C.点A在⊙O外部 D.点A不在⊙O上
2、M是⊙O内一点,过点M的⊙O最长的弦为10 cm,
最短的弦长为8 cm,那么OM= _____3cm.
得到右端,也 可以从右端得
dp
点P在⊙O内
d<到左r 端。 r
点P在⊙O上 点P在⊙O外
d=r
d
r
p
d>r P d
r
探究与实践
1、平面上有一点A,经过A点的圆有几个? 圆心在哪里?
●
●O
● ●A O O
●O
●
O
无数个,圆心为点A以外任意一点,半径为这 点与点A的距离
探究与实践
2、平面上有两点A、B,经过点A、B的圆 有几个?它们的圆心分布有什么特点?
平分弦并且平分弦所对的一条弧的直线经过圆心,垂直于 弦,并且平分弦所对的另一条弧.
平分弦所对的两条弧的直线经过圆心,并且垂直平分弦.
垂径定理的推论
❖ 如图,在以下五个条件中:
① CD是直径, ② CD⊥AB, ③ AM=BM, ④A⌒C=B⌒C,
⑤A⌒D=B⌒D. 只要具备其中两个条件,就可推出其余三个结论.
AB的垂直平分线上. 经过A,B,C三点的圆的圆心应该这 ●B
┏ ●O
●C
两条垂直平分线的交点O的位置.
归纳结论:
不在同一条直线上的三个点确定一个圆。
1、⊙O的半径为R,圆心到点A的距离为d,且R、d分
别是方程x -2 6x+8=0的两根,那么点A与⊙O的位置关系是
〔D〕
A.点A在⊙O内部 B.点A在⊙O上
❖ 圆是以圆心为对称中心的中心对称图形。 ❖ 圆还具有旋转不变性,即圆绕圆心旋转任
意一个角度α,都能与原来的图形重合。