高一数学必修一《函数》训练题精选
- 格式:doc
- 大小:204.50 KB
- 文档页数:4
一、选择题1.已知()f x 是定义在R 上的奇函数,且当0x <时,|2|()12x f x +=-,若关于x 的方程2()|1|f x a f -+2()0x a +=恰好有四个不同的根1x ,2x ,3x ,4x ,则()()()()12341111f x f x f x f x ----⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦的取值范围是( )A .160,81⎛⎫⎪⎝⎭B .10,16⎛⎫⎪⎝⎭C .116,1681⎡⎫⎪⎢⎣⎭ D .11,164⎡⎫⎪⎢⎣⎭ 2.设函数()243,023,0x x x f x x x ⎧-+≥=⎨+<⎩,若互不相等的实数1x 、2x 、3x ,满足()()()123f x f x f x ==,则123x x x ++的取值范围是( )A .5,62⎛⎫ ⎪⎝⎭B .5,42⎛⎤⎥⎝⎦C .()2,4D .()2,63.已知函数给出下列三个结论:① 当2=-a 时,函数()f x 的单调递减区间为(,1)-∞;② 若函数()f x 无最小值,则a 的取值范围为(0,)+∞;③ 若1a <且0a ≠,则b R ∃∈,使得函数()y f x b =-恰有3个零点1x ,2x ,3x ,且1231x x x =-.其中,所有正确结论的个数是( ) A .0B .1C .2D .34.如图所示,一隧道内设双行线公路,其截面由长方形的三条边和抛物线的一段构成,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5米,若行车道总宽度AB 为7米,请计算通过隧道的车辆限制高度为( )A .4.25米B .4.5米C .3.9米D .4.05米5.激光多普勒测速仪(LaserDopplerVelocimetry ,LDV )的工作原理是:激光器发出的光平均分成两束射出,在被测物体表面汇聚后反射,探测器接收反射光,当被测物体横向速度为零时,反射光与探测光频率相同;当横向速度不为零时,反射光相对探测光发生频移,频移()2sin 1/h p v f ϕλ=,其中v 为被测物体的横向速度,ϕ为两束探测光线夹角的一半,λ为激光波长.如图,用激光多普勒测速仪实地测量复兴号高铁在某时刻的速度,激光测速仪安装在距离高铁1m 处,发出的激光波长为()91560nm 1nm 10m -=,测得这时刻的频移为()98.72101/h ⨯,则该时刻高铁的速度约为( )A .320km/hB .330km/hC .340km/hD .350km/h6.设函数()f x 是定义在R 上的偶函数,对任意x ∈R ,都有()()4f x f x +=,且当[]2,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,若在区间(]2,10-内关于x 的方程()()()log 201a f x x a -+=>至少有4个不同的实数根,至多有5个不同的实数根,则a的取值范围是( )A .312⎡⎣B .()2,+∞C .()1,2D .(3127.若函数32232,01()5,1x x m x f x mx x ⎧-+<≤=⎨->⎩,恰有2个零点,则m 的取值范围是( )A .()5,0-B .()0,5C .1[,5)2D .1(0,]28.已知关于x 的方程|2|1x m -=有两个不等实根,则实数m 的取值范围是( ) A .(-∞,1]-B .(,1)-∞-C .[1,)+∞D .(1,)+∞9.已知函数,0()ln ,0x e x f x x x ⎧≤=⎨>⎩,若函数g (x )=f (x )+2x +ln a (a >0)有2个零点,则数a 的最小值是( ) A .1eB .12C .1D .e10.用d (A )表示集合A 中的元素个数,若集合A ={0,1},B ={x |(x 2-ax )(x 2-ax +1)=0},且|d (A )-d (B )|=1.设实数a 的所有可能取值构成集合M ,则d (M )=( ) A .3B .2C .1D .411.已知()f x 是奇函数且是R 上的单调函数,若函数()()221y f x f x λ=++-只有一个零点,则实数λ的值是( ) A .14B .18C .78-D .38-12.为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大它的光就越暗.到了1850年,由于光度计在天体光度测量的应用,英国天文学家普森又提出了亮度的概念,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足()12212.5lg lg m m E E -=-,其中星等为k m 的星的亮度为(1,2)k E k =.已知“心宿二”的星等是1.00,“天津四”的星等是1.25,则“心宿二”的亮度大约是“天津四”的( )倍.(当||x 较小时,2101 2.3 2.7x x x ≈++)A .1.27B .1.26C .1.23D .1.22二、填空题13.某建材商场国庆期间搞促销活动,规定:如果顾客选购物品的总金额不超过600元,则不享受任何折扣优惠;如果顾客选购物品的总金额超过600元,则超过600元部分享受一定的折扣优惠,折扣优惠按下表累计计算.某人在此商场购物获得的折扣优惠金额为30元,则他实际所付金额为____元. 14.对于函数()f x ,若在定义域存在实数x ,满足()()f x f x -=-,则称()f x 为“局部奇函数”.若函数()423xxf x m =-⋅-是定义在R 上的“局部奇函数”,则实数m 的取值范围为______.15.M 是所有同时满足下列条件的函数()y f x =的集合:①()y f x =的定义域为(0,)+∞;②对任意00x >,001()22f x x =+或0001()f x x x =+;若对一切()f x M ∈,关于x 的方程()f x a =恒有解,则实数a 的取值集合是___________16.定义在R 上的函数()f x ,满足()()f x f x -=-且()(2)f x f x =-,当01x <≤时,2()log f x x =,则方程()f x x =-在()2,2-上的实数根之和为___________.17.某汽车厂商生产销售一款电动汽车,每辆车的成本为4万元,销售价格为6万元,平均每月销量为800辆,今年该厂商对这款汽车进行升级换代,成本维持不变,但为了提高利润,准备提高销售价格,经过市场分析后发现,如果每辆车价格上涨0.1万元,月销量就会减少20辆,为了获取最大利润,每辆车的销售价格应定为__________万元. 18.方程()2332log log 30x x +-=的解是______.19.已知函数()21f x ax =-+有两个零点,则实数a 的取值范围是________.20.已知函数24()ln(1)x f x e -=+,()2g x x a =+-.若存在[](),1a n n n Z ∈+∈,使得关于x 的方程()()f x g x =有四个不相等的实数解,则n 的最大值为_______.三、解答题21.已知函数2()29f x x ax =-+.(I)当0a ≤时,设()(2)x g x f =,证明:函数()g x 在R 上单调递增; (II)若[1,2]x ∀∈,(2)0x f ≤成立,求实数a 的取值范围; (III)若函数()f x 在(3,9)-有两个零点,求实数a 的取值范围.22.中国“一带一路”倡议提出后,某科技企业为抓住“一带一路”带来的机遇,决定开发生产一款大型电子设备,生产这种设备的年固定成本为500万元,每生产x 台需要另投入成本()C x (万元).当年产量不足80台时,21()402C x x x =+(万元),当年产量不小于80台时,8100()1012180C x x x=+-(万元),若每台设备售价为100万元,通过市场分析,该企业生产的电子设备能全部售完.(1)求年利润y (万元)关于年产量x (台)的函数关系式.(2)年产量为多少台时,该企业在这一电子设备的生产中所获利润最大?并求出这个最大利润.23.已知函数()()22()1,20f x ax x g x x bx x =-+=+->,()()()5101x h x f x x x -=-<-. (1)()()1,3,0x f x ∀∈>恒成立,求实数a 的取值范围;(2)当1a =时,若函数()g x 的图象上存在,A B 两个不同的点与()h x 图象上的'',A B 两点关于y 轴对称,求实数b 的取值范围.24.某制造商为拓展业务,引进了一种生产体育器材的新型设备.通过市场分析发现,每月需投入固定成本3000元,生产x 台需另投入成本C (x )元,且210400040()100001004980040100x x x C x x x x ⎧+<<⎪=⎨+-≤≤⎪⎩,,,,若每台售价1000元,且每月生产的体育器材月内能全部售完.(1)求制造商所获月利润L (x )(元)关于月产量x (台)的函数关系式;(2)当月产量为多少台时,制造商由该设备所获的月利润最大?并求出最大月利润.25.已知函数5()log ,(01)5ax f x a a x -=>≠+,. (1)判断()f x 的奇偶性,并加以证明;(2)设()log (3)a g x x =-,若方程()1()f x g x -=有实根,求a 的取值范围;26.已知函数()y f x =为二次函数,()04f =,且关于x 的不等式()20f x -<的解集为{}12x x <<(1)求函数()f x 的解析式(2)若关于x 的方程()0f x m -=有一实根大于1,一实根小于1,求实数m 的取值范围 (3)已知()1g x x =+,若存在x 使()y f x =的图象在()y g x =图象的上方,求满足条件的实数x 的取值范围【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由奇函数得出()f x 的性质,作出函数图象,可知()f x t =的解的个数,令()t f x =,原方程变为2210t a t a -++=,根据()f x t =的解的情形,可得2210t a t a -++=有两不等实根且实根12,t t 都在(0,3)上,由二次方程根的分布可得a 的范围,应用韦达定理得1212,t t t t +,这样()()()()12341111f x f x f x f x ----⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦就可能用a 表示,并根据a 的求得结论.【详解】由题意(0)0f =,0x >时,2()()21x f x f x -+=--=-,作出函数()f x 的图象,如图,若0a =,则方程2()|1|f x a f -+2()0x a +=为2()()0f x f x -=,()0f x =或()1f x =()0f x =三个解,()1f x =有两个解,原方程共有5个解,不合题意,设()t f x =,因此关于t 方程2210t a t a -++=必有两个不等实根,又12212100t t a t t a ⎧+=+>⎨=>⎩,所以120,0t t >>,从而103t <<,203t <<且12t t ≠.若其中一根为1,则由2110a a -++=,1a ≤-时,2110a a +++=无实数解,1a >-,2110a a --+=,0a =或1a =,不合题意.因此121,1t t ≠≠,由2222103209310140a a a a a a ⎧+<<⎪⎪⎪>⎨⎪-++>⎪∆=+->⎪⎩,解得113-<<a 且0a ≠.不妨设121()()f x f x t ==,342()()f x f x t ==, 则()()()()222212341212121111[(1)(1)][1()][11]f x f x f x f x t t t t t t a a ----=--=-++=-++⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦22()a a =-,∵113-<<a 且0a ≠.∴21449a a -≤-<且20a a -≠,∴2160,81a a ⎛⎫-∈ ⎪⎝⎭. 故选:A .【点睛】关键点点睛:本题考查方程根的分布问题,解题关键是两个:一是研究函数()f x 的性质,二是换元后得出二次方程,问题转化为二次方程根的分布,求出参数a 的范围.2.C解析:C 【分析】设123x x x <<,作出函数()f x 的图象,结合图象可得出1x 的取值范围,结合二次函数图象的对称性可得出234x x +=,进而可求得123x x x ++的取值范围. 【详解】设123x x x <<,作出函数()f x 的图象如下图所示:设()()()123f x f x f x m ===,当0x ≥时,()()2243211f x x x x =-+=--≥-,由图象可知,13m -<<,则()()11231,3f x x =+∈-,可得120x -<<, 由于二次函数243y xx =-+的图象的对称轴为直线2x =,所以,234x x +=,因此,12324x x x <++<. 故选:C. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(或取值范围),常用方法如下: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数的取值范围; (2)分离常数法:先将参数分离,转化为求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.3.C解析:C 【分析】①画出函数的图象,直接判断函数的单调性;②分0,0,0a a a >=<三种情况讨论函数的图象,分析函数是否有最小值,得到实数a 的取值范围;③首先令()f x b =,解出三个零点,进而判断结论. 【详解】①当2a =-时,()21,0ln ,0x x f x x x -+≤⎧=⎨>⎩,画出函数的图象,如下图,由图象可知当(),0x ∈-∞时,函数单调递减,当()0,1x ∈时函数单调递减,但函数在(),1-∞时,函数并不单调递减,故①不正确;②当0a >时,0x ≤时,函数1y ax =+单调递增,并且当x →-∞时,y →-∞,所以函数没有最小值;当0a =时,()1,0ln ,0x f x x x ≤⎧=⎨>⎩,ln 0x ≥,函数的最小值是0;当0a <时,0x ≤时,函数1y ax =+单调递减,函数的最小值是1,当0x >时,ln 0x ≥,ln y x =的最小值是0,综上可知函数的最小值是0,综上,若函数没有最小值,只需满足0a >,故②正确;对于③,令()f x b =,当0x ≤时,1ax b +=,当0x >时,ln x b =, 不妨设1230x x x ≤<<,110b x a-=≤,2b x e -=,3b x e =, 则231x x =,令111b x a-==-,可得1b a =-, 当0a <时,11b a =->,则三个零点1231x x x =-, 当01a <<时,011b a <=-<,则三个零点1231x x x =-. 综上可知③正确; 故选:C【点睛】思路点睛:本题考查分段函数,函数性质和函数图象的综合应用,本题的关键是对a 的讨论,画出函数的图象,比较容易判断前两个命题,最后一个命题的关键是解出3个零点,并能判断231x x =,从而只需验证是否11x =-即可.4.D解析:D 【分析】可设抛物线的方程为2(0)x ny n =<,将(5,5)-代入可得n ,可得抛物线的方程,再令3.5x =,求得y ,计算70.5y --,可得所求值.【详解】解:如右图,设抛物线的方程为2(0)x ny n =<,将点(5,5)-代入抛物线的方程可得,255n =-,解得5n =-, 即抛物线的方程为25x y =-,令 3.5x =,可得23.55y =-,解得 2.45y =-,则通过隧道的车辆限制高度为7 2.450.5 4.05--=(米). 故选:D .【点睛】利用坐标法思想,建立适当的直角坐标系,得到抛物线的方程,从而解决问题.5.C解析:C 【分析】先根据图象,求出sin ϕ的值,再根据公式即可计算出v 的值. 【详解】 解:332sin 1.00041(2010)ϕ--==+⨯,92 1.00048.7210v ⋅∴⨯=,即8.721560 1.0004=⋅,8.7215601.0004340148.009v ⨯⨯∴=≈米/小时340/km h ≈,故该时刻高铁的速度约为340/km h .故选:C . 【点评】本题主要考查了函数的实际应用,考查了三角函数的实际应用,也考查了学生的计算能力,关键在于将生活中的数据转化为数学公式中的数据,属于中档题.6.A解析:A 【分析】作出函数()y f x =和函数()()log 21a y x a =+>在区间(]2,10-上的图象,根据题意可得出关于实数a 的不等式组,由此可解得实数a 的取值范围. 【详解】对任意x ∈R ,都有()()4f x f x +=,则函数()f x 是周期为4的周期函数,当[]2,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭, 作出函数()y f x =和函数()()log 21a y x a =+>在区间(]2,10-上的图象如下图所示:由于在区间(]2,10-内关于x 的方程()()()log 201a f x x a -+=>至少有4个不同的实数根,至多有5个不同的实数根,则()()log 623log 10231a a a ⎧+≤⎪+>⎨⎪>⎩,解得3212a ≤< 因此,实数a 的取值范围是312⎡⎣.故选:A. 【点睛】函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.7.D解析:D 【分析】先求出()g x 的单调性,然后根据题意,得到满足条件时有(0)0(1)0g g >⎧⎨≤⎩,求出m 的范围,然后再根据m 的范围,求出满足前述条件时,()5h x mx =-有零点的情况,进而可求解【详解】令32()232g x x x m =-+,'()6(1)g x x x =-,故()g x 在(]0,1处单调递减,所以,()g x 在(]0,1上至多有一个零点,而对于()5h x mx =-,在(1,)+∞上至多有一个零点,由题意得,()g x 在(]0,1上有一个零点,()5h x mx =-,在(1,)+∞上有一个零点,故有(0)0(1)0g g >⎧⎨≤⎩,求出102m ≥>,此时,()5h x mx =-,在(1,)+∞上单调递增,所以,(1)0h <即可满足题意,解得5m <,根据125m m ⎧≥>⎪⎨⎪>⎩,得102m ≥>故选:D 【点睛】关键点睛:解题关键在于先求出32()232g x x x m =-+的单调性,并根据()g x 的单调性得出()g x 在(]0,1上有一个零点,()5h x mx =-,在(1,)+∞上有一个零点,然后进行求解,难度属于中档题8.D解析:D 【分析】分离参数,再根据指数函数性质求出. 【详解】解:21x m -=或21x m -=-,即21x m =-,或者21x m =+, 当211x m =->-时,有一个解, 当211x m =+>时,有一个解,所以1m 时,方程|2|1x m -=有两个不等实根, 故选:D . 【点睛】考查方程根的个数问题,利用了分类讨论法,分离参数法,属于中档题.9.A解析:A【分析】令()0g x =,将问题转化为函数()f x 与函数()2ln 0y x a a =-->的图象有两个不同的交点来求解. 【详解】令()0g x =得()2ln f x x a =--,若()g x 有两个零点,则函数()f x 与函数()2ln 0y x a a =-->的图象有两个不同的交点.画出函数()f x 与函数()2ln 0y x a a =-->的图象如下图所示,当直线过点()0,1时,两个函数图象有两个交点,此时1120ln a a e=-⨯-⇒=.由图可知,当直线向下平移时,可使两个函数图象有两个交点,所以1ln 1a a e -≤⇒≥,所以a 的最小值为1e. 故选:A【点睛】本小题主要考查函数零点问题的求解,考查数形结合的数学思想方法,属于中档题.10.A解析:A 【分析】根据题设条件,可判断出d (B )的值为1或3,然后研究(x 2﹣ax )(x 2﹣ax +1)=0的根的情况,分类讨论出a 可能的取值. 【详解】解:由题意,|d (A )-d (B )|=1,d (A )=2,可得d (B )的值为1或3若d (B )=1,则x 2-ax=0仅有一根,必为0,此时a=0,则x 2-ax+1=x 2+1=0无根,符合题意 若d (B )=3,则x 2-ax=0有一根,必为0,此时a=0,则x 2-ax+1=x 2+1=0无根,不合题意 故x 2-ax=0有二根,一根是0,另一根是a ,所以x 2-ax+1=0必仅有一根,所以△=a 2-4=0,解得a=±2此时x 2-ax+1=0为1或-1,符合题意综上实数a 的所有可能取值构成集合M={0,-2,2},故d (M )=3. 故选:A . 【点睛】本题考查方程的根的个数的判断以及集合中元素个数,综合性较强,考查了分类讨论的思想及一元二次方程根的个数的研究方法,难度中等.11.C解析:C 【分析】令()()2210y f x f x λ=++-=,结合()f x 为奇函数进行化简,利用一元二次方程判别式列方程,解方程求得λ的值. 【详解】令()()2210y f x f x λ=++-=,则()()()221f x f x f x λλ+=--=-,因为()f x 是R 上的单调函数,所以221x x λ+=-,即2210x x λ++=-.依题意可知2210x x λ++=-有且只有一个实数根,所以()1810λ∆=-+=,解得78λ=-. 故选:C 【点睛】本小题主要考查函数的奇偶性、单调性、零点,属于中档题.12.B解析:B 【分析】把已知数据代入公式计算12E E . 【详解】由题意211 1.25 2.5(lg lg )E E -=-,12lg 0.1E E =, ∴0.1212101 2.30.1 2.70.1 1.257 1.26E E =≈+⨯+⨯=≈. 故选:B . 【点睛】本题考查数学新文化,考查阅读理解能力.解题关键是在新环境中抽象出数学知识,用数学的思想解决问题.二、填空题13.1120【分析】明确折扣金额y 元与购物总金额x 元之间的解析式结合y =30>25代入可得某人在此商场购物总金额减去折扣可得答案【详解】由题可知:折扣金额y 元与购物总金额x 元之间的解析式y ∵y =30>2解析:1120 【分析】明确折扣金额y 元与购物总金额x 元之间的解析式,结合y =30>25,代入可得某人在此商场购物总金额, 减去折扣可得答案. 【详解】由题可知:折扣金额y 元与购物总金额x 元之间的解析式,y ()()006000.0560060011000.11100251100x x x x x ⎧≤⎪=-≤⎨⎪-+⎩,<,<,> ∵y =30>25 ∴x >1100∴0.1(x ﹣1100)+25=30 解得,x =1150, 1150﹣30=1120,故此人购物实际所付金额为1120元. 【点睛】本题考查的知识点是分段函数,正确理解题意,进而得到满足条件的分段函数解析式是解答的关键.14.【分析】根据局部奇函数的定义便知若函数是定义在上的局部奇函数只需方程有解可设从而得出方程在时有解从而设由二次函数的性质分析可得答案【详解】根据题意由局部奇函数的定义可知:若函数是定义在上的局部奇函数 解析:[)2,-+∞【分析】根据“局部奇函数”的定义便知,若函数()f x 是定义在R 上的“局部奇函数”,只需方程()()2222280xx x x m --+-+-=有解.可设()222x xt t -+=≥,从而得出方程280t mt --=在2t ≥时有解,从而设()28g x t mt =--,由二次函数的性质分析可得答案. 【详解】根据题意,由“局部奇函数”的定义可知:若函数()423xxf x m =-⋅-是定义在R 上的“局部奇函数”,则方程()()f x f x -=-有解,即()423423xx x x m m ---⋅-=--⋅-有解;变形可得()442260x x x xm --+-+-=, 即()()2222280xx x x m --+-+-=有解即可.设22x x t -+=,则222x x t -=+≥=,当且仅当0x =时,等号成立. 则方程()()f x f x -=-等价为280t mt --=在2t ≥时有解.设()28g t t mt =--,若方程280t mt --=的两根分别为1t 、2t ,则1280t t =-<,所以,()2428240g m m =--=--≤, 解可得:2m ≥-,即m 的取值范围为[)2,-+∞. 故答案为:[)2,-+∞. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.15.【分析】根据条件可知当且仅当时对一切关于的方程恒有解由此求的取值范围【详解】对任意或当且仅当时对一切关于的方程恒有解此时则实数的取值集合是故答案为:【点睛】关键点点睛:本题考查方程有解求参数的取值范解析:{3±【分析】根据条件可知当且仅当000112=2x x x ++时,对一切()f x M ∈,关于x 的方程()f x a =恒有解,,由此求a 的取值范围. 【详解】对任意00x >,001()22f x x =+或0001()f x x x =+当且仅当000112=2x x x ++时,对一切()f x M ∈,关于x 的方程()f x a =恒有解,此时0=2x0()3f x =±,则实数a的取值集合是{3±故答案为:{3± 【点睛】关键点点睛:本题考查方程有解,求参数的取值范围,关键是利用题意,正确求解0x >时,000112=2x x x ++时满足题意. 16.0【分析】首先由条件求出函数周期为再利用当时作出和的图象方程在上的实数根之和为由图象结合奇函数的性质即可求解【详解】因为函数满足且所以即所以所以函数周期为由可得所以对称轴为当时作函数和图象如图所示:解析:0 【分析】首先由条件求出函数()f x 周期为4,再利用当01x <≤时,2()log f x x =,作出和y x =-的图象,方程()f x x =-在()2,2-上的实数根之和为1234x x x x +++,由图象结合奇函数的性质即可求解. 【详解】因为函数()f x 满足()()f x f x -=-且()(2)f x f x =-, 所以[](2)2(2)()f x f x f x +=-+=-,即(2)()f x f x +=-, 所以(4)(2)()f x f x f x +=-+=, 所以函数()f x 周期为4,由()(2)f x f x =-可得(1)(1)f x f x +=-,所以()f x 对称轴为1x =, 当01x <≤时,2()log f x x =, 作函数()y f x =和y x =-图象如图所示:其中()y f x =时奇函数,y x =-也是奇函数, 设两个函数图象交点的横坐标分别为1x 、2x 、3x 、4x 方程()f x x =-在()2,2-上的实数根之和为1234x x x x +++, 由图象结合奇函数的性质可得:14230x x x x +=+=,O 所以12340x x x x +++=,方程()f x x =-在()2,2-上的实数根之和为0, 故答案为:0 【点睛】关键点点睛:本题的关键点是利用已知条件求出()f x 周期为4,方程()f x x =-在()2,2-上的实数根之和等价于()y f x =和y x =-图象交点的横坐标之和,关键点是作出()y f x =在()2,2-的图象,数形结合即可求解.17.7【分析】设每辆车的销售价格为万元求出每月的销售数量乘以每一辆的获利可得每月的利润再由二次函数求最值【详解】解:设每辆车的销售价格为万元则月销售为辆由解得获利当时取得最大值为1800万元为了获取最大解析:7 【分析】设每辆车的销售价格为x 万元,求出每月的销售数量,乘以每一辆的获利可得每月的利润,再由二次函数求最值. 【详解】解:设每辆车的销售价格为x 万元,则月销售为68002020002000.1x x --⨯=-辆, 由20002000x ->,解得10x <,∴获利2(2000200)(4)20028008000(010)y x x x x x =--=-+-<<,当28007400x ==时,y 取得最大值为1800万元. ∴为了获取最大利润,每辆车的销售价格应定为7万元.故答案为:7. 【点睛】本题考查函数模型的选择及应用,二次函数最值的求法,是基础题.18.或【分析】设原方程等价转化为由此能求出原方程的解【详解】设则原方程转化为解得当即解得当即解得所以原方程的解为或故答案为:或【点睛】本题考查方程的解的求法解题时要认真审题注意换元法的合理运用属于基础题3 【分析】设3log x t =,原方程等价转化为2230t t +-=,由此能求出原方程的解. 【详解】设3log x t =,则原方程转化为2230t t +-=,解得132t =-,21t =,当132t =-,即33log 2x =-,解得x = 当21t =,即3log 1x =,解得3x =,3.3. 【点睛】本题考查方程的解的求法,解题时要认真审题,注意换元法的合理运用,属于基础题.19.【分析】由函数有两个零点等价于且再求解即可【详解】解:令两边平方整理可得又由已知有且则解得或又方程有两不等实根则解得即综上可得实数a 的取值范围是故答案为:【点睛】本题考查了二次方程的解的个数问题重点解析:11,43⎛⎫⎪⎝⎭【分析】由函数()21f x ax =+有两个零点等价于240a a ->且2244(4)0a a a ∆=-->,再求解即可.【详解】21ax =-,两边平方整理可得22(4)210a a x ax --+=, 又由已知有210ax -≥且2(4)0a a -≠, 则240a a ->,解得14a >或0a <, 又方程22(4)210a a x ax --+=有两不等实根, 则2244(4)0a a a ∆=-->,解得103a <<, 即1143a <<, 综上可得实数a 的取值范围是11,43⎛⎫⎪⎝⎭, 故答案为:11,43⎛⎫⎪⎝⎭.【点睛】本题考查了二次方程的解的个数问题,重点考查了运算能力,属中档题.20.2【分析】由题意得令显然为偶函数则方程有四个实根函数x >0有两个零点令x >0则关于t 的方程即在内有两个不相等的实根结合函数的图象可得由此可求出答案【详解】解:方程令则显然为偶函数∴方程有四个实根函数解析:2 【分析】由题意得242()()10x x a f x g x e e -+-=⇔+-=,令242()1x x a h x e e -+-=+-,x ∈R ,显然()h x 为偶函数,则方程()()f x g x =有四个实根⇔函数242()1x x a h x e e -+-=+-,x >0有两个零点,令2x t e -=,x >0,则关于t 的方程210a t e t -+=,即1ae t t=+在()2e -+∞,内有两个不相等的实根,结合函数1y t t =+的图象可得4ln(e 1)2ln 21n n ⎧<+-⎨<+⎩,由此可求出答案. 【详解】解:方程()()f x g x =⇔24ln(1)2x e x a -+=+-24210x x a e e -+-⇔+-=,令242()1x x a h x e e -+-=+-,x ∈R ,则显然()h x 为偶函数,∴方程()()f x g x =有四个实根⇔函数242()1x x a h x e e -+-=+-,x >0有两个零点, 令2x t e -=,x >0,则关于t 的方程210a t e t -+=,即1ae t t=+在()2e -+∞,内有两个不相等的实根, 结合函数1y t t=+,2t e ->的图象,得222a e e e -<<+, 即4ln 2ln(1)2a e <<+-,∵存在[],1a n n ∈+,使得4ln 2ln(1)2a e <<+-,∴4ln(e 1)2ln 21n n ⎧<+-⎨<+⎩,结合n Z ∈,得max 2n =,故答案为:2. 【点睛】本题主要考查函数与方程,考查方程的实数解个数问题,考查转化与化归思想,属于中档题.三、解答题21.(I)证明见解析 ;(II) 134a ≥;(III) 35a << . 【分析】(I)根据函数单调性定义法证明即可; (II) 设2(12)x t x =<<,则24t <<则 92t a t +≤,令9()h t t t=+,求()h t 最大值即可; (III)根据零点分布列出等价不等式求解即可. 【详解】(Ⅰ)()(2)4229x x x g x f a ==-⋅+,设21x x R >∈,221121()()4229(4229)x x x x g x g x a a -=-⋅+--⋅+2121442(22)x x x x a =---212121(22)(22)2(22)x x x x x x a =-+-- 2121(22)[(22)2]x x x x a =-+-因为函数2x y =在R 上单调递增, 所以2122x x >,所以21220x x ->,又21(22)0,0x x a +>≤,所以21(22)20x x a +->,2121(22)[(22)2]0x x x x a -+->,所以21()()g x g x >,所以函数()g x 在R 上单调递增. (Ⅱ)设2(12)x t x =<<, 则24t <<,都有2290t at -+≤,92t a t +≤,令9()h t t t=+, 易证()h t 在(2,3)单调递减,在(3,4)单调递增, 又1325(2)(4)24h h ==,,()h t 最大值为132, 13132,24a a ≥≥. (III)因为函数()f x 在(3,9)-有两个零点且对称轴为x a =,所以2394360(3)0(9)0a a f f -<<⎧⎪->⎪⎨->⎪⎪>⎩,解得35a <<. 【点睛】方法点睛:已知不等式恒成立求参数值(取值范围)问题常用的方法: (1)函数法:讨论参数范围,借助函数单调性求解;(2)分离参数法:先将参数分离,转化成求函数的值域或最值问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.22.(1)2160500,080281001680,80x x x y x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩;(2)当年产量为90台时,该企业在这一电子设备的生产中所获利润最大,最大利润为1500万元. 【分析】(1)分别求080x <<和80x ≥时函数的解析式可得答案;(2)当080x <<时,21(60)13002y x =--+,配方法求最值、;当80x ≥时, 利用基本不等式求最值,然后再做比较.【详解】(1)当080x <<时,2211100405006050022y x x x x x ⎛⎫=-+-=-+- ⎪⎝⎭, 当80x ≥时,8100810010010121805001680y x x x x x ⎛⎫⎛⎫=-+--=-+ ⎪ ⎪⎝⎭⎝⎭, 于是2160500,080281001680,80x x x y x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩. (2)由(1)可知当080x <<时,21(60)13002y x =--+, 此时当60x =时y 取得最大值为1300(万元),当80x ≥时,8100168016801500y x x ⎛⎫=-+≤-= ⎪⎝⎭, 当且仅当8100x x=即90x =时y 取最大值为1500(万元), 综上所述,当年产量为90台时,该企业在这一电子设备的生产中所获利润最大,最大利润为1500万元.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.23.(1)14a >;(2)51b <<. 【分析】(1)讨论0a =、0a >、0a <满足恒成立情况下a 的取值范围,取并集;(2)由题意知()g x 关于y 轴对称的函数为()k x 必与()h x 在0x <上有两个不同的交点,利用二次函数的性质求b 的取值范围.【详解】(1)当0a =时,()1f x x =-,在()1,3x ∈上有()(2,0)f x ∈-,故不符题意; 若0a ≠有()f x 对称轴为12x a=,14a ∆=-,要使()()1,3,0x f x ∀∈>恒成立,当0a >时,102a >且(1)0f a => ,即∆<0或112a ≤或132(3)0a f ⎧≥⎪⎨⎪≥⎩,解得14a >; 当0a <时,102a<,即仅需(3)0f ≥即可,无解; 综上,有14a >; (2)0x <时,()g x 关于y 轴对称的函数为2()2k x x bx =--,由题意知()h x 与()k x 有两个不同的交点.由1a =时,()25111x h x x x x -=-+--,令()()k x h x =,整理得2(1)(1)20b x b x --+-=,∴令2()(1)(1)2t x b x b x =--+-,即()t x 在0x <上有两个不同的零点,而(0)20t =-<,∴()()()2101{0211810b b x b b b -<+=<-∆=++->,解得51b <<,【点睛】思路点睛:()g x 存在两点关于y 轴对称点在()h x 上,将其转化为函数交点问题. 确定()g x 关于y 轴对称的函数解析式()k x .有()h x 、()k x 有两个不同交点.结合二次函数的性质求参数的范围. 24.(1)2106003000040()100006800(4)40100.x x x L x x x x ⎧-+-<<⎪=⎨-+≤≤⎪⎩,,,;(2)月产量为50台时,所获的月利润最大,最大月利润为6400元.【分析】(1)分040x <<和40100x ≤≤时两种情况,利用利润=销售额-成本列式即可; (2)利用二次函数求040x <<时的最大值,利用基本不等式求40100x ≤≤时的最大值,取最大即可.【详解】(1)当0<x <40时,L (x )=1000x -10x 2-400x -3000=-10x 2+600x -3000; 当40≤x ≤100时,L (x )=100001000100498003000x x x--+-10000=6800(4)x x-+. 所以2106003000040()100006800(4)40100.x x x L x x x x ⎧-+-<<⎪=⎨-+≤≤⎪⎩,,, (2)①当0<x <40时,L (x )=-10(x -30)2+6000,所以当x =30时,L (x )max =L (30)=6000.②当40≤x ≤100时,10000()6800(4)L x x x =-+68006400-=≤, 当且仅当100004x x=,即x =50时取等号. 因为6400>6000,所以x =50时,L (x )最大.答:月产量为50台时,所获的月利润最大,最大月利润为6400元.【点睛】本题主要考查了分段函数的实际应用,涉及二次函数求最值和基本不等式求最值,属于基础题.25.(1)奇函数,证明见解析;(2)30,16a ⎛∈ ⎝⎦. 【分析】(1)先求定义域,再利用函数奇偶性的定义即可判断(2)通过()log (3)a g x x =-,将()1()f x g x -=化简,求出方程中a 的表达式,通过变形,利用基本不等式即可求解.【详解】(1)()f x 为奇函数 由505x x ->+解得定义域为{|5x x >或5}x <-关于原点对称, 55()log log ()55a a x x f x f x x x ----==-=--++,所以()f x 为奇函数 ; (2) 由题意知log log ()aa x 51x 3x 5--=-+,即5log log (3)5a a x a x x -=-+, 所以()535x a x x -=-+, 即5(5)(3)x a x x -=+-在(5,)+∞有解, 设5x t -=,则(0,)t ∈+∞设(10)(2)t y t t =++,。
高一必修一数学三角函数中含参取值范围专项练习(含解析)一、填空题1. 若0 ≤ x ≤ 2π,求满足 sin(2x) = sin(x) 的 x 的取值范围。
解析:由于 sin(2x) = sin(x),可以得到以下等式。
sin(2x) = sin(x)2sin(x)cos(x) = sin(x)sin(x)(2cos(x) - 1) = 0因此,满足 sin(2x) = sin(x) 的 x 的取值范围为:x = 0, π, 2π。
2. 若 -π ≤ x ≤ 3π,求满足 sin(3x) = cos(2x) 的 x 的取值范围。
解析:由于 sin(3x) = cos(2x),可以得到以下等式。
sin(3x) = cos(2x)sin(3x) = cos(π/2 - 2x)因此,满足 sin(3x) = cos(2x) 的 x 的取值范围为:x = -3π/2, -π/2, π/2。
二、选择题1. 若0 ≤ x ≤ 2π,下列等式中含参的取值范围正确的是:A. sin(x) = 0,x = 0, π, 2πB. cos(2x) = 1,x = 0, π, 2πC. tan(x) = 1,x = π/4,5π/4D. sin(x)cos(x) = 0,x = 0, π/2, π解析:只有选项 C 正确,因为 tan(x) = 1 的解为x = π/4,5π/4。
2. 若 -π/2 ≤ x ≤ π/2,下列等式中含参的取值范围正确的是:A. sin(2x) = 1,x = π/4,5π/4B. cos(x) = 0,x = π/2, 3π/2C. tan(x) = 0,x = 0D. cos(2x) = 1,x = π/4,5π/4解析:只有选项 B 正确,因为 cos(x) = 0 的解为x = π/2, 3π/2。
三、解答题1. 若0 ≤ x ≤ π/2,求满足 tan(2x) = 1 的 x 的取值范围。
一、选择题1.下列各函数中,表示相等函数的是( ) A .lg y x =与21lg 2y x =B .211x y x -=-与1y x =+C.1y =与1y x =-D .y x =与log xa y a =(0a >且1a ≠)2.若函数()22(3)8,1,1x a x x f x ax x ⎧-+--≤=⎨>⎩在R 上是增函数,则实数a 的取值范围是( )A.4,⎡-⎣B.⎤⎦C .[]3,4-D.⎡⎣3.函数()()1ln 24f x x x =-+-的定义域是( ) A .[)2,4B .()2,+∞C .()()2,44,⋃+∞D .[)()2,44,+∞4.设函数()y f x =的定义域D ,若对任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=,则称函数()y f x =具有性质M .下列结论:①函数3x y =具有性质M ; ②函数3y x x =-具有性质M ;③若函数8log (2)y x =+,[]0,x t ∈具有性质M ,则510t =. 其中正确的个数是( ) A .0个B .1个C .2个D .3个5.下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .1y x=B.y =C .2x y = D .||y x x =-6.已知函数2()(3)1f x mx m x =--+,()g x mx =,若对于任意实数x ,()f x 与()g x 的值至少有一个为正数,则实数m 的取值范围是( ) A .(1,9)B .(3,+)∞C .(,9)-∞D .(0,9)7.若函数22,2()13,22x ax x f x a x x⎧-≤⎪=⎨->⎪⎩是R 上的单调减函数,则实数a 的取值范围为( )A .115,24⎡⎤⎢⎥⎣⎦B .4,215⎡⎤⎢⎥⎣⎦C .41,152⎡⎤⎢⎥⎣⎦D .152,4⎡⎤⎢⎥⎣⎦8.已知的2()(1)()f x x x x ax b =+++图象关于直线1x =对称,则()f x 的值域为( ) A .[]4,-+∞B .9,4⎡⎫-+∞⎪⎢⎣⎭C .9,44⎡⎤-⎢⎥⎣⎦D .[]0,49.符号[]x 表示不超过x 的最大整数,如[]3π=,[]1.082-=-,定义函数{}[]x x x =-.给出下列结论:①函数{}x 的定义域是R ,值域为0,1;②方程{}12x =有无数个解;③函数{}x 是增函数;④函数{}x 为奇函数,其中正确结论的个数是( )A .0B .1C .2D .310.已知函数()()1,12,1xmx x f x n x +<⎧⎪=⎨-≥⎪⎩,在R 上单调递增,则mn 的最大值为( ) A .2B .1C .94D .1411.若函数2()34f x x x =--的定义域为[]0m ,,值域为2544⎡⎤--⎢⎥⎣⎦,,则m 的取值范围是( ) A .3,42⎡⎤⎢⎥⎣⎦B .3,32⎡⎤⎢⎥⎣⎦C .(]0,4D .3,2⎡⎫+∞⎪⎢⎣⎭12.已知函数()f x 是R 上的单调函数,且对任意实数x ,都有()21213xf f x ⎡⎤+=⎢⎥+⎣⎦成立,则()2020f 的值是( ) A .202021- B .202021+C .202020202121+-D .202020202121-+二、填空题13.已知1()1x f x x +=-,则135199()()()()100100100100f f f f ++++=______________14.已知实数0a ≠,函数()2,12,1x a x f x x a x +<⎧=⎨-+≥⎩,若()()11f a f a -=+,则a 的取值范围是___________.15.若()f x 是定义在R 上的以3为周期的奇函数,且()20f =,则方程()0f x = 在区间()0,6内的解的个数的最小值是__________ .16.如果定义在区间[3+a ,5]上的函数f(x)为奇函数,那么a 的值为________. 17.若对任意02x ≤≤,恒有2x ax b c ++≤成立,则当c 取最小值时,函数()24f x x a x b x c =-+-+-的最小值为________.18.下列给出的命题中:①若()f x 的定义域为R ,则()()()g x f x f x =+-一定是偶函数;②若()f x 是定义域为R 的奇函数,对于任意的x ∈R 都有()(2)0f x f x +-=,则函数()f x 的图象关于直线1x =对称;③某一个函数可以既是奇函数,又是偶函数; ④若1()2ax f x x +=+在区间(2,)-+∞上是增函数,则12a >; 其中正确的命题序号是__________.19.已知函数()2()10f x x ax a =++>,若“()f x 的值域为[)0,+∞”为真命题,则()3f =________.20.设2(),0()1,0x a x f x x a x x ⎧-≤⎪=⎨++>⎪⎩,若(0)f 是()f x 的最小值,是a 的取值范围为________________.三、解答题21.已知定义在R 上的函数()f x 的单调递增函数,且对∀x ,y ∈R ,都有()()()1f x y f x f y +=++,f (2)=5.(1)求f (0),f (1)的值;(2)若对11,32x ⎡⎤∈⎢⎥⎣⎦∀,都有2()(21)1f kx f x +-<成立,求实数k 的取值范围. 22.已知函数()y f x =是[]1,1-上的奇函数,当10x ≤<时,()2112x f x x =-+. (1)判断并证明()y f x =在[)1,0-上的单调性; (2)求()y f x =的值域.23.已知函数()y f x =的定义域为D ,如果存在区间[],a b D ⊆,使得[]{}[]|(),,,=∈=y y f x x a b a b ,则称区间,a b 为函数()y f x =的一个和谐区间.(1)直接写出函数3()f x x =的所有和谐区间;(2)若区间[]0,m 是函数3()22=-f x x 的一个和谐区间,求实数m 的值; (3)若函数2()2()=-+∈f x x x m m R 存在和谐区间,求实数m 的取值范围.24.已知函数12()12x xa f x -⋅=+是R 上的奇函数(a 为常数),()22.g x x x m m R =-∈+, (1)求实数a 的值;(2)若对任意12[]1x -∈,,总存在2]3[0x ∈,,使得12()()f x g x =成立,求实数m 的取值范围.25.已知函数()()20f x ax x c a =++>满足:①函数14f x ⎛⎫-⎪⎝⎭是偶函数;②关于x 的不等式()0f x <的解集是()(),11m m <. (1)求函数()f x 的解析式;(2)求函数()()()()43g x f x k x k R =++∈在[]1,3上的最小值()h k .26.已知函数()f x = (1)求()f x 的定义域和值域; (2)设()h x =,若不等式231()42h x m am ≤-对于任意[1,1]x ∈-及任意[1,1]a ∈-都恒成立,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】本题可依次判断四个选项中函数的定义域、对应关系、值域是否相同,即可得出结果. 【详解】A 项:函数lg y x =定义域为()0,∞+,函数21lg 2y x =定义域为{}0x x ≠,A 错误; B 项:函数211x y x -=-定义域为{}1x x ≠,函数1y x =+定义域为R ,B 错误;C 项:函数1y =值域为[)1,-+∞,函数1y x =-值域为R ,C 错误;D 项:函数y x =与函数log xa y a =(0a >且1a ≠)定义域相同,对应关系相同,D 正确.故选:D 【点睛】方法点睛:判断两个函数是否相同,首先可以判断函数的定义域是否相同,然后判断两个函数的对应关系以及值域是否相同即可,考查函数定义域和值域的求法,是中档题.2.B解析:B 【分析】函数()f x 在R 上是增函数,则在两段上分别要单调递增,且在分界点处要满足2138a a -+--≤,从而得到答案.【详解】函数()22(3)8,1,1x a x x f x ax x ⎧-+--≤=⎨>⎩在R 上是增函数,则满足下列条件:(1)()2238y x a x =-+--在(],1-∞递增,2312a -≥,即a ≥a ≤(2)y ax =在()1,+∞递增,则0a >(3)当1x =时满足2138a a -+--≤,解得34a -≤≤综上可得函数()f x 在R 上是增函数,实数a 4a ≤≤ 故选:B. 【点睛】关键点睛:本题考查根据分段函数的单调性求参数的范围,解答本题的关键是分段函数要在定义域内单调递增,则在两段上要分别单调递增,且在分界点出满足2138a a -+--≤,这也时容易出错的地方,属于中档题.3.C解析:C 【分析】先根据函数的解析式建立不等式组,再解不等式组求定义域即可. 【详解】解:因为函数的解析式:()()1ln 24f x x x =-+- 所以2040x x ->⎧⎨-≠⎩,解得24x x >⎧⎨≠⎩故函数的定义域为:()(2,4)4,+∞故选:C 【点睛】数学常见基本初等函数定义域是解题关键.4.C解析:C 【分析】根据函数性质M 的定义和指数对数函数的性质,结合每个选项中具体函数的定义,即可判断. 【详解】解:对于①:3x y =的定义域是R ,所以1212()()13x x f x f x +⋅==,则120x x +=.对于任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=, 所以函数3x y =具有性质M ,①正确;对于②:函数3y x x =-的定义域为R ,所以若取10x =,则1()0f x =,此时不存在2x R ∈,使得12()()1f x f x ⋅=, 所以函数3y x x =-不具有性质M ,②错误;对于③:函数8log (2)y x =+在[]0,t 上是单调增函数,其值域为[]88log 2,log (2)t +,要使得其具有M 性质,则88881log 2log (2)1log (2)log 2t t ⎧≤⎪+⎪⎨⎪+≤⎪⎩,即88log 2log (2)1t ⨯+=,解得3(2)8t +=,510t =, 故③正确; 故选:C. 【点睛】本题考查函数新定义问题,对数和指数的运算,主要考查运算求解能力和转换能力,属于中档题型.5.D解析:D 【分析】利用奇函数的定义和常见基本初等函数的性质,对选项逐一判断即可. 【详解】 选项A 中,函数1y x =,由幂函数性质知1y x=是奇函数,且其在()(),0,0,-∞+∞两个区间上递减,不能说在定义域内是减函数,故错误; 选项B中,函数y =[)0,+∞,不对称,故不具有奇偶性,,且在定义域内是增函数,故错误;选项C 中,指数函数2x y =,22x x -≠,且22x x -≠-,故不是奇函数,故错误;选项D 中,函数22,0,0x x y x x x x ⎧-≥=-=⎨<⎩,记()y f x =,当0x >时,0x -<,故22(),()f x x f x x =--=,故()()f x f x -=-, 当0x =时,(0)0f =,故()()f x f x -=-,当0x <时,0x ->,故22(),()f x x f x x =-=-,故()()f x f x -=-,综上,()y f x =是奇函数,又0x ≥时,2()f x x =-是开口向下的抛物线的一部分,是减函数,由奇函数性质知()y f x =在定义域R 上是减函数,故正确. 故选:D. 【点睛】本题解题关键是熟练掌握常见的基本初等函数的性质,易错点是分段函数奇偶性的判断,分段函数必须判断定义域内的每一段均满足()()f x f x -=-(或()()f x f x -=)才能判定其是奇函数(或偶函数).6.D解析:D 【分析】根据所给条件,结合二次函数的图像与性质,分类讨论,即可得解. 【详解】当0m <时,二次函数2()(3)1f x mx m x =--+的图像开口向下,()g x mx =单调递减,故存在x 使得()f x 与()g x 同时为负,不符题意; 当0m =时,()31f x x =-+,()0g x =显然不成立; 当0m >时,2109m m ∆=-+, 若∆<0,即19m <<时,显然成立,0∆=,1m =或9m =,则1m =时成立,9m =时,13x =-时不成立,若0∆>,即01m <<或9m >,由(0)1f =可得:若要()f x 与()g x 的值至少有一个为正数,如图,则必须有302mm->,解得01m <<, 综上可得:09m <<, 故答案为:D. 【点睛】本题考查了二次函数和一次函数的图像与性质,考查了分类讨论思想和计算能力,属于中档题.解决此类问题的关键主要是讨论,涉及二次函数的讨论有: (1)如果平方项有参数,则先讨论; (2)再讨论根的判别式; (3)最后讨论根的分布.7.D解析:D 【分析】若函数()f x 在R 上递减,则必须满足当(],2x ∈-∞时,函数22y x ax =-递减,且()2,x ∈+∞时132y a x=-也递减,且端点处的函数值必须满足条件. 【详解】 易知函数132y a x=-在(2,)+∞上单调递减,要使函数()f x 在R 上单调递减, 则函数22y x ax =-在(,2]-∞上单调递减,所以2a ≥, 当2x =时,2244x ax a -=-,113324a a x -=-,要使()f x 在R 上单调递减, 还必须14434a a -≥-,即154a ≤,所以1524a ≤≤.故选:D . 【点睛】解答本题时,首先要保证原函数在每一段上都递减,另外,解答时容易忽略掉端点的函数值的大小关系.8.B解析:B 【分析】结合函数对称性与解析式可知1,0-是零点,则2,3也是零点,由对应关系求出解析式,利用换元法和二次函数性质即可求解 【详解】因为函数()()()21f x x x x ax b =+++有两个零点1-,0,又因为其图象关于直线1x =对称,所以2,3也是函数()f x 的两个零点,即()()()()123f x x x x x =+⋅--,所以()()()22223f x x x x x =---,令()222111t x x x =-=--≥-,则()()223933124y t t t t t t ⎛⎫=-=-=--- ⎭≥⎪⎝,所以94y ≥-,即()f x 的值域为9,4∞⎡⎫-+⎪⎢⎣⎭. 故选:B 【点睛】关键点睛:本题考查函数对称性的应用,换元法的应用,函数值域的求解,解题关键在于:(1)若函数对称轴为x a =,则有()()f a x f a x +=-; (2)换元法求解函数值域必须注意新元取值范围.9.B解析:B根据函数性质判断[]x 是一个常见的新定义的形式,按照新定义,符号[]x 表示不超过x 的最大整数,由此可以得到函数的性质,又定义函数{}[]x x x =-,当0x ≥时,表示x 的小数部分,由于①③是错误的,举例可判断②,根据单调性定义可判断④. 【详解】①函数{}x 的定义域是R ,但[]01x x ≤-<,其值域为)01⎡⎣,,故错误; ②由{}[]12x x x =-=,可得[]12x x =+,则 1.52.5x =,……都是方程的解,故正确; ③由②可得{}11.52=,{}12.52=……当 1.52.5x =,……时,函数{}x 的值都为12,故不是增函数,故错误; ④函数{}x 的定义域是R ,而{}[]{}x x x x -=---≠-,故函数不是奇函数,故错误;综上,故正确的是②. 故选:B. 【点睛】本题以新定义函数{}[]x x x =-的意义为载体,考查了分段函数和函数的值域、单调性等性质得综合类问题,在解答的过程中体现了分类讨论和数形结合的思想,还可以利用函数的图象进行解题.10.D解析:D 【分析】现根据分段函数单调增,列出不等式组,得出011m n m n >⎧⎪<⎨⎪+≤⎩,再根据基本不等式即可求解.【详解】由题意可知,函数在R 上单调递增,则02112m n m n>⎧⎪->⎨⎪+≤-⎩,解得011m n m n >⎧⎪<⎨⎪+≤⎩,则由基本不等式可得2211224m n mn +⎛⎫⎛⎫≤≤= ⎪ ⎪⎝⎭⎝⎭,当且仅当m=n=12时取等号. 故选:D 【点睛】本题主要考查分段函数的单调性,和基本不等式,属于中档题,解题是应注意分段函数单调递增:左边增,右边增,分界点处左边小于等于右边.11.B解析:B求出(0)4f =-,再计算出最小值为32524f ⎛⎫=- ⎪⎝⎭,然后求出()4f m =-的值后可得m 的范围. 【详解】2325()24f x x ⎛⎫=-- ⎪⎝⎭,()f x 在3,2⎛⎫-∞ ⎪⎝⎭上递减,在3,2⎛⎫+∞ ⎪⎝⎭上递增, (0)4f =-,又32524f ⎛⎫=- ⎪⎝⎭,所以32m ≥,由2()344f m m m =--=-解得0m =或3m =, 因此332m ≤≤. 故选:B . 【点睛】方程点睛:本题考查二次函数的性质,掌握其对称轴、单调性是解题关键.由此可得二次函数2()f x ax bx c =++在区间[,]m n 上的最值求法: 设0a >,函数的对称轴0x x =(02bx a=-), 当0x m <时,min ()()f x f m =,0m x n ≤≤时,min 0()()f x f x =,0x n >时,min ()()f x f n =,当02m n x +≤时,max ()()f x f n =,当02m nx +>时,max ()()f x f m =. 0a <类似讨论.12.D解析:D 【分析】采用换元法可构造方程()21213t f t t =-=+,进而求得()f x 解析式,代入2020x =即可得到结果. 【详解】由()f x 是R 上的单调函数,可设()221x f x t +=+,则()13f t =恒成立, 由()221x f x t +=+得:()221x f x t =-+,()21213t f t t ∴=-=+,解得:1t =,()22112121x x xf x -∴=-=++,()2020202021202021f -∴=+. 故选:D . 【点睛】本题考查函数值的求解问题,解题关键是能够采用换元的方式,利用抽象函数关系式求解得到函数的解析式.二、填空题13.100【分析】分析得出得解【详解】∴故答案为:100【点睛】由函数解析式得到是定值是解题关键解析:100 【分析】分析得出(2)()2f x f x -+=得解. 【详解】1()1x f x x +=- 211211(2)()2f x f x x x x x -+∴-+=++=--- ∴135199()()()()100100100100f f f f ++++1199319799101[()()][()()][()()]100100100100100100f f f f f f =+++++ 250100=⨯=故答案为:100. 【点睛】由函数解析式得到(2)()2f x f x -+=是定值是解题关键.14.【分析】本题首先可讨论的情况此时然后根据函数的解析式求出和通过即可求出的值最后讨论的情况此时通过得出此时无解即可得出结果【详解】若则因为函数所以因为所以解得若则因为函数所以因为所以无解综上所述的取值解析:32⎧⎫⎨⎬⎩⎭【分析】本题首先可讨论0a >的情况,此时11a -<、11a +>,然后根据函数()f x 的解析式求出()1f a -和()1f a +,通过()()11f a f a -=+即可求出a 的值,最后讨论0a <的情况,此时11a ->、11a +<,通过()()11f a f a -=+得出此时a 无解,即可得出结果. 【详解】若0a >,则11a -<,11a +>,因为函数()2,12,1x a x f x x a x +<⎧=⎨-+≥⎩,所以1212f a a a a ,1121f a a aa ,因为()()11f a f a -=+,所以21a a ,解得32a =, 若0a <,则11a ->,11a +<,因为函数()2,12,1x a x f x x a x +<⎧=⎨-+≥⎩,所以11213f aa a a ,12123f a a a a ,因为()()11f a f a -=+,所以1323a a ,无解,综上所述,32a =,a 的取值范围是32⎧⎫⎨⎬⎩⎭, 故答案为:32⎧⎫⎨⎬⎩⎭.【点睛】本题考查分段函数的相关问题的求解,在分段函数求函数值的时候,要把自变量代入到所对应的解析式中是解本题的关键,考查分类讨论思想,考查计算能力,是中档题.15.7【解析】由函数的周期为3可得因为若则可得出又根据为奇函数则又可得出又函数是定义在R 上的奇函数可得出从而在中令得出又根据是定义在R 上的奇函数得出从而得到即故从而共7个解解析:7 【解析】由函数的周期为3可得(3)()f x f x +=,因为(2)0f =, 若(0,6)x ∈,则可得出(5)=(2)0f f =, 又根据()f x 为奇函数,则(-2)=-(2)0f f =, 又可得出(4)=(1)(-2)=0f f f =,又函数()f x 是定义在R 上的奇函数,可得出(0)0f =, 从而(3)=(0)0f f =,在(3)()f x f x +=中, 令32x =-,得出33()()22f f -=,又根据()f x 是定义在R 上的奇函数,得出33()-()22f f -=, 从而得到33()-()22f f =,即3()02f =, 故933()(+3)()=0222f f f ==,从而93()()=(4)(1)(3)(5)(2)022f f f f f f f ======,共7个解.16.-8【解析】∵f(x)定义域为3+a5且为奇函数∴3+a =-5∴a =-8点睛:利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值进而得解(2)求参数值:在定义域关于解析:-8 【解析】∵f(x)定义域为[3+a ,5],且为奇函数, ∴3+a =-5,∴a =-8.点睛:利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值,进而得解.(2)求参数值:在定义域关于原点对称的前提下,根据奇函数满足f(-x)=-f(x)或偶函数满足f(-x)=f(x)列等式,根据等式两侧对应相等确定参数的值.特别要注意的是:若能够确定奇函数的定义域中包含0,可以根据f(0)=0列式求解,若不能确定则不可用此法.17.【分析】由题意结合二次函数的图象与性质可得当c 可取最小值时再由零点分段法可得分段函数的解析式即可得解【详解】令由题意知当时c 可取最小值此时解得则所以所以的最小值为故答案为:【点睛】本题考查了二次函数 解析:198【分析】由题意结合二次函数的图象与性质可得当c 可取最小值时,2a =-、12==b c ,再由零点分段法可得分段函数()f x 的解析式,即可得解. 【详解】令()2h x x ax b =++,由题意知当()()()021h h h ==-时,c 可取最小值,此时()421b a b b a b =++⎧⎨=-++⎩,解得212a b =-⎧⎪⎨=⎪⎩,则()102c h ==, 所以()112422422f x x a x b x c x x x =-+-+-=++-+- 171,41132,84153,2871,2x x x x x x x x ⎧+≥⎪⎪⎪+<<⎪=⎨⎪-+-<≤⎪⎪⎪--≤-⎩, 所以()f x 的最小值为15193888f ⎛⎫=-+= ⎪⎝⎭.故答案为:198. 【点睛】本题考查了二次函数的图象与性质与应用,考查了零点分段法的应用及分段函数最值的求解,属于中档题.18.①③④【分析】①根据奇偶函数的定义判断;②利用抽象函数的对称性判断;③通过特殊函数判断;④通过分离常数转化为熟悉的函数判断【详解】①函数的定义域为所以函数的定义域也是即所以函数是偶函数故①正确;②对解析:①③④ 【分析】①根据奇偶函数的定义判断;②利用抽象函数的对称性判断;③通过特殊函数判断;④通过分离常数,转化为熟悉的函数判断. 【详解】①函数()f x 的定义域为R ,所以函数()g x 的定义域也是R ,()()()g x f x f x -=-+,即()()g x g x -=,所以函数()g x 是偶函数,故①正确;②对应任意的x ∈R ,都有()()20f x f x +-=,即函数()f x 关于()1,0对称,并不关于1x =对称,故②不正确;③函数0y =既是偶函数又是奇函数,故③正确; ④()()212112222a x a ax af x a x x x ++-+-===++++,若函数在()2,-+∞上单调递增,则120a -<,解得:12a >,故④正确. 故答案为:①③④ 【点睛】方法点睛:函数的对称性包含中心对称和轴对称,一般判断的方法包含:1.若对函数()y f x =的定义域内的任一自变量x 的值都有()()2f x f a x =-,则()y f x =的图象关于x a =成轴对称;若对函数()y f x =的定义域内的任一自变量x 的值都有()()22f x b f a x =--,则()y f x =的图象关于(),a b 成中心对称;19.16【分析】二次函数的值域为得到求得值得解【详解】因为的值域为所以则又所以故答案为:16【点睛】二次函数的值域为得到是解题关键解析:16 【分析】二次函数()f x 的值域为[)0,+∞得到240a ∆=-=求得a 值得解【详解】因为()2()10f x x ax a =++>的值域为[0,)+∞,所以240a ∆=-=,则2a =±.又0a >,所以2,a =.22()21,(3)323116f x x x f ∴=++∴=+⨯+=故答案为:16 【点睛】二次函数()f x 的值域为[)0,+∞得到0∆=是解题关键.20.【分析】利用定义可知在上递减在上递增所以当时取得最小值为再根据是的最小值可知且解得结果即可得解【详解】当时任设则当时所以所以当时所以所以所以在上递减在上递增所以当时取得最小值为又因为是的最小值所以且 解析:02a ≤≤【分析】利用定义可知1()f x x a x=++在(0,1)上递减,在(1,)+∞上递增,所以当1x =时,1()f x x a x=++取得最小值为2a +,再根据(0)f 是()f x 的最小值,可知0a ≥且2(0)2a a -≤+,解得结果即可得解.【详解】当0x >时,1()f x x a x=++, 任设120x x <<,则12121211()()f x f x x a x a x x -=++---12121()(1)x x x x =--, 当120x x <<1<时,120x x -<,12110x x -<,所以12121()(1)0x x x x -->,所以12()()f x f x >,当121x x <<时,120x x -<,12110x x ->,所以12121()(1)0x x x x --<,所以12()()f x f x <,所以1()f x x a x=++在(0,1)上递减,在(1,)+∞上递增, 所以当1x =时,1()f x x a x=++取得最小值为2a +, 又因为(0)f 是()f x 的最小值,所以0a ≥且2(0)2a a -≤+,解得02a ≤≤. 故答案为:02a ≤≤. 【点睛】本题考查了利用定义判断函数的单调性,考查了根据函数的最值点求参数的取值范围,考查了分段函数的性质,属于中档题.三、解答题21.(1)(0)1f =-;()12f =;(2)4k <. 【分析】(1)令0x y ==可得(0)f ,令1x y ==可得()1f ; (2)转化条件为222k x x <-对11,32x ⎡⎤∈⎢⎥⎣⎦∀恒成立,换元后求得222x x -的最小值即可得解. 【详解】(1)令0x y ==,则(0)(0)(0)1f f f =++,所以(0)1f =-; 令1x y ==,则(2)(1)(1)15f f f =++=,所以()12f =;(2)由题意,不等式2()(21)1f kx f x +-<可转化为2()(21)12f kx f x +-+<,所以()()2211f kx x f +-<,因为函数()f x 单调递增,所以2211kx x +-<, 所以222k x x <-对11,32x ⎡⎤∈⎢⎥⎣⎦∀恒成立, 令[]12,3t x =∈,则221122222t t t ⎛⎫-=-- ⎪⎝⎭,所以当2t =即12x =时,222t t -取最小值4, 所以4k <. 【点睛】关键点点睛:解决本题的关键是利用函数的单调性转化不等式为222k x x<-对11,32x ⎡⎤∈⎢⎥⎣⎦∀恒成立,再转化为求222x x -的最小值即可得解.22.(1)单调递增,证明见解析;(2){}111,0,122⎡⎫⎛⎤--⋃⋃⎪ ⎢⎥⎣⎭⎝⎦. 【分析】(1)利用定义设1210-≤<<x x ,计算()()12f x f x -判断正负即可得出单调性; (2)先利用单调性求出()f x 在[)1,0-的取值范围,再根据奇函数的对称性可求出. 【详解】(1)设1210-≤<<x x ,()()()()()()122112122222121211111x x x x x x f x f x x x x x ---=-=++++, 因为1210-≤<<x x ,所以121x x <,210x x ->, 则()()120f x f x -<,()()12f x f x <, 所以()f x 在[)1,0-上单调递增; (2)函数()f x 在[)1,0-上是增函数,∴()()()10f f x f -≤<,()11f -=-,()102f =-,∴()11,2f x ⎡⎫∈--⎪⎢⎣⎭∴当10x -≤<时,()f x 的取值范围11,2⎡⎫--⎪⎢⎣⎭∴而函数()f x 为奇函数,由对称性可知,函数()y f x =在(]0,1上的取值范围为1,12⎛⎤⎥⎝⎦又()00f =,故()y f x =的值域{}111,0,122⎡⎫⎛⎤--⋃⋃⎪ ⎢⎥⎣⎭⎝⎦. 【点睛】思路点睛:利用定义判断函数单调性的步骤: (1)在定义域内任取12x x <; (2)计算()()12f x f x -并化简整理; (3)判断()()12f x f x -的正负;(4)得出结论,若()()120f x f x -<,则()f x 单调递增;若()()120f x f x ->,则()f x 单调递减.23.(1) 1.0,0,1,[]1,1-;(2)4m =或2;(3)904≤<m . 【分析】(1)本题可令3x x =,解得0x =或±1,然后根据函数()3f x x =的单调性以及“和谐区间”定义即可得出结果;(2)本题首先可将函数转化为()342,23342,23x x f x x x ⎧-≥⎪⎪=⎨⎪-+<⎪⎩,然后令322x x -=,解得45x =或4,最后绘出函数图像,结合函数图像即可得出结果; (3)讨论1a b <≤或1a b ≤<或1a b <<,根据二次函数的性质确定函数的单调区间,再由单调性求出函数的值域,根据题干,函数的新定义即可求解. 【详解】解:(1)函数()3f x x =是增函数,定义域为R ,令3x x =,解得0x =或±1,故函数()3f x x =的所有“和谐区间”为[]1,0-、0,1、[]1,1-.(2)因为()322f x x =-, 所以()342,23342,23x x f x x x ⎧-≥⎪⎪=⎨⎪-+<⎪⎩,因为[]()0,0m m >为函数()322f x x =-的一个“和谐区间”, 所以可令322x x -=,解得45x =或4, 如图所示,绘出函数图像:结合“和谐区间”的定义易知,当4x =时满足题意,因为()02f =,所以当2m =时,()min max 2,()0f x f x ==,满足题意, 故m 的值为4或2.(3)①当1a b <≤时,()f x 在,a b 上时单调递减函数,由题意有()()f a bf b a=⎧⎨=⎩,2222a a m b b b m a⎧-+=⎨-+=⎩得1a b +=,因为1a b <≤,所以110,122≤<<≤a b , 且221-+=-a a m a ,即210-+-=a a m ,解得154122+-=≥m a 舍去,或12=<a,1=-=b a 由211(0)2=-++≤<m a a a , 得514m ≤<,所以当514m ≤<时,和谐区间为⎣⎦. ②1a b ≤<时,()f x 在,a b 上时单调递增函数, 由题意有()()f a af b b=⎧⎨=⎩,所以,a b 是方程22-+=x x m x 的两个不等实根.因为3a b +=,又1a b ≤<,得2b ≤,因而有3122≤<<≤a b , 故方程2()30=-+=g x x x m 在31,2⎡⎫⎪⎢⎣⎭和3,22⎛⎤⎥⎝⎦内各有一个实根,即33022≤<且33222<≤, 解得924≤<m , 故当924≤<m时,和谐区间为3322⎡+⎢⎣⎦. ③当1a b <<时,min ()(1)11==-=<f x f m a ,得2m < 当12a b+≤时,即2a b +≤,则max ()()==f x f a b ,得22-+=a a m b , 又1a m =-,得2331=-+>b m m ,得 2m >或1m <, 又由2222+=-+≤a b m m 及2m <,解得01m ≤<,此时和谐区间为21,33⎡⎤--+⎣⎦m m m .当12+≥a b时,即2a b +≥,则max ()()==f x f b b ,得22-+=b b m b ,解得=b若=b 则由2m <知3122+=-+<a b m ,舍去;若32+=b,3122+=-+≥a b m ,解得904≤≤m , 又2m <,所以02m ≤<,此时和谐区间为31,2⎡+-⎢⎣⎦m ,综上,所求范围是904≤<m .【点睛】关键点点睛:本题考查函数新定义,能否结合题意明确函数新定义的含义是解决本题的关键,在解决函数类的问题时,合理利用函数图像可以给解题带来很大帮助,考查数形结合思想,是中档题.24.(1)1;(2)82[,]35-. 【分析】(1)()f x 为R 上的奇函数,由()00f =得解;(2)由“任意[]11,2x ∈-,总存在[]20,3x ∈,使得()()12f x g x =成立”得到等价命题是 “()f x 在[]1,2-上的取值集合是()g x 在[]0,3上的取值集合的子集”,分别求出两个函数的值域得解. 【详解】(1)因为()f x 为R 上的奇函数, 所以()00f =,即102a-=,解得1a = (2)因为[]20,3x ∈,且()g x 在[]0,1上是减函数,在[]1,3上为增函数 所以()g x 在[]0,3上的取值集合为[]1,3m m -+.由122()11221x x xf x -==-+++得()f x 是减函数, 所以()f x 在[]1,2-上是减函数所以()f x 在[]1,2-上的取值集合为31[,]53-.由“任意[]11,2x ∈-,总存在[]20,3x ∈,使得()()12f x g x =成立”()f x 在[]1,2-上的取值集合是()g x 在[]0,3上的取值集合的子集,即[]31[,]1,353m m -⊆-+. 则有315m -≤-,且133m +≥,解得:8235m -≤≤. 即实数m 的取值范围是82[,]35-. 【点睛】探讨方程()()0f x g m -=解的存在性,通常可将方程转化为()()f x g m =,通过确认函数()f x 或()g m 的值域,从而确定参数或变量的范围;类似的,对于不等式()()0(0)f x g m -≥≤,也可仿效此法.25.(1)()223f x x x =+-;(2)()21227,4245,4243,2k k h k k k k k k +≤-⎧⎪=----<<-⎨⎪+≥-⎩. 【分析】(1)由①可知函数()f x 的图象关于直线14x =-对称,由②可知()10f =,可得出关于a 、c 的方程组,进而可得出函数()f x 的解析式;(2)求得()()22413g x x k x =++-,求得该函数的对称轴为直线()1x k =-+,对实数k 的取值进行分类讨论,分析函数()g x 在区间[]1,3上的单调性,进而可求得()h k 关于k 的表达式.【详解】(1)由①可得,函数14f x ⎛⎫-⎪⎝⎭是偶函数, 将函数14f x ⎛⎫- ⎪⎝⎭的图象向左平移14个单位长度可得到函数()f x 的图象, 所以,函数()f x 的图象关于直线14x =-对称,则有1124a -=-,可得2a =. 由②可得:1x =是方程20ax x c ++=的一个解,则有10a c ++=,得3c =-. 于是:()223f x x x =+-; (2)依题意有:()()22413g x x k x =++-,对称轴为()1x k =-+. 当()13k -+≥时,即4k ≤-时,()g x 在[]1,3单调递减,于是()()min 31227g x g k ==+;当()113k <-+<时,即4-<<-2k 时,()g x 在()1,1k -+⎡⎤⎣⎦单调递减,在()1,3k -+⎡⎤⎣⎦单调递增,于是()()2min 1245g x g k k k =--=---; 当()11k -+≤时,即2k ≥-时,()g x 在[]1,3单调递增,于是()()min 143g x g k ==+.综上:()21227,4245,4243,2k k h k k k k k k +≤-⎧⎪=----<<-⎨⎪+≥-⎩. 【点睛】方法点睛:“动轴定区间”型二次函数最值的方法:(1)根据对称轴与区间的位置关系进行分类讨论;(2)根据二次函数的单调性,分别讨论参数在不同取值下的最值,必要时需要结合区间端点对应的函数值进行分析;(3)将分类讨论的结果整合得到最终结果.26.(1)定义域为[1,1]-,值域为(2)1m ≤-或1m ≥【分析】(1)由1010x x +≥⎧⎨-≥⎩可得定义域,先求出2()f x 的值域,再开方求出()f x 的值域; (2)换元,令t =∈,根据对勾函数的单调性求出2()()4t h x g t t ==+的最大值,则不等式转化为21310244am m -+-≥对任意[1,1]a ∈-都恒成立,利用一次函数的图象列式可解得结果.【详解】(1)由函数有意义得1010x x +≥⎧⎨-≥⎩,解得11x -≤≤, 所以函数()f x 的定义域为[1,1]-,因为22()2f x ==+[2,4],又()0f x ≥,所以()f x ∈.(2)()h x ==令t =∈,则22t =-, 所以2()()4t h x g t t ==+14t t=+, 因为()g t在上递增,所以当2t =时,()g t 取得最大值221(2)244g ==+,即max 1()4h x =, 所以不等式231()42h x m am ≤-对于任意[1,1]x ∈-恒成立,转化为2311424m am -≥对任意[1,1]a ∈-都恒成立,即21310244am m -+-≥对任意[1,1]a ∈-都恒成立, 所以2213102441310244m m m m ⎧+-≥⎪⎪⎨⎪-+-≥⎪⎩,即2232103210m m m m ⎧+-≥⎨--≥⎩,解得113113m m m m ⎧≤-≥⎪⎪⎨⎪≤-≥⎪⎩或或, 所以1m ≤-或1m ≥.【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:①若()k f x ≥在[,]a b 上恒成立,则max ()k f x ≥; ②若()k f x ≤在[,]a b 上恒成立,则min ()k f x ≤; ③若()k f x ≥在[,]a b 上有解,则min ()k f x ≥; ④若()k f x ≤在[,]a b 上有解,则max ()k f x ≤;。
数学必修一《函数的最值》精选练习(含答案解析)一、选择题1.定义在R上的函数f(x)满足f(x)>4,则f(x)的最小值是( )A.4B.f(4)C.4.001D.不能确定2.函数f(x)=2-在区间[1,3]上的最大值是( )A.2B.3C.-1D.13.函数f(x)=则f(x)的最大值、最小值分别为( )A.10,6B.10,8C.8,6D.以上都不对4.已知函数f(x)=x2-4x+10,x∈[-1,m],并且f(x)的最小值为f(m),则实数m的取值范围是( )A.(-1,2]B.(-1,+∞)C.[2,+∞)D.(-∞,-1)5.已知f(x)=,则y=f(x+2)在区间[2,8]上的最小值与最大值分别为( )A.与B.与1C.与D.与6.若函数y=ax+1在[1,2]上的最大值与最小值的差为2,则实数a的值是( )A.2B.-2C.2或-2D.07.函数f(x)=的最大值是( )A. B. C. D.二、填空题8.函数y=f(x)的定义域为[-4,6],且在区间[-4,-2]上递减,在区间(-2,6]上递增,且f(-4)<f(6),则函数f(x)的最小值是,最大值是.9.函数f()=x-1的最小值是.10.若函数y=(k>0)在[2,4]上的最小值为5,则k的值为.11.函数y=|-x2+2x+3|在区间[0,4]上的最大值是.12.定义在R上的函数f(x)对任意两个不等的实数x1,x2,总有>0成立,且f(-3)=a,f(-1)=b,则f(x)在[-3,-1]上的最大值是.三、解答题(每小题10分,共20分)13.求函数f(x)=+x在[2,+∞)上的最小值.14.已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).(1)求证:f(x)+f(-x)=0.(2)若f(-3)=a,试用a表示f(24).(3)如果x>0时,f(x)<0,且f(1)=-,试求f(x)在区间[-2,6]上的最大值和最小值.15.某公司试销一种成本单价为50元/件的新产品,规定试销时销售单价不低于成本单价,又不高于80元/件.经试销调查,发现销售量y(件)与销售单价x(元/件)可近似看作一次函数y=kx+b的关系(如图所示).(1)根据图象,求一次函数y=kx+b的解析式.(2)设公司获得的利润为S元(利润=销售总价-成本总价;销售总价=销售单价×销售量,成本总价=成本单价×销售量).①试用销售单价x表示利润S;②试问销售单价定为多少时,该公司可获得最大利润?最大利润是多少?此时的销售量是多少?16.已知函数f(x)对任意x,y∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=-.(1)求证:f(x)是R上的单调减函数.(2)求f(x)在[-3,3]上的最小值.参考答案与解析1【解析】选D.根据函数最小值的概念可知,此函数的最小值不能确定.【误区警示】对于最小值概念理解不到位而错选A.2【解析】选D.易判断f(x)在区间[1,3]上是单调递增的,所以在区间[1,3]上的最大值是f(3)=1.【补偿训练】函数f(x)=在区间[2,6]上的最大值和最小值分别是( ) A.,1 B.1, C.,1 D.1,【解析】选B.函数f(x)=在[2,6]上单调递减,当x=2时,f(x)有最大值为1,当x=6时,有最小值为.3【解析】选 A.函数f(x)在区间[-1,2]上是增函数,所以函数f(x)的最大值为f(2)=10,最小值为f(-1)=6.【补偿训练】设定义在R上的函数f(x)=x|x|,则f(x) ( )A.只有最大值B.只有最小值C.既有最大值又有最小值D.既无最大值又无最小值【解析】选D.f(x)=画出图象可知,函数f(x)既无最大值又无最小值.4【解题指南】由条件可知f(x)在区间[-1,m]上单调递减,所在区间[-1,m]是f(x)在R上的减区间的子集,据此可求得m的范围.【解析】选A.函数f(x)=x2-4x+10的对称轴为直线x=2,所以f(x)在(-∞,2]上单调递减,又f(x)在[-1,m]上的最小值是f(m),所以[-1,m]是f(x)的单调减区间,所以-1<m≤2.5【解析】选A.因为f(x+2)=,x∈[2,8],易证f(x+2)=在[2,8]上是减少的,所以x=8时,y min=;x=2时,y max=,故选A.6【解析】选C.当a=0时,不满足题意;当a>0时,y=ax+1在[1,2]上为增函数,所以2a+1-(a+1)=2,解得a=2;当a<0时,y=ax+1在[1,2]上为减函数,所以a+1-(2a+1)=2,解得a=-2,故a=±2.7【解析】选D.分母1-x(1-x)=x2-x+1=+≥,显然0<f(x)≤,故最大值为.8【解析】因为y=f(x)在[-4,-2]上递减,在(-2,6]上递增,故当x=-2时f(x)取最小值f(-2),又因为f(-4)<f(6),所以最大值为f(6).答案:f(-2) f(6)9【解析】设=t,t≥0,所以f(t)=t2-1,t≥0,所以f(x)=x2-1,x≥0,因为f(x)=x2-1在[0,+∞)上为增函数,所以f(x)的最小值为-1.即f()=x-1的最小值是-1.答案:-110【解析】因为k>0,所以函数y=在[2,4]上是减函数,所以当x=4时,y min=,此时=5,所以k=20.答案:2011【解析】由y=知此函数在[0,3]上的最大值为4,在[3,4]上的最大值为5,所以在[0,4]上的最大值为5.答案:512【解析】由>0,得f(x)在R上是增函数,则f(x)在[-3,-1]上的最大值是f(-1)=b.答案:b13【解析】设2≤x1<x2,则f(x1)-f(x2)=+x1--x2=+(x1-x2)=(x1-x2)<0.所以f(x1)-f(x2)<0,f(x1)<f(x2).所以f(x)=+x在[2,+∞)上单调递增.所以f(x)min=f(2)=+2.14【解析】(1)令x=y=0得f(0)=0,再令y=-x得f(-x)=-f(x),所以f(x)+f(-x)=0.(2)因为f(-3)=a则f(3)=-a,所以f(24)=8f(3)=-8a.(3)设x∈(-∞,+∞),且x1<x2,则f(x2)=f[x1+(x2-x1)]=f(x1)+f(x2-x1),又因为x2-x1>0,所以f(x2-x1)<0,f(x1)+f(x2-x1)<f(x1),所以f(x2)<f(x1),所以f(x)在R上是减少的,所以f(x)max=f(-2)=-f(2)=-2f(1)=1,f(x)min=f(6)=6f(1)=6×=-3.15【解析】(1)由图象知,当x=60时,y=40;当x=70时,y=30,代入y=kx+b中,得解得所以y=-x+100(50≤x≤80).(2)①由题意可知:S=xy-50y=x(-x+100)-50(-x+100)=-x2+150x-5000=-(x-75)2+625(50≤x≤80).②由①知S=-(x-75)2+625(50≤x≤80),当x=75时,利润S取得最大值625,所以当销售单价为75元/件时,可获得最大利润625元,此时销售量为25件. 16【解析】(1)设x1和x2是任意的两个实数,且x1<x2,则x2-x1>0,因为x>0时,f(x)<0,所以f(x2-x1)<0,又因为x2=(x2-x1)+x1,所以f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1),所以f(x2)-f(x1)=f(x2-x1)<0,所以f(x2)<f(x1).所以f(x)是R上的单调减函数.(2)由(1)可知f(x)在R上是减函数,所以f(x)在[-3,3]上也是减函数,所以f(x)在[-3,3]上的最小值为f(3).而f(3)=f(1)+f(2)=3f(1)=3×=-2. 所以函数f(x)在[-3,3]上的最小值是-2.。
一、选择题1.若奇函数()f x 在区间[]3,6上是增函数,且在区间[]3,6上的最大值为7,最小值为-1,则()()263f f -+-的值为( ) A .5B .-5C .13D .-132.定义在R 偶函数()f x 满足()()22f x f x -=-+,对[]12,0,4x x ∀∈,12x x ≠,都有()()12120f x f x x x ->-,则有( )A .()()()192120211978f f f =<B .()()()192119782021f f f <<C .()()()192120211978f f f <<D .()()()202119781921f f f <<3.设函数21,2()7,2x x f x x x ⎧-≤⎪=⎨-+>⎪⎩,若互不相等的实数a ,b ,c 满足()()()f a f b f c ==,则222a b c ++的取值范围是( ) A .()8,9B .()65,129C .()64,128D .()66,1304.设函数()f x 是定义R 在上的偶函数,且对任意的x ∈R 恒有(1)(1)f x f x +=-,已知当[0,1]x ∈时,1()2x f x -=,若32a f ⎛=⎫⎪⎝⎭,()30.5b f -=,()60.7c f =,则,,a b c 的大小关系是( ) A .a b c >> B .a c b >> C .b a c >>D .c b a >>5.已知定义在R 上的函数()f x ,满足()()()3f m n f m f n +=+-,且0x >时,()3f x <,则下列说法不正确的是( )A .()()6f x f x +-=B .()y f x =在R 上单调递减C .若()10f =,()()22190f x x f x ++--->的解集()1,0-D .若()69f =-,则123164f ⎛⎫= ⎪⎝⎭6.对于实数a 和b ,定义运算“*”:,,,.b a b a b a a b ≤⎧*=⎨>⎩设()f x x =,()224g x x x =--+,则()()()M x f x g x =*的最小值为( )A .0B .1C .2D .37.函数()21x f x x-=的图象大致为( )A .B .C .D .8.函数()22368f x x x x =---+-的值域是( )A .35,5⎡⎤-⎣⎦B .[]1,5C .2,35⎡⎤+⎣⎦D .35,35⎡⎤-+⎣⎦9.函数f (x )=211x --的值域为( ) A .[-43,43] B .[-43,0] C .[0,1]D .[0,43] 10.给出定义:若1122m x m -<≤+(其中m 为整数),则m 叫做离实数x 最近的整数,记作{}{},x x m =即.在此基础上给出下列关于函数的四个命题:①11()22f -=;②(3.4)0.4f =-;③11()()44f f -<;④()y f x =的定义域是R ,值域是11,22⎡⎤-⎢⎥⎣⎦;则其中真命题的序号是 ( ) A .①②B .①③C .②④D .③④第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案11.已知函数()3()log 91xf x x =++,则使得()2311log 10f x x -+-<成立的x 的取值范围是( )A.0,2⎛⎫ ⎪ ⎪⎝⎭B .(,0)(1,)-∞⋃+∞C .(0,1)D .(,1)-∞12.设函数1,()0,x D x x ⎧=⎨⎩为有理数为无理数,则下列结论正确的是( )A .()D x 的值域为[0,1]B .()D x 是偶函数C .()(3.14)D D π>D .()D x 是单调函数13.函数1()lg f x x=+ ) A .(0,2] B .(0,2) C .(0,1)(1,2]⋃D .(,2]-∞14.下列各组函数表示同一函数的是( ) A.()f x =2()f x =B .,0(),0x x f x x x ≥⎧=⎨-<⎩与()||g t t =C .()f x =()g x =.()1f x x 与2()1x g x x=-15.现有下列四个结论中,其中正确结论的个数是( )①幂函数()k yx k Q =∈的图象与函数1y x =的图象至少有两个交点;②函数()30xy k k =⋅>(k 为常数)的图象可由函数3xy =的图象经过平移得到;③函数11(0)312xy x x ⎛⎫=+≠⎪-⎝⎭是偶函数; ④函数21lg ||x y x +=无最大值,也无最小值;A .1个B .2个C .3个D .4个二、填空题16.已知函数()f x 为定义在R 上的奇函数,且对于12,[0,)x x ∀∈+∞,都有()()()221112210x f x x f x x x x x ->≠-,且(3)2f =,则不等式6()f x x>的解集为___________.17.已知a R ∈,函数229()f x x a a x =++-在区间[3,1]--上的最大值10,则a 的取值范围是__________.18.已知函数()f x 是定义域为R 的奇函数,当0x ≥时,()()1f x x x =-.(1)在坐标系中画出函数()f x 在R 上的完整图象; (2)求函数()f x 在R 上的解析式.19.定义在[0,)+∞上的函数()y f x =满足:(1)(2)0f =;(2)当02x <<时,()0f x ≠;(3)任意的,0x y >总有()(())()f x y f x f y f y +=⋅⋅成立.则1(3)2f f ⎛⎫+= ⎪⎝⎭__________.20.设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是____________.21.高斯,德国著名数学家、物理学家、天文学家,是近代数学奠基者之一,享有“数学王子”之称.函数[]y x =称为高斯函数,其中[]x 表示不超过实数x 的最大整数,当(]1.5,3x ∈-时,函数22x y ⎡-=⎤⎢⎥⎣⎦的值域为________.22.函数()ln f x x x x =+的单调递增区间是_______. 23.已知函数2421()349x x f x +-=-+,则(21)(2)8f x f x -++>的解集为__.24.设函数()f x 在定义域(0,+∞)上是单调函数,()()0,,xx f f x e x e ⎡⎤∀∈+∞-+=⎣⎦,若不等式()()f x f x ax '+≥对()0,x ∈+∞恒成立,则实数a 的取值范围是______. 25.函数()f x 是定义在R 上的偶函数,且()21f =-,对任意的x ∈R 都有()()2f x f x =--,则()2020f =_________.26.已知f (x )是R 上的奇函数,当x ≥0时,f (x )=x 2﹣5x ,则f (x ﹣1)>f (x )的解集为_____.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先利用条件找到()31f =-,(6)7f =,再利用()f x 是奇函数求出(3)f -,(6)f -代入即可. 【详解】由题意()f x 在区间[]3,6上是增函数, 在区间[]3,6上的最大值为7,最小值为1-, 得()31f =-,(6)7f =,()f x 是奇函数,(3)2(6)(3)2(6)12713f f f f ∴-+-=--=-⨯=-.故答案为:13-. 【点睛】本题主要考查利用函数的单调性求最值,关键点是利用函数的奇偶性先求函数值,着重考查了推理与运算能力,属于基础题.2.B解析:B 【分析】首先判断函数的周期,并利用周期和偶函数的性质化简选项中的函数值,再比较大小. 【详解】()()22f x f x -=-+,()()4f x f x ∴+=-,即()()8f x f x +=,()f x ∴的周期8T =,由条件可知函数在区间[]0,4单调递增,()()()1921240811f f f =⨯+=,()()()()()202125285533f f f f f =⨯+==-=, ()()()1978247822f f f =⨯+=,函数在区间[]0,4单调递增,()()()123f f f ∴<<, 即()()()192119782021f f f <<. 故选:B 【点睛】结论点睛:本题的关键是判断函数是周期函数,一般涉及周期的式子包含()()f x a f x +=,则函数的周期是a ,若函数()()f x a f x +=-,或()()1f x a f x +=,则函数的周期是2a ,或是()()f x a f x b -=+,则函数的周期是b a +. 3.D解析:D 【分析】画出函数()f x 的图象,不妨令a b c <<,则222a b +=.结合图象可得67c <<,从而可得结果. 【详解】画出函数()f x 的图象如图所示.不妨令a b c <<,则1221a b -=-,则222a b +=. 结合图象可得67c <<,故67222c <<. ∴66222130a b c <++<. 故选:D . 【点睛】数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有: 确定方程根的个数; 求参数的取值范围; 求不等式的解集; 研究函数性质.4.B解析:B 【分析】由(1)(1)f x f x +=-可得函数的周期为2,再利用周期和偶函数的性质将32a f ⎛=⎫⎪⎝⎭,()30.5b f -=,转化使自变量在区间[0,1]上,然后利用()f x 在[0,1]上单调递增,比较大小 【详解】解:因为(1)(1)f x f x +=-,所以(2)()f x f x +=, 所以函数()f x 的周期为2,因为函数()f x 是定义R 在上的偶函数, 所以331122222a f f f f ⎛⎫⎛⎫⎛⎫⎛⎫==-=-=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, ()30.5(8)(0)b f f f -===,因为62100.70.72<<<,()f x 在[0,1]上单调递增, 所以61(0)(0.7)()2f f f <<, 所以b c a <<, 故选:B 【点睛】关键点点睛:此题考查函数周期性,单调性和奇偶性的应用,解题的关键是利用函数的周期将自变量转化到区间[0,1]上,然后利用()f x 在[0,1]上单调递增,比较大小,属于中档题5.D解析:D 【分析】构造函数()()3g x f x =-,验证函数()g x 的奇偶性可判断A 选项的正误;判断函数()g x 的单调性可判断B 选项的正误;利用函数()g x 的单调性解不等式()()22190f x x f x ++--->,可判断C 选项的正误;计算出()24g =-,求出116g ⎛⎫⎪⎝⎭的值,可求得116f ⎛⎫ ⎪⎝⎭的值,可判断D 选项的正误. 【详解】构造函数()()3g x f x =-,由()()()3f m n f m f n +=+-可得()()()g m n g m g n +=+. 对于A 选项,取0m n ==,可得()()020g g =,()00∴=g ,取n m =-,则()()()00g g m g m =+-=,()()g m g m ∴-=-,则函数()g x 为奇函数,所以,()()()()60g x g x f x f x +-=+--=,可得()()6f x f x +-=,A 选项正确; 对于B 选项,由已知条件可知,当0x >时,()()30g x f x =-<.任取1x 、2x R ∈且12x x >,所以,()()()()()1212120g x x g x g x g x g x -=+-=-<,()()12g x g x ∴<,所以,函数()()3g x f x =-为R 上的减函数,所以,函数()f x 为R 上的减函数,B 选项正确; 对于C 选项,()10f =,可得()()1133g f =-=-,由()()22190f x x f x ++--->,可得()()22130g x x g x ++--->,即()()()21311g xx g g +->=-=-,211x x ∴+-<-,可得20x x +<,解得10x -<<.C 选项正确; 对于D 选项,()()()()()663124232g f g g g =-=-=+=,()24g ∴=-,()()112214324216g g g g ⎛⎫⎛⎫=====- ⎪ ⎪⎝⎭⎝⎭,111316168fg ⎛⎫⎛⎫∴-==- ⎪ ⎪⎝⎭⎝⎭, 因此,123168f ⎛⎫= ⎪⎝⎭,D 选项错误. 故选:D. 【点睛】方法点睛:利用定义证明函数单调性的方法:(1)取值:设1x 、2x 是所给区间上的任意两个值,且12x x <;(2)作差变形:即作差()()12f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形;(3)定号:确定差()()12f x f x -的符号; (4)下结论:判断,根据定义得出结论. 即取值→作差→变形→定号→下结论.6.B解析:B 【分析】由题意可得()()()()()()()()()g x f x g x M x f x g x f x f x g x ⎧≤⎪=*=⎨>⎪⎩,通过解不等式得出()()212421,x x x M x x x ⎧⎡⎤---+∈⎪⎢⎥⎪⎣⎦=⎨⎛⎪∈-∞⋃+∞ ⎪ ⎝⎭⎩,作出函数()M x 的图象,根据函数图象可得答案. 【详解】由条件有()()()()()()()()()g x f x g x M x f x g x f x f x g x ⎧≤⎪=*=⎨>⎪⎩当0x ≥时,()224g x x x x =--+≥,得到01x ≤≤, 即01x ≤<时,()()f x g x <,当1x >时,()()f x g x > 当0x <时,()224g x x x x =--+≤-,得117x --≤即当117x --≤时,()()f x g x >,当1170x --<<时,()()f x g x <所以()()211724,1117,1,x x x M x x x ⎧⎡⎤----+∈⎪⎢⎥⎪⎣⎦=⎨⎛⎫--⎪∈-∞⋃+∞ ⎪⎪ ⎪⎝⎭⎩作出函数()M x 的图象,如图所示,由图可得,当1x =时,()M x 有最小值1 故选:B7.D解析:D 【分析】分析函数()f x 的奇偶性及其在区间()0,∞+上的单调性,由此可得出合适的选项. 【详解】函数()21x f x x -=的定义域为{}0x x ≠,()()()2211x x f x f x x x----===-,函数()f x 为偶函数,其图象关于y 轴对称,排除B 、C 选项;当0x >时,()211x f x x x x-==-,因为y x =,1y x =-在区间()0,∞+上都是增函数,所以函数()f x 在()0,∞+上单调递增,排除A 选项, 故选:D. 【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左、右位置;从函数的值域,判断图象的上、下位置; (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象. 利用上述方法排除、筛选选项.8.A解析:A 【详解】由()()2223682x 31x 3f x x x x =---+-=----,知2680x x -+-≥,解得[]2,4.x ∈令()2t 231x 3x =----,则()21x 323x t --=--.,即为()2y 1x 3=--和y 23x t =--两函数图象有交点,作出函数图象,如图所示:由图可知,当直线和半圆相切时t 最小,当直线过点A(4,0)时,t 最大. 3t 114-=+,解得35t =±35t =-当直线过点A(4,0)时,2430t ⨯--=,解得t 5=.所以t 35,5⎡⎤∈⎣⎦,即() 35,5f x ⎡⎤∈⎣⎦.故选A.9.C解析:C 【解析】令cos ,[0,π]x θθ=∈,则sin 1()()cos 2f xg θθθ-==-的几何意义是单位圆(在x 轴及其上方)上的动点(cos ,sin )M θθ与点(2,1)A 连线的斜率k ,由图象,得01k ≤≤,即函数()f x 的值域为[0,1],故选C.点睛:本题考查利用三角代换、直线的斜率公式求函数的值域,解决本题的关键有两个,21x -sin 1cos 2θθ--的形式联想到过两点的直线的斜率公式,充分体现了代数、三角函数、解析几何间的有机结合. 10.B解析:B【解析】111()(1)222f -=---= ;111()(0)444f -=--=-,111()(0)444f =-=,所以11()()44f f -<; (3.4) 3.430.4f =-=;()y f x = 的定义域是R ,值域是11(,]22- ,所以选B.点睛:解决新定义问题,关键是明确定义含义,正确运用定义进行运算.对于抽象的概念,可先列举一些具体的数值进行理解与归纳.本题易错点在区间端点是否可取上,难点在于整数的确定.11.C解析:C【分析】令21t x x =-+,则3()1log 10f t -<,从而33log (91)1log 10t t ++-<,即可得到133log (91)log (91)1t t ++<++,然后构造函数3()log (91)t g t t =++,利用导数判断其单调性,进而可得23114x x ≤-+<,解不等式可得答案 【详解】令21t x x =-+,则221331()244t x x x =-+=-+≥, 3()1log 10f t -<,所以33log (91)1log 10t t ++-<,所以133log (91)log (91)1t t ++<++,令3()log (91)tg t t =++,则9ln 929'()11(91)ln 391t tt t g t ⨯=+=+++, 所以90t >,所以'()0g t >,所以()g t 在3[,)4+∞单调递增,所以由()(1)g t g <,得314t ≤<, 所以23114x x ≤-+<,解得01x <<, 故选:C【点睛】关键点点睛:此题考查不等式恒成立问题,考查函数单调性的应用,解题的关键是换元后对不等式变形得133log (91)log (91)1t t ++<++,再构造函数3()log (91)t g t t =++,利用函数的单调性解不等式.12.B解析:B【分析】计算函数值域为{}0,1A 错误,根据偶函数定义知B 正确,()0D π=,(3.14)1D =,C 错误,()()011D D ==,故D 错误,得到答案.【详解】根据题意:()D x 的值域为{}0,1,A 错误;当x 为有理数时,x -为有理数,()()D x D x =-,当x 为无理数时,x -为无理数,()()D x D x =-,故函数为偶函数,B 正确;()0D π=,(3.14)1D =,C 错误;()()011D D ==,故D 错误.故选:B.【点睛】本题考查了分段函数的值域,奇偶性和单调性,意在考查学生对于函数性质的综合应用. 13.C解析:C【分析】对数的真数大于零,分母不为零,偶次根式要求被开方式大于等于零,依据以上三点,列不等式求解.【详解】欲使函数有意义,则0lg 020x x x >⎧⎪≠⎨⎪-≥⎩,即012x x x >⎧⎪≠⎨⎪≤⎩解得()(]0,11,2x ∈⋃故选:C .【点睛】方法点睛:该题考查的是有关求函数定义域的问题,在求解的过程中,注意:(1)对数要求真数大于0;(2)分式要求分母不等于0;(3)偶次根式要求被开方式大于等于0.14.B解析:B【分析】根据同一函数的概念及判定方法,分别求得两函数的定义域与对应法则,逐项判定,即可求解.【详解】对于A中,函数()f x =R,函数2()f x =的定义域为[0,)+∞,两函数的定义域不同,所以不是同一函数;对于B 中,函数,0(),0x x f x x x ≥⎧=⎨-<⎩与,0(),0t t g t t t t ≥⎧==⎨-<⎩定义域与对应法则都相同,所以两函数是同一函数;对于C 中,函数()f x =210x -≥,解得1x ≤-或1≥x ,即函数()f x 的定义域为(,1][1,)-∞-+∞,函数()g x =1010x x +≥⎧⎨-≤⎩,解得11x -≤≤,即函数()g x 的定义域为[]1,1-,两函数的定义域不同,所以不是同一函数;对于D 中,函数()1f x x 的定义域为R ,函数2()1x g x x=-的定义域为(,0)(0,)-∞+∞,两函数的定义域不同,所以不是同一函数.故选:B.【点睛】本题主要考查了同一函数的概念及判定,其中解答中熟记两个函数是同一函数的判定方法是解答得关键,着重考查推理与判定能力,属于基础题.15.A解析:A【分析】①举反例说明命题为假;②应该是伸缩变换,可以判断出命题为假;③由奇偶函数的定义判断处函数为偶函数,可得命题为真;④将函数变形,由均值不等式的性质可得最小值,可得命题为假.【详解】解:①取幂函数2y x ,显然与1y x =仅有一个交点,所以①不正确; ②函数()30x y k k =⋅>(k 为常数)的图象可由函数3x y =的图象经过伸缩得到,所以②不正确;③设()y f x =,由()()()3111,0312231x x x x f x x x +⎛⎫=+=≠ ⎪--⎝⎭,定义域关于原点对称, 则()()()()()()3131231231x x x x x x f x f x ---++-===--,()f x ∴是偶函数,故③正确;④函数215lg lg ||||||x y x x x ⎛⎫+==+ ⎪⎝⎭, 而lg y u =在定义域上单调递增,所以函数21lg ||x y x +=有最小值无最大值,所以④不正确.故选:A .【点睛】本题考查指对幂函数的性质,属于基础题.二、填空题16.【分析】令可得是上的增函数根据为奇函数可得为偶函数且在上是减函数分类讨论的符号将变形后利用的单调性可解得结果【详解】令则对于都有所以是上的增函数因为函数为定义在R 上的奇函数所以所以所以是定义在R 上的 解析:(3,0)(3,)-⋃+∞【分析】令()()g x xf x =,可得()g x 是[0,)+∞上的增函数,根据()f x 为奇函数可得()g x 为偶函数,且在(,0)-∞上是减函数,分类讨论x 的符号,将6()f x x>变形后,利用()g x 的单调性可解得结果.令()()g x xf x =,则对于12,[0,)x x ∀∈+∞,都有211221()()0()g x g x x x x x ->≠-, 所以()g x 是[0,)+∞上的增函数,因为函数()f x 为定义在R 上的奇函数,所以()()f x f x -=-,所以()()()()g x xf x xf x g x -=--==,所以()g x 是定义在R 上的偶函数,所以()g x 在(,0)-∞上是减函数,当0x >时,6()f x x>化为()63(3)xf x f >=,即()(3)g x g >,因为()g x 是[0,)+∞上的增函数,所以3x >, 当0x <时,6()f x x>化为()6xf x <,因为()f x 为奇函数,且(3)2f =,所以(3)(3)2f f -=-=-,所以()6xf x <化为()3(3)(3)g x f g <--=-,因为()g x 在(,0)-∞上是减函数,所以30x -<<, 综上所述:6()f x x>的解集为(3,0)(3,)-⋃+∞. 故答案为:(3,0)(3,)-⋃+∞ 【点睛】关键点点睛:构造函数()()g x xf x =,利用()g x 的奇偶性和单调性求解是解题关键. 17.【分析】求出的范围后根据绝对值的性质根据最大值得不等关系可得的范围【详解】时当且仅当时等号成立又或时所以而的最大值为10所以的最大值为所以解得故答案为:【点睛】关键点点睛:本题考查函数的最值掌握绝对 解析:[8,)-+∞【分析】 求出229x x+的范围后根据绝对值的性质根据最大值得不等关系,可得a 的范围. 【详解】 [3,1]x ∈--时,2[1,9]x ∈,2296x x +≥=,当且仅当23x =时等号成立, 又1x =-或3x =-时,22910x x +=,所以229610a x a a x +≤++≤+, 而()f x 的最大值为10,所以229x a x ++的最大值为10a +, 所以100610a a a +≥⎧⎨+≤+⎩,解得8a ≥-. 故答案为:[8,)-+∞.关键点点睛:本题考查函数的最值.掌握绝对值的性质是解题关键.当0a b >≥时,a b >,当0a b 时,a b <,当0a b >>时,0a b +>,则a b >,0a b +<时,a b <.18.(1)图象答案见解析;(2)【分析】(1)利用奇函数图像关于原点对称先作出当时的图像在作出它关于原点的对称图像即可;(2)先用代入法求在的解析式在合并在一起写成分段函数即可【详解】解:(1)图像如图解析:(1)图象答案见解析;(2)(1),0()(1),0x x x f x x x x -≥⎧=⎨+<⎩. 【分析】(1)利用奇函数图像关于原点对称,先作出当0x ≥时,()()1f x x x =-的图像,在作出它关于原点的对称图像即可;(2)先用代入法求()f x 在0x <的解析式,在合并在一起写成分段函数即可.【详解】解:(1) 图像如图示.(2)设0x <,则0x ->,所以()(1())(1)f x x x x x -=---=-+,又因为函数()f x 是定义域为R 的奇函数,所以()()f x f x -=-.所以当0x <,()()1f x x x =+,综上()f x 的解析式为:(1),0()(1),0x x x f x x x x -≥⎧=⎨+<⎩. 【点睛】函数奇偶性的应用:(1) 利用奇偶性求函数值;(2) 利用奇偶性画图像;(3) 利用奇偶性求函数的解析式.19.【分析】先令求得再令可得结合已知条件可得从而可得答案【详解】解:令则由得因为所以令则因为当时;所以所以所以所以故答案为:【点睛】关键点点睛:此题考查抽象函数求值问题解题的关键是结合已知条件正确赋值令 解析:43【分析】先令1,2x y ==,求得(3)0f =,再令31,22x y ==,可得311(())()(2)222f f f f ⋅=,结合已知条件可得1()2f ,从而可得答案【详解】解:令1,2x y ==,则由()(())()f x y f x f y f y +=⋅⋅得((2))(2)(12)f f f f ⋅=+, 因为(2)0f =,所以(3)0f =, 令31,22x y ==,则311(())()(2)222f f f f ⋅=, 因为(2)0f =,当02x <<时,()0f x ≠; 所以31(())0(2)22f f f ==, 所以31()222f =,所以14()23f =, 所以14(3)23f f ⎛⎫+= ⎪⎝⎭ 故答案为:43【点睛】 关键点点睛:此题考查抽象函数求值问题,解题的关键是结合已知条件正确赋值,令31,22x y ==,则311(())()(2)222f f f f ⋅=,由(2)0f =,当02x <<时,()0f x ≠,可得31()222f =,从而得14()23f = 20.【解析】由题意得:当时恒成立即;当时恒成立即;当时即综上x 的取值范围是【名师点睛】分段函数的考查方向注重对应性即必须明确不同的自变量所对应的函数解析式是什么然后代入该段的解析式求值解决此类问题时要注 解析:1(,)4-+∞ 【解析】由题意得: 当12x >时,12221x x -+>恒成立,即12x >;当102x <≤时,12112x x +-+> 恒成立,即102x <≤;当0x ≤时,1111124x x x ++-+>⇒>-,即014x -<≤.综上,x 的取值范围是1(,)4-+∞. 【名师点睛】分段函数的考查方向注重对应性,即必须明确不同的自变量所对应的函数解析式是什么,然后代入该段的解析式求值.解决此类问题时,要注意区间端点是否取到及其所对应的函数值,尤其是分段函数结合点处的函数值.21.【分析】根据高斯函数定义分类讨论求函数值【详解】则当时当时当时∴值域为故答案为:【点睛】本题考查新定义函数解题关键是理解新函数利用新函数定义分类讨论求解解析:{}2,1,0--【分析】根据高斯函数定义分类讨论求函数值.【详解】( 1.5,3]x ∈-,则21.750.52x --<≤, 当21.7512x --<<-时,222x y ⎡⎤=-⎢⎥⎣⎦-=, 当2102x --≤<时,122x y ⎡⎤=-⎢⎥⎣⎦-=, 当200.52x -≤≤时,022x y ⎡⎤=⎢⎥⎣⎦-=, ∴值域为{2,1,0}--.故答案为:{2,1,0}--.【点睛】本题考查新定义函数,解题关键是理解新函数,利用新函数定义分类讨论求解. 22.【分析】求出函数的定义域并求出该函数的导数并在定义域内解不等式可得出函数的单调递增区间【详解】函数的定义域为且令得因此函数的单调递增区间为故答案为【点睛】本题考查利用导数求函数的单调区间在求出导数不解析:()2,e -+∞【分析】求出函数()y f x =的定义域,并求出该函数的导数,并在定义域内解不等式()0f x '>,可得出函数()y f x =的单调递增区间.【详解】函数()ln f x x x x =+的定义域为()0,∞+,且()ln 2f x x '=+,令()0f x '>,得2x e ->.因此,函数()ln f x x x x =+的单调递增区间为()2,e -+∞,故答案为()2,e -+∞. 【点睛】本题考查利用导数求函数的单调区间,在求出导数不等式后,得出的解集应与定义域取交集可得出函数相应的单调区间,考查计算能力,属于中等题.23.【分析】根据题意设则原不等式变形为分析函数的奇偶性以及单调性可得原不等式等价于解可得的取值范围即可得答案【详解】根据题意函数设则变形可得即;对于其定义域为则有即函数为奇函数;函数在上为增函数在上为减 解析:1(,)3-+∞ 【分析】根据题意,设2442()()433x x g x f x +-=-=-,则原不等式变形为(21)(2)0g x g x -++>,分析函数()g x 的奇偶性以及单调性可得原不等式等价于212x x ->--,解可得x 的取值范围,即可得答案.【详解】根据题意,函数 24244221()343349x x x x f x ++--=-+=-+,设2442()()433x x g x f x +-=-=-,则(21)(2)8f x f x -++>,变形可得(21)4(2)40f x f x --++->,即(21)(2)0g x g x -++>;对于2442()()433x x g x f x +-=-=-,其定义域为R , 则有24422442()33(33)()x x x x g x g x -+++--=-=--=-,即函数()g x 为奇函数; 函数243x y +=在R 上为增函数,423x y -=在R 上为减函数, 故函数2442()33x x g x +-=-在R 上为增函数,故(21)(2)0(21)(2)(21)(2)212g x g x g x g x g x g x x x -++>⇒->-+⇒->--⇒->--, 解可得13x >-, 即不等式的解集为1(3-,)+∞. 故答案为:1(3-,)+∞. 【点睛】本题考查函数的奇偶性与单调性的综合应用,注意分析函数()g x 的奇偶性与单调性,属于中档题.24.【分析】先利用换元法求出然后再用分离变量法借助函数的单调性解决问题【详解】解:由题意可设则∵∴∴∴∴由得∴对恒成立令则由得∴在上单调递减在单调递增∴∴故答案为:【点睛】本题主要考查利用导数研究函数的 解析:(],21e -∞-【分析】先利用换元法求出()f x ,然后再用分离变量法,借助函数的单调性解决问题.【详解】解:由题意可设()x f x e x t -+=,则()xf x e x t =-+, ∵()xf f x e x e ⎡⎤-+=⎣⎦, ∴()t tf t e t t e e =-+==, ∴1t =,∴()1xf x e x =-+, ∴()1xf x e '=-, 由()()f x f x ax '+≥得11x x e x e ax -++-≥, ∴21x e a x≤-对()0,x ∈+∞恒成立, 令()21xe g x x =-,()0,x ∈+∞,则()()221'x e x g x x-=, 由()'0g x =得1x =,∴()g x 在()0,1上单调递减,在()1,+∞单调递增,∴()()121g x g e ≥=-,∴21a e ≤-,故答案为:(],21e -∞-.【点睛】本题主要考查利用导数研究函数的最值,考查利用函数的单调性解决恒成立问题,属于中档题.25.1【分析】根据题意由函数的奇偶性分析可得进而可得即函数是周期为4的周期函数据此可得(4)(2)即可得答案【详解】根据题意函数是定义在上的偶函数对任意的都有则即函数是周期为4的周期函数故答案为:1【点 解析:1【分析】根据题意,由函数的奇偶性分析可得()(2)f x f x =--,进而可得()(2)(4)f x f x f x =--=-,即函数()f x 是周期为4的周期函数,据此可得(2020)(44504)f f f =+⨯=(4)f =-(2),即可得答案.【详解】根据题意,函数()f x 是定义在R 上的偶函数,对任意的x ∈R ,都有()(2)f x f x =--,则()(2)f x f x =--,∴()(2)(4)f x f x f x =--=-,即函数()f x 是周期为4的周期函数,(2020)(44504)(4)(2)1f f f f =+⨯==-=,故答案为:1【点睛】本题考查抽象函数的求值,涉及函数的奇偶性、周期性的性质以及应用,注意分析函数的周期.26.【分析】根据函数f (x )是R 上的奇函数和已知条件得出函数和的解析式在同一坐标系中做出和的图像求出交点的坐标根据不等式的解集可以理解为将的图象向右平移一个单位长度后所得函数的图象在函数的图象上方部分的 解析:{23}x x -<<【分析】根据函数f (x )是R 上的奇函数和已知条件得出函数()f x 和()1f x -的解析式,在同一坐标系中做出()f x 和()1f x -的图像,求出交点的坐标,根据不等式(1)()f x f x ->的解集可以理解为将()f x 的图象向右平移一个单位长度后所得函数()1f x -的图象在函数()f x 的图象上方部分的点对应的横坐标取值的集合,由图示可得出解集.【详解】当0x <时, 0x ->,所以 ()()22()55f x x x x x -=--⨯-=+,又f (x )是R 上的奇函数,所以 2()()5f x f x x x =--=--,所以225,0()5,0x x x f x x x x ⎧-≥=⎨--<⎩, 所以()()()()22151,1(1)151,1x x x f x x x x ⎧---≥⎪-=⎨----<⎪⎩,即2276,1(1)34,1x x x f x x x x ⎧-+≥-=⎨--+<⎩, 做出()f x 和()1f x -的图像如下图所示,不等式(1)()f x f x ->的解集可以理解为将()f x 的图象向右平移一个单位长度后所得函数()1f x -的图象在函数()f x 的图象上方部分的点对应的横坐标取值的集合, 由22576,x x x x -=-+得3,x =所以()3,6A -, 由22534x x x x --=--+得2x =-,所以()2,6B -,所以不等式(1)()f x f x ->的解集为{23}x x -<<. 故答案为:{23}x x -<<.【点睛】本题考查根据函数的奇偶性求得对称区间上的解析式,图像的平移,以及运用数形结合的思想求解不等式,关键在于综合熟练地运用函数的奇偶性,解析式的求法,图像的平移,以及如何在图像上求出不等式的解集等一些基本能力,属于中档题.。
(数学1必修)函数及其表示一、选择题1.判断下列各组中的两个函数是同一函数的为( )⑴3)5)(3(1+-+=x x x y ,52-=x y ;⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷()f x =()F x = ⑸21)52()(-=x x f ,52)(2-=x x f 。
A .⑴、⑵ B .⑵、⑶ C .⑷ D .⑶、⑸2.函数()y f x =的图象与直线1x =的公共点数目是( ) A .1 B .0 C .0或1 D .1或23.已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( ) A .2,3 B .3,4 C .3,5 D .2,54.已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A .1B .1或32C .1,32或 D5.为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移,这个平移是( )A .沿x 轴向右平移1个单位B .沿x 轴向右平移12个单位 C .沿x 轴向左平移1个单位 D .沿x 轴向左平移12个单位6.设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( )A .10B .11C .12D .13二、填空题1.设函数.)().0(1),0(121)(a a f x xx x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是 。
2.函数422--=x x y 的定义域 。
3.若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,则这个二次函数的表达式是 。
高一数学必修一函数的基本性练习题函数的基本性质综合练一.选择题:(本大题共10题,每小题5分,共50分)1.若函数 y = ax 与 y = -bx 在(0.+∞) 上都是减函数,则 y = ax + bx 在(0.+∞) 上是()A。
增函数 B。
减函数 C。
先增后减 D。
先减后增2.已知函数 f(x) = (m-1)x² + (m-2)x + (m-7m+12) 为偶函数,则 m 的值是()A。
1 B。
2 C。
3 D。
43.设 f(x) 是 (-∞。
+∞) 上的增函数,a 为实数,则有()A。
f(a)。
f(a)4.如果奇函数 f(x) 在区间 [3,7] 上是增函数且最大值为 5,那么 f(x) 在区间 [-7,-3] 上是()A。
增函数且最小值是 -5 B。
增函数且最大值是 -5 C。
减函数且最大值是 -5 D。
减函数且最小值是 -55.已知定义域为{x|x ≠ 0} 的函数 f(x) 为偶函数,且 f(x) 在区间 (-∞,0) 上是增函数,若 f(-3) = 2,则 f(x)/x < 0 的解集为()A。
(-3,0)∪(0,3) B。
(-∞,-3)∪(0,3) C。
(-∞,-3)∪(3.+∞) D。
(-3,0)∪(3.+∞)6.当 x ∈ [0,5] 时,函数 f(x) = 3x² - 4x + c 的值域为()A。
[c,5+5c] B。
[-c,c] C。
[-5+c,5+c] D。
[c,20+c]7.设 f(x) 为定义在 R 上的奇函数。
当x ≥ 1 时,f(x) = 2x +b (b 为常数),则 f(-1) 等于()A。
3 B。
1 C。
-1 D。
-38.下列函数在 (0,1) 上是增函数的是()A。
y = 1-2x B。
y = x-1 C。
y = -x²+2x D。
y = 59.下列四个集合:① A = {x ∈ R | y = x+1} ② B = {y | y =x+1.x ∈ R} ③ C = {(x,y) | y = x²+1.x ∈ R} ④ D = {不小于 1 的实数}。
函数的基本性质综合练习一.选择题:(本大题共10题,每小题5分,共50分)1.若函数ax y =与x b y -=在(0,+∞)上都是减函数,则bx ax y +=2在),0(∞上是( ) A .增函数 B .减函数 C .先增后减 D .先减后增2.已知函数)127()2()1()(22+-+-+-=m m x m x m x f 为偶函数,则m 的值是 ( )A .1B .2C .3D .43.设)(x f 是(-∞,+∞)上的增函数a 为实数,则有 ( )A .)2()(a f a f <B .)()(2a f a f <C .)()(2a f a a f <+D .)()1(2a f a f >+ 4.如果奇函数)(x f 在区间[3,7]上是增函数且最大值为5,那么)(x f 在区间[-7,-3]上是( )A .增函数且最小值是-5B .增函数且最大值是-5C .减函数且最大值是-5D .减函数且最小值是-55.已知定义域为}0|{≠x x 的函数)(x f 为偶函数,且)(x f 在区间(-∞,0)上是增函数,若0)3(=-f ,则0)(<xx f 的解集为( ) A .(-3,0)∪(0,3) B .(-∞,-3)∪(0,3) C .(-∞,-3)∪(3,+∞) D .(-3,0)∪(3,+∞) 6.当]5,0[∈x 时,函数c x x x f +-=43)(2的值域为( )A .[c,55+c ]B .[-43+c ,c ]C .[-43+c,55+c ] D .[c,20+c ] 7.设)(x f 为定义在R 上的奇函数.当0≥x 时,b x x f x ++=22)((b 为常数),则)1(-f 等于( )A .3B .1C .-1D .-38.下列函数在(0,1)上是增函数的是( )A .x y 21-=B .1-=x yC .x x y 22+-=D .5=y9.下列四个集合:①}1|{2+=∈=x y R x A ;②},1|{2R x x y y B ∈+==;③},1|),{(2R x x y y x C ∈+==;④}1{的实数不小于=D .其中相同的集合是( )A .①与②B .①与④C .②与③D .②与④ 10.给出下列命题:①xy 1=在定义域内为减函数;②2)1(-=x y 在),0(∞ 上是增函数;③x y 1-=在)0,(-∞上为增函数;④kx y =不是增函数就是减函数。
高一数学(必修1)第一章(中)函数及其表示[基础训练]一、选择题1.判断下列各组中的两个函数是同一函数的为( )⑴3)5)(3(1+-+=x x x y ,52-=x y ;⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷()f x()F x =⑸21)52()(-=x x f ,52)(2-=x x f 。
A .⑴、⑵B .⑵、⑶C .⑷D .⑶、⑸2.函数()y f x =的图象与直线1x =的公共点数目是( ) A .1 B .0 C .0或1 D .1或23.已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( ) A .2,3 B .3,4 C .3,5 D .2,54.已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A .1B .1或32 C .1,32或 D5.为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移,这个平移是( )A .沿x 轴向右平移1个单位B .沿x 轴向右平移12个单位 C .沿x 轴向左平移1个单位 D .沿x 轴向左平移12个单位6.设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( )A .10B .11C .12D .13二、填空题1.设函数.)().0(1),0(121)(a a f x xx x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是 。
2.函数422--=x x y 的定义域 。
3.若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,则这个二次函数的表达式是 。
高一数学(必修一)《第五章 正切函数的性质与图象》练习题含答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.下列说法中错误的是( ) A .奇函数的图像关于坐标原点对称 B .图像关于y 轴对称的函数是偶函数 C .奇函数一定满足()00f =D .偶函数的图像不一定与y 轴相交2.直线y a =与函数()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭的图象的相邻两个交点的距离为2π,若()f x 在()(),0m m m ->上是增函数,则m 的取值范围是( )A .(0,]4πB .(0,]2πC .3(0,]4π D .3(0,]2π3.函数yA .(,],4k k k Z πππ+∈B .(,],2k k k Z πππ+∈C .(-,],42k k k Z ππππ+∈ D .(-,],4k k k Z πππ∈4.已知,R a b ∈,则“ln ln a b >”是“sin sin a b b a +>+”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.已知函数()tan f x x x =+,若对任意,66x ππ⎛⎫∈- ⎪⎝⎭,()f x a >恒成立,则a 的取值范围是( )A .,⎛-∞ ⎝⎦B .,⎛-∞ ⎝⎭C .,⎛-∞ ⎝⎦D .,⎛-∞ ⎝⎭6.设0,2πα⎛⎫∈ ⎪⎝⎭,(0,)βπ∈若1sin 1cos 1sin 1cos αβαβ+-=-+,则( ) A .2παβ+=B .αβπ+=C .2παβ-=D .2πβα-=7.函数()tan 24f x x ππ⎛⎫=+ ⎪⎝⎭的单调递增区间为( )A .114,422k k ⎛⎫-+ ⎪⎝⎭ k Z ∈B .314,422k k ⎛⎫-+ ⎪⎝⎭ k Z ∈C .312,222k k ⎛⎫-+ ⎪⎝⎭ k Z ∈D .112,222k k ⎛⎫-+ ⎪⎝⎭ k Z ∈8.已知函数202()282x x x f x x x ⎧+<<=⎨-+≥⎩,,,若()(2)(0,)f a f a a ∞=+∈+,,则1f a ⎛⎫= ⎪⎝⎭( ) A .2B .516C .6D .1729.直线y a =与函数()()tan 04f x x πωω⎛⎫ ⎪⎝⎭=+>的图象的相邻两个交点的距离为2π,若函数()f x 在区间()(),0m m m ->上是增函数,则实数m 的取值范围是( )A .0,4π⎛⎫ ⎪⎝⎭B .0,2π⎛⎤ ⎥⎝⎦C .0,2π⎛⎫ ⎪⎝⎭D .0,4π⎛⎤ ⎥⎝⎦二、填空题10.函数y =4tan 36x π⎛⎫+ ⎪⎝⎭的最小正周期为________.11.已知函数1()tan tan f x x x=+,若()5f α=,则()f α-=__________. 12.若函数()tan f x x =在区间ππ,32a a ⎛⎫- ⎪⎝⎭上是增函数,则实数a 的取值范围是______.13.-65tan π与13tan 5π⎛⎫- ⎪⎝⎭的大小关系是______________.14.已知函数()[]()()sin ,0,212,2,2x x f x f x x π∞⎧∈⎪=⎨-∈+⎪⎩,则函数()ln(1)y f x x =--的零点个数是______个.三、解答题 15.已知()2(R)31x f x a a =-∈+ (1)证明()f x 是R 上的增函数;(2)是否存在实数a 使函数()f x 为奇函数?若存在,请求出a 的值,若不存在,说明理由. 16.分别写出满足下列条件的x 值的范围. (1)1tan 0x +≥;(2)cos 0x <. 17.已知,34x ππ⎡⎤∈-⎢⎥⎣⎦,()2tan 2tan 2f x x x =++求()f x 的最大值和最小值,并求出相应的x 值.18.定义函数()()cos sin f x x =为“正余弦”函数.结合学过的知识,可以得到该函数的一些性质:容易证明2π为该函数的周期,但是否是最小正周期呢?我们继续探究:()()()cos sin cos sin f x πx πx +=+=-=⎡⎤⎣⎦()cos sin x ()f x =.可得:π也为函数()()cos sin f x x =的周期.但是否为该函数的最小正周期呢?我们可以分区间研究()()cos sin f x x =的单调性:函数()()cos sin f x x =在π0,2⎡⎤⎢⎥⎣⎦是严格减函数,在π,π2⎛⎤ ⎥⎝⎦上严格增函数,再结合()()πf x f x +=,可以确定:()()cos sin f x x =的最小正周期为π.进一步我们可以求出该函数的值域了.定义函数()()sin cos f x x =为“余正弦”函数,根据阅读材料的内容,解决下列问题: (1)求“余正弦”函数的定义域;(2)判断“余正弦”函数的奇偶性,并说明理由;(3)探究“余正弦”函数的单调性及最小正周期,说明理由,并求其值域. 19.求下列函数的值域: (1)1tan ,,01tan 2+⎛⎫=∈- ⎪-⎝⎭x y x x π;(2)2tan 3tan 1,,34⎡⎤=+-∈-⎢⎥⎣⎦y x x x ππ.参考答案与解析1.C【分析】由奇偶函数的性质知A ,B 正确;对于C 可举反例说明C 错误;对于D ,亦可举例说明偶函数的图像不一定与y 轴相交,得到D 正确. 【详解】根据奇偶函数的性质知A ,B 正确; 对于C ,如()1f x x=,()(),00,x ∈-∞⋃+∞易得函数()f x 是奇函数,但它的图像不过原点,故C 错误; 对于D ,如()21g x x =,()(),00,x ∈-∞⋃+∞易得函数()g x 是偶函数,但它的图像不与y 轴相交,故D 正确. 故选:C . 2.B【解析】先由已知求得函数的周期,得到ω,再整体代入正切函数的单调区间,求得函数()f x 的单调区间,可得选项.【详解】因为直线y a =与函数()f x 的图象的相邻两个交点的距离为一个周期,所以12Tπω==,()1tan 24f x x π⎛⎫=+ ⎪⎝⎭由12242k x k πππππ-<+<+,得322()22k x k k ππππ-<<+∈Z ,所以()f x 在3,22ππ⎛⎫- ⎪⎝⎭上是增函数由3(,),22m m ππ⎛⎫-⊆-⎪⎝⎭,得02m π<≤. 故选:B.【点睛】本题考查正切函数的周期性,单调性,属于基础题. 3.C【分析】本题是考察复合函数定义域,既要考虑到三角函数的取值范围,也要考虑到带根号的式子的取值范围.【详解】由题可知,104 42tan x x k k Z ππππ⎧⎛⎫--≥ ⎪⎪⎪⎝⎭⎨⎪-≠+∈⎪⎩1tan 04x π⎛⎫--≥ ⎪⎝⎭ tan 14x π⎛⎫-≤ ⎪⎝⎭244k x k πππππ-+<-≤+ k Z ∈ x ,42k k ππππ⎛⎤-+ ⎥⎝⎦.【点睛】在解决求复合函数定义域问题的时候,要考虑到所有组合而成的基本函数的定义域以及相关的性质问题. 4.A【分析】由ln ln a b >及对数函数的单调性可得0a b >>;将sin sin a b b a +>+变形化同构,进而构造函数,利用导数讨论函数的单调性可得a b >,即可得解. 【详解】由ln ln a b >,得0a b >>. 由sin sin a b b a +>+,得sin sin a a b b ->-. 记函数()sin ()x x f x x R =-∈,则()1cos 0f x x '=-≥ 所以函数()f x 在R 上单调递增,又sin sin a a b b ->- 则()()f a f b >,所以a b >.因此“ln ln a b >”是“sin sin a b b a +>+”的充分不必要条件. 故选:A . 5.A【分析】由对任意,66x ππ⎛⎫∈- ⎪⎝⎭,()f x a >恒成立,则只要min ()f x a >即可,根据函数的单调性求出函数()tan f x x x =的最小值即可得出答案.【详解】解:由对任意,66x ππ⎛⎫∈- ⎪⎝⎭,()f x a >恒成立,则只要min ()f x a >即可因为函数tan y x =和y x =在,66ππ⎛⎫- ⎪⎝⎭上都是增函数所以函数()tan f x x x =,在,66x ππ⎛⎫∈- ⎪⎝⎭上是增函数所以()tan 666f x f πππ⎛⎫⎛⎫⎛⎫>-=--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以a ≤故选:A. 6.D【解析】根据诱导公式以及二倍角余弦公式化简,再根据正切函数单调性确定结果.【详解】2222sin 1cos 2tan 1cos 22cos 2βββββ-==+ 2221cos()2cos ()1sin 12421sin 1cos()2sin ()tan ()24242ππαααππαπααα+--+===----- 22tan [()]tan ()24242ππαπα=--=+因为0,2πα⎛⎫∈ ⎪⎝⎭,(0,)βπ∈所以0,0,24424αππαπ⎛⎫⎛⎫∈-∈ ⎪ ⎪⎝⎭⎝⎭,,(0,)22βπ∈ 因此由1sin 1cos 1sin 1cos αβαβ+-=-+得22tan tan ()tan tan()242242βπαβπα=+∴=+ 2422βπαπβα∴=+∴-=故选:D【点睛】本题考查诱导公式、二倍角余弦公式、正切函数性质,考查综合分析化简能力,属中档题. 7.C【分析】利用正切函数的性质求解. 【详解】解:令,2242k x k k Zππππππ-+<+<+∈解得3122,22k x k k Z-+<<+∈所以函数()f x 的单调递增区间为312,222k k ⎛⎫-+ ⎪⎝⎭ k Z ∈8.A【分析】根据分段函数,分02a <<,2a ≥ 由()(2)f a f a =+求解.【详解】因为函数202()282x x x f x x x ⎧+<<=⎨-+≥⎩,,,且()(2)(0,)f a f a a ∞=+∈+, 当02a <<时,则()2228a a a +=-++,即2340a a +-=解得4a =-或1a = 当2a ≥时,则()28228a a -+=-++,无解综上:1a =所以()112f f a ⎛⎫== ⎪⎝⎭故选:A 9.B【分析】由条件可得2T ππω==,即12ω=,然后求出()f x 的单调递增区间可得答案.【详解】因为直线y a =与函数()()tan 04f x x πωω⎛⎫ ⎪⎝⎭=+>的图象的相邻两个交点的距离为2π所以2T ππω==,所以12ω=,即()1tan 24f x x π⎛⎫=+ ⎪⎝⎭由12242k x k πππππ-<+<+可得322,22k x k k Z ππππ-<<+∈当0k =时可得()f x 在3,22ππ⎛⎫- ⎪⎝⎭上单调递增因为函数()f x 在区间()(),0m m m ->上是增函数,所以实数m 的取值范围是0,2π⎛⎤⎥⎝⎦故选:B 10.3π 【分析】根据T πω=,直接计算可得结果.【详解】由题可知:T =3π. 故答案为:3π 【点睛】本题考查正切型函数的最小正周期,识记公式,属基础题.【详解】因为1()tan tan f x x x=+()()0()() 5.f f f f αααα∴+-=⇒-=-=-故答案为-5. 12.(]0,1【分析】根据正切函数的性质得到不等式组,解不等式组即可. 【详解】解:因为ππ23a a >-,所以0a > 所以0ππ32ππ22a a a ⎧⎪>⎪⎪-≥-⎨⎪⎪≤⎪⎩,解得01a <≤,即(]0,1a ∈. 故答案为:(]0,1 13.-613tan 55tanππ⎛⎫<- ⎪⎝⎭【详解】613133tan tan ,tan()tan tan 55555πππππ-=--=-=-. ∵30525ππππ<<<< ∴3tan0,tan055ππ>< ∴3tantan55ππ-<-,即613tantan()55ππ-<-. 答案:613tan tan()55ππ-<- 点睛:比较三角函数值大小的方法(1)如果函数值的大小能够求出,则可根据函数值的大小进行判断;(2)如函数值无法求出,则可通过诱导公式等把角转化到同一单调区间内,根据函数的单调性比较大小. (3)若以上方法无法使用,则可选择中间量进行比较. 14.3【分析】函数()ln(1)y f x x =--的零点个数等价于函数函数()f x 与()ln 1y x =-的交点个数 作出函数()f x 与()ln 1y x =-的图象,结合图象即可求出结果.【详解】函数()ln(1)y f x x =--有的零点个数等价于函数函数()f x 与()ln 1y x =-的交点个数 作出函数()f x 与()ln 1y x =-的图象,如图:由图可知,函数()f x 与()ln 1y x =-有3个交点,故函数()ln(1)y f x x =--有的零点个数为3故答案为:3.【点睛】函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点. 15.(1)证明见解析(2)存在实数1a =,理由见解析【分析】(1)根据单调性的定义即可作差比较函数值的大小即可证明;(2)根据()00=f 可求得a 的值,进而根据奇函数的定义证明即可. (1)对任意R x ∈都有()310,xf x +≠∴的定义域是R设1x ,2R x ∈且12x x <,则()()()()()122112122332231313131x x x x x x f x f x --=-=++++ 3x y =在R 上是增函数,且12x x <1233x x ∴<且()()()()()()211212313100xx f x f x f x f x ++>⇒<⇒<-f x 是R 上的增函数. (2)若存在实数a 使函数()f x 为R 上的奇函数,则()001f a =⇒= 下面证明1a =时()2131x f x =-+是奇函数 ()()()23122232111131131313x x x x x xf x f x -+-⋅-=-=-=-=-+=-++++ f x 为R 上的奇函数∴存在实数1a =,使函数()f x 为R 上的奇函数.16.(1)(),42k k k ππππ⎡⎫-++∈⎪⎢⎣⎭Z ;(2)()112,266k k k ππππ⎛⎫++∈ ⎪⎝⎭Z 【解析】(1)先求出当,22x ππ⎛⎫∈- ⎪⎝⎭时,则满足1tan 0x +≥的解集,再根据正切函数的周期性,得到答案;(2)先求出当(),x ππ∈-时,则满足cos 0x <的解集,再根据余弦函数的周期性,得到答案 【详解】解:(1)由1tan 0x +≥,得tan 1x ≥-. 当,22x ππ⎛⎫∈- ⎪⎝⎭,由tan 1x ≥-,解得解集为,42ππ⎡⎫-⎪⎢⎣⎭又因tan y x =的最小正周期为π所以x 的取值范围是(),42k k k ππππ⎡⎫-++∈⎪⎢⎣⎭Z .(2)由cos 0x ,得cos x <当(),x ππ∈-时,则由cos x <11,66ππ⎛⎫⎪⎝⎭又因cos y x =的最小正周期为2π所以x 的取值范围是()112,266k k k ππππ⎛⎫++∈ ⎪⎝⎭Z . 【点睛】本题考查解三角函数不等式,属于简单题. 17.当4x π=-时,则()f x 有最小值1;当4x π=时,则()f x 有最大值5.【分析】将函数()y f x =的解析式变形为()()2tan 11f x x =++,由,34x ππ⎡⎤∈-⎢⎥⎣⎦计算得出tan 1x ≤≤,利用二次函数的基本性质可求得函数()y f x =的最大值和最小值及其对应的x 的值.【详解】()()22tan 2tan 2tan 11f x x x x =++=++,且,34x ππ⎡⎤∈-⎢⎥⎣⎦tan 1x ≤.当tan 1x =-时,则即当4x π=-时,则函数()y f x =取最小值1;当tan 1x =时,则即当4x π=时,则函数()y f x =取最大值5.【点睛】本题考查正切型二次函数最值的求解,考查二次函数基本性质的应用,考查计算能力,属于基础题. 18.(1)R(2)偶函数,理由见解析(3)()()sin cos f x x =在[]()2π,2ππZ k k k +∈是严格减函数,在[]()2ππ,2π2πZ k k k ++∈上严格增函数;最小正周期为2π;理由见解析.值域为[]sin1,sin1-.【分析】(1)根据函数定义域的求法,求得()()sin cos f x x =的定义域. (2)根据函数奇偶性的定义,求得()()sin cos f x x =的奇偶性.(3)结合题目所给的解题思路,求得()()sin cos f x x =的单调区间、最小正周期、值域. (1)()()sin cos f x x =的定义域为R .(2)对于函数()()sin cos f x x =()()()()sin cos sin cos f x x x f x -=-==⎡⎤⎣⎦,所以()f x 是偶函数.(3)()()()()2πsin cos 2πsin cos f x x x f x +=+==⎡⎤⎣⎦cos y x =在区间[]0,π上递减,sin y x =在区间[]1,1-上递增,所以()()sin cos f x x =在[]0,π上递减. cos y x =在区间[]π,2π上递增,sin y x =在区间[]1,1-上递增,所以()()sin cos f x x =在[]0,π上递增.所以()f x 的最小正周期为2π()f x 在[]()2π,2ππZ k k k +∈上是严格减函数,在[]()2ππ,2π2πZ k k k ++∈上是严格增函数.结合()()sin cos f x x =的单调性可知,()f x 的值域为[]sin1,sin1-.第 11 页 共 11 页 19.(1)(1,1)-;(2)13,34⎡⎤-⎢⎥⎣⎦【分析】(1)由定义域可得()tan ,0x ∈-∞,令tan t x =则(),0t ∈-∞,所以1211t 1t y t +-==-+--,再根据幂函数的性质计算可得;(2)利用换元法将函数转化为二次函数,根据二次函数的性质计算可得;【详解】解:(1)因为1tan ,,01tan 2+⎛⎫=∈- ⎪-⎝⎭x y x x π,所以()tan ,0x ∈-∞ 令tan t x =则(),0t ∈-∞ 所以1211t 1t y t +-==-+-- 因为(),0t ∈-∞,所以()1,1t -∈-∞-,()11,01t ∈--和()2210,t -∈- ()211,11t --+∈--,即()1,1y ∈- (2)因为2tan 3tan 1,,34⎡⎤=+-∈-⎢⎥⎣⎦y x x x ππ所以tan x ⎡⎤∈⎣⎦令tan m x =m ⎡⎤∈⎣⎦所以()223133124y f m m m m ⎛⎫==+-=+- ⎪⎝⎭ 所以()f m 在3,12⎡⎤-⎢⎥⎣⎦上单调递增,在32⎡⎫-⎪⎢⎣⎭上单调递减 31324f ⎛⎫-=- ⎪⎝⎭,()13f =和(2f =-所以()13,34f m ⎡⎤∈-⎢⎥⎣⎦ 即函数的值域为13,34⎡⎤-⎢⎥⎣⎦【点睛】本题考查正切函数的性质的应用,换元法求函数的值域,属于中档题.。
高一数学必修一《函数》训练题精选
一、选择题
1.函数()y f x =的图象与直线1x =的公共点数目是( C )
A .1
B .0
C .0或1
D .1或2
2. 已知3
()4f x ax bx =+-其中,a b 为常数,若(2)2f -=,则(2)f 的
值等于( D )
A .2-
B .4-
C .6-
D .10- 3.设13<(13)b <(1
3)a <1,则( A )
A .a b
<a a
<b a
B .a
a
<b a <a b
C .a a <a b <b a
D .a b <b a <a a
4.若函数f (x )=14212
()
()()x a x a
x x ⎧>⎪
⎨-+≤⎪⎩是R 上的增函数,则实数a 的取值范围为( D ) A .(1,+∞) B .[4,8) C .(4,8) D .(1,8)
5.若函数f (x )是定义在[-6,6]上的偶函数,且在[-6,0]上单调递减,则( D )
A .f (3)+f (4)>0
B .f (-3)-f (-2)<0
C .f (-2)+f (-5)<5
D .f (4)-f (-1)>0 6.若x ∈R,f(x)是2
2y x =-,y x =这两个函数的较小者,则f(x)的最大值为( ) A.2
B.1
C.-1
D.无最大值
7..函数222(03)()6(20)
x x x f x x x x ⎧-≤≤⎪
=⎨+-≤≤⎪⎩的值域是( C )
A .R
B .[)9,-+∞
C .[]8,1-
D .[]9,1-
8.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程. 在下图中纵轴表示离学
校的距离,横轴表示出发后的时间,则下图中的四个图形中较符合该学生走法的是( B )
9.已知偶函数f(x)在区间[0, +∞) 上单调递增,则满足
(21)()3
f x f -<的x 的取值范围是 (
A ) A. 12(,)33 B. 12[,)33 C. 12(,)23 D. 12[,)23
10.设奇函数)(x f 的定义域为[]5,5-,若当[0,5]x ∈时, )(x f 的图象如右图,则不等式0()x f x ⋅<的解是 ( B )
A. (2,5)
B. 5225(,)(,)--
C. 0225(,)(,)
D. 5202(,)(,)--
二、填空题
11.
函数y =______;值域是______.[)[)0,,0,1+∞
12.已知定义在R 上的奇函数()f x ,当0x >时,1||)(2
-+=x x x f ,
那么()f x = 2
1x x --+ .
13.函数2
()(2)2(2)4f x a x a x =-+--的定义域为R ,值域为(],0-∞,
则满足条件的实数a 组成的集合是 {}2- 。
14.函数x x x f -=2
)(的单调递减区间是_11(,],[0,]22
-∞-___________________。
15.奇函数()f x 在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,
最小值为1-,则2(6)(3)f f -+-=_____15- _____。
16.若1()2ax f x x +=
+在区间(2,)-+∞上是增函数,则a 的取值范围是 1
(,)2
+∞ 。
17. 若关于x 的方程2
40x x a --=有3个不同的实根,则a =__4___。
18.设函数()f x 与()g x 的定义域是x R ∈且1x ≠±,()f x 是偶函数, ()g x 是奇函数,且1
()()1
f x
g x x +=
-,则()f x 和()g x 的解析式分别为 21()1f x x =
-;2
()1
x
g x x =- . 19.某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如下:
若某家庭5月份的高峰时间段用电量为200千瓦时,低谷时间段用电量为100千瓦时,则按这种计费方式该家庭本月应付的电费为 148.4 元(用数字作答).
三、解答题
20.已知f (x )=(12x
-1+1
2)x .
(1)求函数的定义域; (2)判断函数f (x )的奇偶性; (3)求证:f (x )>0.
解:(1)由2x
-1≠0,得x ≠0,
∴函数的定义域为{x |x ≠0,x ∈R}.
(2)在定义域内任取x ,则-x 在定义域内, f (-x )=(12-x -1+12)(-x )=(2x 1-2x +1
2)(-x ) =-1+2x 21-2x ·
x =2x +1
22x -1·x , 而f (x )=(12x -1+1
2)x =2x +122x -1·
x , ∴f (-x )=f (x ),∴函数f (x )为偶函数.
(3)证明:当x <0时,由指数函数性质知,
0<2x <1,-1<2x -1<0,∴12x -1<-1,∴12x -1+12<-1
2.
又x <0,∴f (x )=(12x
-1+1
2)x >0.由f (x )为偶函数,当x >0时,f (x )>0.
综上,当x ∈R ,且x ≠0时,函数f (x )>0.
21.(12分)如果函数f(x)的定义域为(0,+∞)且f(x)为增函数,f(x ·y)=f(x)+f(y). (1)证明:()()()x f f x f y y
=-; (2)已知f(3)=1,且f(a)>f(a-1)+2,求a 的取值范围. 解:(1)因为()()()()x x f x f y f f y y y =⋅=+,所以()()()x f f x f y y
=-. (2)因为f(3)=1,所以f(9)=f(3×3)=f(3)+f(3)=2. 由f(a)>f(a-1)+2=f(a-1)+f(9)=f(9(a-1)).
而f(x)为增函数,所以 0109(1)
a a a a >⎧⎪->⎨⎪>-⎩
,所以9
18a <<
22.已知函数2
2()x x a f x x
++= x ∈[1,+∞).
(1)当a=
1
2
时,求f(x)的最小值; (2)若对任意x ∈[1,+∞),f(x)>0恒成立,试求实数a 的取值范围. 解 11(1),()2,22a f x x x
=
=++当时 设1≤x 1<x 2,则f(x 2)-f(x 1)= 2112
1()(1),2x x x x --
∵1≤x 1<x 2,∴x 2-x 1>0,2x 1x 2>2,
∴f(x 2)-f(x 1)>0,f(x 1)<f(x 2).∴f(x)在区间[1,+∞)上为增函数, ∴f(x)在区间[1,+∞)上的最小值为f(1)=
7.2
(2)在区间[1,+∞)上f(x)>0恒成立, x 2+2x+a>0恒成立. 设y=x 2+2x+a,x ∈[1,+∞),
则函数y=x 2+2x+a=(x+1)2+a-1在区间[1,+∞)上是增函数. ∴当x=1时,y min =3+a,
于是当且仅当y min =3+a>0时,函数f(x)>0恒成立,故a>-3.
23.设a 为实数,函数1||)(2+-+=a x x x f ,R x ∈ (1)讨论)(x f 的奇偶性; (2)求)(x f 的最小值。
解:(1)当0a =时,2()||1f x x x =++为偶函数,
当0a ≠时,2()||1
f x x x a =+-+为非奇非偶函数; (2)当x a <时,2
2
1
3()1(),24
f x x x a x a =-++=-++
当12a >时,m i n 13()()24f x f a ==+, 当1
2
a ≤时,m i n
()f x 不存在; 当x a ≥时,2
213()1(),24
f x x x a x a =+-+=+-+
当1
2a >-时,2m i n
()()1f x f a a ==+, 当12a ≤-时,m i n 13
()()24
f x f a =-=-+。