纳米粒度与ZETA电位
- 格式:ppt
- 大小:1.93 MB
- 文档页数:71
zeta电位纳米粒度浓度-回复什么是Zeta电位?Zeta电位是表征分散体系稳定性的重要参数之一。
它衡量了分散体系中带电颗粒与周围溶剂或分散介质之间的电荷分离程度。
也就是说,它指示了颗粒表面电荷与溶质表面电位之间的力平衡。
导致这种电分离的原因是带电颗粒在溶液中的运动和周围分子的碰撞。
具体来说,带有负电荷的颗粒会吸引正电荷的离子和溶剂分子,而带有正电荷的颗粒则会吸引带有负电荷的离子和溶剂分子,从而导致带电颗粒周围的电荷分离。
在分散体系中,Zeta电位的值可以决定分散体系的稳定性。
如果颗粒表面带有一定的电荷,它们会相互排斥,保持一定的距离,从而使体系更加稳定。
相反,如果颗粒表面的电荷很弱或者为零,颗粒之间会发生静电吸引力,导致颗粒聚集并沉降,从而使体系不稳定。
因此,Zeta电位的测量可以反映颗粒对溶剂或分散介质的亲和性和稳定性。
如何测量Zeta电位?测量Zeta电位是通过Zeta电位仪进行的。
这是一种将外加电场和动态光散射技术结合起来,用来确定溶液中分散体系Zeta电位的仪器。
在测量中,外加电场会引起带电颗粒的移动,而动态光散射技术则可以测量颗粒的动态行为。
具体地说,测量Zeta电位的仪器中包括一个装置,可以在溶液中施加稳定的电场。
这个电场会导致带电颗粒运动并产生速度。
同时,仪器中的激光器会照射到带电颗粒上,并测量颗粒的散射光的动力学特性。
通过对散射光的特性进行分析,可以确定颗粒的速度和位置,并计算出Zeta电位的值。
Zeta电位与纳米粒度的关系如何?纳米粒子是具有纳米尺寸的颗粒,其尺寸通常为1到100纳米。
与传统微粒相比,纳米颗粒具有较大的比例表面积和较高的表面电荷密度,因此它们在分散体系中的行为更为复杂。
纳米颗粒的小尺寸可以导致在液体中呈现出不同的电性和交互作用行为。
具体来说,纳米颗粒表面的电荷分离和电化学行为与宏观颗粒存在一定的差异。
纳米颗粒的高比例表面积使得带电颗粒之间的电荷相互作用更加显著,导致纳米颗粒在液体中更容易形成聚集体。
融合多项专利技术 挑战颗粒表征极限持续革新与优化 再创全球纳米分析新标准新一代纳米粒度和Zeta 电位及分子量分析仪颗粒大小及其分布 – 动态光散射Zeta 电位及其分布 – 激光多普勒电泳+PALS+M3---90º光散射技术·经典光散射角度,配合顶尖检测器APD ,成就极高灵敏度和信噪比的光散射仪Zetasizer nano ZS90·独特光学配置能在宽范围内完成高准确度和重复性的粒径检测·完全符合ISO 13321国际标准---新一代高速数字相关器·提供世界上最宽的动态测量范围---光路·独有的混合模式光纤技术的应用,极大程度减少光传输损耗, 提高信噪比动态光散射原理动态光散射检测由于颗粒布朗运动而产生的散射光的波动随时间的变化。
检测器将散射光信号转化为电流信号,再通过数字相关器的运算处理,得到颗粒在溶液中扩散的速度信息,即扩散系数。
通过Stockes-Einstein 方程可以得到粒径大小及其分布。
适用体系:所有能够稳定存在于溶液中作布朗运动的颗粒。
典型体系包括:乳液,有机/无机颗粒,自然/合成高分子溶液,表面活性剂,病毒,蛋白质样品等等。
应用领域:生物,医药,纳米技术,涂层,化妆品领域,化工领域等等。
领先的专利技术,挑战颗粒表征极限-- 90º和12.8 º双角度模式检测散射光·经典的90º光散射,符合ISO 13321,配合高灵敏度APD检测器及混合模式光纤技术,灵敏度比其它90º仪器高出近十倍,能测量粒径小于1纳米的样品,如右图硫胺素的结果·13º下检测,能分辨微量稳定存在的大颗粒·双角度同时检测,得到Malvern独有的缔合度参数--高性能He-Ne激光器,提供更高的信噪比·单色性高,发散性小,相干性好,单位面积功率高·软件自动控制激光能量,带来3.3x105倍的调整范围·较低的能量避免对有色样品加热及破坏颗粒的布朗运动-- APD检测器,灵敏度无出其右·雪崩式光电二极管(APD), 对光强极端敏感·超晶格结构及尖端工艺的应用,极大地降低了暗电流·软硬件结合的自动控制,检测信号完全在APD的线性范围内--标准配置研究级高速数字相关器·拥有超过4000通道·线性范围 >1011·25 ns – 8000s 的超宽动态采样时间,将指数分布与线性分布完美结合,完全收集小粒子和大粒子的动态信息。
纳米粒度及Zeta电位分析仪详细技术文件
主要参数指标:
系统
1.高稳定性He-Ne激光器
2.激光能量调整:自动,调节范围:0.0003%-100%
3.APD检测器,量子效率QE高于60%;
4.温度控制范围:10-70度,精度+/- 0.1度;
5.可进行粒度和电位温度趋势和时间趋势测量,生成趋势报告;
粒度
1.检测范围:0.3-10000 nm
2.*高速数字相关器:>3000物理通道
3.检测位置可自动连续移动,聚焦点范围:距池壁0.45 mm –
4.65 mm
4.*单角度测量浓度:0.1ppm-40%w/v;
5.最小样品量:不大于20μL
6.*可以通过两个角度检测颗粒物团聚指数
7.可以检测颗粒物相互作用力因子kD
ZETA电位:
1.zeta适合检测粒度范围:5nm - 80um
2.zeta电位范围:± 500 mV
3.迁移率:> ± 18 μ.cm/V.s;
4.采用高频快场+低频慢场测量技术,
5.最小样品量不大于20 μL
6.电导率范围:0 - 100 mS/cm;
分子量:
1.具备动态光散射和静态光散射分子量检测功能
2.检测范围:500-1×107 Da。
粒度与zeta电位表征进展及超声/电声分析技术在润滑油粒度及电位测量中得优势杨正红(美国康塔仪器公司北京代表处)微粒物料就是粒径在20-30微米以下,具有一些特殊得功能或作用得超细粉体。
1微米以下得纳米材料所表现得特性及应用已引起了前所未有得关注。
粉体颗粒粒度得表征就是这些超细粉体技术应用得基础与关键。
粉体颗粒粒度就是产品得主要质量指标,它可用来预测产品稳定性、功能特性、颜料覆盖能力及进行终产品质控,也就是选择分离过滤设备等得依据、粉体颗粒粒度得表征手段以及分析仪器得选择对产品开发,原料与添加剂质控都就是至关重要得、润滑油及其添加剂得分散稳定性润滑油就是由润滑剂与添加剂组成得,在润滑剂加入中得一种或几种化合物(添加剂),以使其产生某种新得特性或改善润滑剂中已有得一些特性。
添加剂按功能分主要有抗氧化剂、抗磨剂、摩擦改善剂(又名油性剂)、极压添加剂、清净剂、分散剂、泡沫抑制剂、防腐防锈剂、流点改善剂、粘度指数增进剂等类型、润滑油得清净分散性添加剂对润滑油有着极其重要得意义、其一就是润滑油能将其氧化后生成得胶状物、积炭等不溶物或悬浮在油中,形成稳定得胶体状态而不易沉积在部件上; 其二就是将已沉积在发动机部件上得胶状物、积炭等,通过润滑油洗涤作用于洗涤下来。
清净分散剂就是一种具有表面活性得物质,它能吸附油中得固体颗粒污染物,并使污染物悬浮于油得表面,以确保参加润滑循环得油就是清净得,以减少高温与漆膜得形成。
分散剂则能将低温油泥分散于油中,以便在润滑油循环中将其滤掉、清净分散添加剂就是它们得总称,它同时还具有洗涤、抗氧化及防腐等功能。
因此,也称其为多效添加剂。
从一定意义上说,润滑油质量得高低, 主要区别在抵抗高、低温沉积物与漆膜形成得性能上,也可以说表现在润滑油内清净分散剂得性能及加入量上,可见清净分散剂对润滑油质量具有重要影响。
纳米润滑油添加剂1.固体纳米金刚石作为减摩抗磨添加剂作用机理:纳米金刚石颗粒得一次粒径为7~10 nm,与大尺寸得块体金刚石相比较,有许多不同得特点,它就是碳液滴“骤冷”结晶生成得,与静高压缓慢生长得金刚石相比有很多特别得性质、纳米金刚石作为一种无毒无害得新型润滑材料已经受到有关研究单位与企业得关注,然而由于其价格及应用技术等因素得限制,人们对它得认识还需要一个过程。
仪器功能介绍:
Zetasizer Nano ZS90主要应用于生物、医药、纳米技术、涂层、化妆品领域、化工领域等等,能够测量样品的粒度和Zeta电位。
仪器主要技术参数:
粒度:可以对粒径范围0.3nm至10μm的颗粒和分子进行测量。
最大粒径范围: 0.3 nm - 10 μm *
浓度范围: 0.1ppm – 40% w/v *
检测角度: 175º和12.8º
最小样品量: 12 μl
Zeta电位:能够对水分散和非水分散体系中的zeta电位进行精确的测量。
粒径测量
Zeta电位范围: 无实际限制
电泳迁移率: 0 –无实际上限
最大样品电导率: 200mS/cm
最大样品浓度: 40% w/v
最小样品量: 150 μl
粒径范围: 3.8nm - 100 μm *
仪器使用注意事项:
1.本台仪器需要预约,使用者请与平台相关人员联系,请不要擅自使用仪器。
2.禁止使用任何强腐蚀性溶剂。
3.拷取数据必须使用中心的公共U盘。
后生元纳米粒度和zeta电位仪下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!后生元纳米粒度和zeta电位仪是一种专门用于测量颗粒尺寸和表面电荷的仪器。
马尔文纳米粒度 zeta
马尔文纳米粒度和zeta电位是常用的表征纳米颗粒物理性质的指标。
本文将详细介绍马尔文纳米粒度和zeta电位的定义、测量原理和应用。
马尔文纳米粒度(Malvern NanoSizer)是由英国马尔文仪器公司开发的一种用于粒子的大小分析的仪器。
马尔文纳米粒度采用动态光散射(Dynamic Light Scattering,DLS)技术,可以测量纳米级别的颗粒的尺寸分布。
马尔文纳米粒度利用激光散射原理测量颗粒在液体中的动态行为,根据光散射强度的强弱和时间的变化,分析颗粒的大小分布和聚集状态。
马尔文纳米粒度可以测量的颗粒直径范围一般在1nm~1μm之间。
1、研究颗粒尺寸、分散性、聚集状态
2、研究颗粒表面性质
3、研究颗粒在不同媒质中的动态行为
4、测量颗粒的分布系数和均匀度
二、zeta电位
zeta电位是一种表征颗粒在溶液中带电状态的参数。
zeta电位的值可以反映颗粒表面的电荷,是影响颗粒相互作用的重要物理参数。
zeta电位采用激光多角度散射(Laser Doppler Anemometry,LDA)技术,利用测量颗粒在电场中的运动和电荷情况,计算出颗粒表面的电荷密度和zeta电位。
1、评价颗粒的稳定性
2、研究离子强度对颗粒间相互作用的影响
3、研究表面改性对颗粒表面电荷的影响
4、评价纳米材料的表面性能和稳定性
综上所述,马尔文纳米粒度和zeta电位是纳米颗粒表征的重要参数。
通过这两项指标的测量,可以了解颗粒的尺寸分布、表面电荷和稳定性等物理性质,有助于研究纳米颗粒的合成、应用和性质优化。
上转换纳米颗粒zeta电位1. 纳米颗粒Zeta电位的概念纳米颗粒Zeta电位是指一种化学试剂可以通过测量颗粒表面电位而计算而出的表面粘性指标,可用来表征一种物质的稳定性和活性。
其物理含义是它可以用来衡量表面受液体与气体界面状态下的电荷不均匀程度。
纳米颗粒zeta电位可以被用来衡量各种颗粒体系的表面特性。
2. 纳米颗粒Zeta电位的测试方法纳米颗粒Zeta电位的测试一般使用采用结构可控的分散体系,其测量原理是利用流变体系中分子间的电荷不均匀产生的流变变化,通过测量zeta电位变化,就可粗略地判断系统应受特性。
常用的测试技术有紫外光谱测量、粒子施加荷重、微量pH值变化量测量和反相液相色谱法等。
3. 纳米颗粒Zeta电位的应用纳米颗粒Zeta电位主要用于药物转换、合成化学品制备、蛋白质结构分析和粒子控制还原技术等。
例如在药物转换中,通过控制zeta电位改变,可以提高药物的活性和稳定性;在合成化学品制备中,通过测量和控制zeta电位实现良好的分散系统制备工艺;在蛋白质结构分析中,可以利用zeta电位获得有效的蛋白质结构模型;在粒子控制还原技术中,可以用zeta电位分析溶液状态从而有效地完成粒子控制还原工艺。
4. 纳米颗粒Zeta电位的注意事项纳米颗粒Zeta电位在使用过程中需要注意以下几点:(1)试剂的正确使用:由于纳米颗粒Zeta电位测试依赖于试剂的准确使用,因此在使用时,应牢记试剂的正确使用,以避免出现误差。
(2)注意测试条件:纳米颗粒Zeta电位测试一般在常温下进行,受温度和pH值大小等条件影响,以保证测量的准确性。
(3)避免误差:纳米颗粒Zeta电位测量中,应尽量避免可能引起误差的误差源,如设备、测量条件等,以保证测量的准确性。
(4)调整参数:一般纳米颗粒Zeta电位的初始参数会受到测试材料的不同而影响,因此在测试之前应合理调节参数,以保证测量结果的准确性。