的危险比为2.0,且置信区间不包含1.0,就说明该因素对事件发生的影响是显著的。
还需要考虑模型的比例风险假设是否成立,以及是否存在共线性等问题。
个人理解与观点:COX比例风险回归模型是一种非常有用的统计方法,它能够帮助研究者从更深层次理解不同因素对生存能力的影响程度。
然而,在进行模型分析时,我们还需要注意模型的适用性和准确性,避免结果的误导性。
cox 标准化回归系数-回复什么是cox标准化回归系数?Cox标准化回归系数是一种用于解释生存数据的统计方法。
生存数据通常用于研究预测生存时间的因素,例如生存病人的存活时间或某个事件发生的时间。
Cox回归模型是常用于分析生存数据的一种方法,它可以考虑多个预测变量对生存时间的影响。
标准化回归系数是回归模型中的系数,它反映了每个预测变量对生存时间的影响程度,通常用于衡量变量的重要性。
标准化回归系数可以使不同变量之间的比较更加直观,并且可以考虑到变量的度量单位差异。
Cox回归模型的表达式如下所示:h(t) = h0(t) * exp(b1x1 + b2x2 + ... + bpxp)其中,h(t)表示在给定时间t的风险函数,h0(t)是基准风险函数,x1, x2, ..., xp是预测变量,b1, b2, ..., bp是标准化回归系数。
模型的核心思想是,基准风险函数在所有预测变量的影响下乘以一个指数项来得到实际的风险函数。
接下来,我们将一步一步介绍如何计算Cox标准化回归系数:步骤1:收集生存数据和预测变量首先,需要收集生存数据和预测变量。
例如,我们可能有关于病人的年龄、性别、病情严重程度等预测变量,以及关于病人存活时间或某个事件发生时间的生存数据。
步骤2:拟合Cox回归模型接下来,需要使用已收集的数据拟合Cox回归模型。
拟合模型的目的是估计每个预测变量的回归系数。
回归系数表示了预测变量对生存时间的影响程度。
步骤3:计算标准化回归系数一旦拟合了Cox回归模型并得到了回归系数的估计值,就可以计算标准化回归系数。
标准化回归系数可以通过标准化估计的回归系数得到,标准化的方式可以是除以该变量的标准差或范围。
步骤4:解释标准化回归系数最后,我们可以根据标准化回归系数的值来解释预测变量对生存时间的影响程度。
较大的标准化回归系数表示该预测变量对生存时间有更大的影响,而较小的标准化回归系数表示该预测变量对生存时间的影响较小。
Cox回归模型是一种生存分析(Survival Analysis)的统计模型,用于研究事件发生的时间。
在Cox回归中,经验风险(hazard)是关键的概念,而经验风险的比率被称为风险比(Hazard Ratio,简称HR)。
HR的解释对于理解模型中的变量之间的关系至关重要。
Cox回归模型Cox回归模型的基本形式如下:ℎ(t)=ℎ0(t)exp(β1X1+β2X2+⋯+βk X k)其中:▪ℎ(t)是时间t下的风险(hazard)函数。
▪ℎ0(t)是基准风险函数,表示在所有自变量为0时的风险。
▪β1,β2,…,βk是模型的系数,表示每个自变量对于风险的影响。
▪X1,X2,…,X k是自变量。
Hazard Ratio (HR)HR是比较两组之间的风险的度量,它是两组的风险函数比率。
HR的定义为:HR=ℎ1(t)ℎ0(t)=exp(β1ΔX1+β2ΔX2+⋯+βkΔX k)其中:▪ℎ1(t)是处理组(有特定特征或处理的组)的风险函数。
▪ℎ0(t)是对照组(没有特定特征或处理的组)的基准风险函数。
▪ΔX1,ΔX2,…,ΔX k是处理组和对照组的自变量差异。
HR的解释1.HR = 1:如果 HR 等于1,表示两组的风险相等,即自变量对于事件发生的风险没有影响。
2.HR > 1:如果 HR 大于1,表示处理组的风险较高,自变量与事件发生的风险正相关。
例如,如果 HR = 1.5,那么处理组的风险是对照组的1.5倍。
3.HR < 1:如果 HR 小于1,表示处理组的风险较低,自变量与事件发生的风险负相关。
例如,如果 HR = 0.8,那么处理组的风险是对照组的0.8倍。
注意事项▪HR的解释应该基于实际研究问题和背景来理解。
HR仅提供了相对风险的比较,而不提供绝对风险的信息。
▪HR的可信区间(Confidence Interval,CI)也是重要的,可以帮助确定估计的精确性。
▪在进行解读时,应该考虑调整过的HR,如果模型中有其他控制变量。
单因素cox回归hr值
单因素Cox回归(也称为比例风险回归)是一种用于生存分析的统计方法,它可以用来评估特定因素对事件发生时间的影响。
其中,HR值代表危险比(Hazard Ratio),它是Cox回归分析的一个重要输出结果。
HR值是用来衡量两组之间事件(比如死亡、疾病复发等)发生风险的相对大小。
当HR值大于1时,表示一组的事件发生风险高于对照组;当HR值小于1时,表示一组的事件发生风险低于对照组;当HR值等于1时,表示两组的事件发生风险相等。
在单因素Cox回归中,HR值可以帮助我们理解特定因素对事件发生时间的影响。
如果对某个因素进行单因素Cox回归分析,得到的HR值为2,那么意味着该因素与事件发生的风险呈正相关,即该因素的存在使得事件发生的风险是对照组的2倍。
需要注意的是,HR值的置信区间也是非常重要的,它可以帮助我们评估HR值的稳定性和可靠性。
如果置信区间包含1,那么意味着该因素对事件发生的影响可能不具有统计学意义。
总之,单因素Cox回归的HR值是用来衡量特定因素对事件发生风险的相对影响,通过分析HR值和其置信区间,我们可以更好地理解该因素对生存时间的影响。
筛选变量的方法:第一步,结合临床,临床认为有关的变量均筛选出来。
第二步.应用双变量的相关分析,把显著相关的变量筛选出来,保留临床意义更大的那个。
第三步,应用Kaplan-Meier法对每个危险因素的两个暴露水平做生存曲线,若曲线存在交叉,则不能应用Cox生存分析(Cox生存分析也称比例风险回归,它包含一个假定,即在随访期间暴露于预后因素与非暴露的风险比例维持恒定),这类变量需应用更复杂的非比例风险回归模型,这里将不详述了。
第四步,单因素分析。
可应用COX生存分析的第0步结果作为单因素分析的结果。
可在SPSS的Cox回归里选择任何一种前进法,在Option中选择at each step,取因子筛选第0步的Score检验结果作为单因子Cox回归分析的结果。
也有文章的单因素分析对于离散型变量应用卡方检验和连续型变量应用t检验,等级资料应用双变量相关分析。
最后,将进行Cox回归分析。
应用SPSS中analysis-survival-cox regression.在time一栏中选择生存时间;在state一栏中选择数据状态(在数据编码中已经介绍),在激活的define event一栏中设定single value为1。
这里要强调几个小问题:1,SPSS可以支持研究者做两个或以上的变量的共同效应,需在主对话框中同时选中需研究的变量两个或两个以上,这样协变量框中的>a*b>才会被激活。
2,分类变量,在这里被称为哑变量,需单击categorical,然后将分类变量选入对话框。
最后得到的结果,B为协变量的系数,Exp(B)为相对危险度。
可得到比例风险模型:h(t,x)=h0(t)exp(Σβ ixi)公式1-1
预后指数也称预后得分,PI(prognostic index)= (Σβ ixi)
PI=0代表危险率处于平均水平,PI<0,代表危险率低于平均水平;PI>0,代表危险率高于平均水平。
由公式1-1可以求得全部病人的预后指数。
将所有的预后指数做等级变换,例如分组的界点PI=-1,0,1,以PI为分类变量做COX回归,并估计生存率,便获得预后指数分类生存率,若样本量很大,或代表性比较好,可用内插法分别估计不同预后指数水平的人群的k年生存率,以及中数生存期,编制成参照表,便可用于临床,根据每个病人的PI值,预测其存活k年的概率,以及期望的生存年数。
最后一段摘自方积乾主编的第二版《医学统计学与电脑试验》。
如果我们能够象国外一样做大规模多中心前瞻的研究,我一定要做到最后一步。
其实这个问题关键还是在你自己,就是你为何要定义分类变量?如果变量是连续变量或者是具有等级关系的,那么一般是不定义为分类变量的,比如年龄,身高,体重等等。
如果变量的数值之间没有等级关系,比如组别,我们用1表示A组,2表示B性,3表现C组,这个在分析的时候是需要定义为分类变量的,因为这个数值的大小是没有意义的。
所以关键怎么选择,还是需要看楼主这几个变量所代表的具体意义。
COX回归时如果需要分析的自变量中为有序多分类,为保证结果的准确性,应将其指定为亚变量进行分析(严格的讲,两分类变量也应进行指定,但不指定时的分析结果是等价的),所以您定义为categorical后的计算结果是可信的
the final multivariate Cox regression model, xx was identified as an independent prognostic factor with an adjusted hazard ratio of 1.60 (95% confidence interval 1.07–2.41)”,而有的文章则是这样描述“Cox regression indicated that ING4 expression is an independent prognostic factor for overall
5-year survival (Relative risk = 2.50, 95% confidence interval = 1.09–5.74, P = 0.031)”请问这两种描述有什么区别?hazard ratio与relative risk又有什么不同?谢谢大家!
相关疾病:
∙
∙
∙
∙
1、Enter:所有自变量强制进入回归方程;
2、Forward: Conditional:以假定参数为基础作似然比概率检验,向前逐步选择自变量;
3、Forward: LR:以最大局部似然为基础作似然比概率检验,向前逐步选择自变量;
4、Forward: Wald:作Wald概率统计法,向前逐步选择自变量;
5、Backward: Conditional:以假定参数为基础作似然比概率检验,向后逐步选择自变量;
6、Backward: LR:以最大局部似然为基础作似然比概率检验,向后逐步选择自变量;
7、Backward: Wald:作Wald概率统计法,向后逐步选择自变量。
--------------------------------------------------------------------------------------------------------------
在自变量很多时,其中有的因素可能对应变量的影响不是很大,而且x之间可能不完全相互独立的,可能有种种互作关系。
在这种情况下可用逐步回归分析,进行x因子的筛选,可以很好地剔除一些对模型贡献不大的变量,这样建立的多元回归模型预测效果会比较好。
如下,变量非常多的情况:
y:历年病情指数
x1:前年冬季油菜越冬时的蚜量(头/株)
x2:前年冬季极端气温
x3:5月份最高气温
x4:5月份最低气温
x5:3~5月份降水量
x6:4~6月份降水量
x7:3~5月份均温
x8:4~6月份均温
x9:4月份降水量
x10:4月份均温
x11:5月份均温
x12:5月份降水量
x13:6月份均温
x14:6月份降水量
x15:第一次蚜迁高峰期百株烟草有翅蚜量
x16:5月份油菜百株蚜量
x17:7月份降水量
x18:8月份降水量
x19:7月份均温
x20:8月份均温
x21:元月均温
在变量较少或者是有很多变量没有意义的情况下,用ENTER比较好
forward用得最多,但据说backward效果更好,但两者结果基本一致的,差异的情况很少
我见过有的文章在做回归分析的时候,enter、forward、backward一起用
“多因素logistic回归分析结果:enter、forward、backward 3 种分析均提示慢性炎症状态是最强烈的危险因素,而血红蛋白增多、活动度增多、食欲改善具有保护性作用。
”
———1239例CKD并发营养不良和心血管疾病的多中心调查及中药干预的实验。