华师大九年级 下 数学教案 章圆
- 格式:docx
- 大小:1.04 MB
- 文档页数:30
课题:§27.1.2 《圆的对称性》教学设计(第一课时)教材分析1、地位和作用本课是华师大版九年数学第二十七章第一节第二课时的内容。
本节课是在小学学过的圆的基础上进行进一步的探究和推理,圆的对称性是圆的一个重要性质,它是探索其他性质的基础前提。
圆心角、弦、弧之间的相等关系是证明圆中线段相等,角相等,弧相等的重要依据,同时也为下一节的垂径定理提供了方法和依据。
所以这节内容很重要。
2、学情分析学生在小学已经学习了圆的一些知识,并且初中已经了解了中心对称、三角形全等等相关知识,具有一定的逻辑推理能力;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具备了一定的合作与交流的能力。
教法、学法分析现代教学理论认为,在教学过程中,学生是学习的主体,教学的一切活动都以强调学生的主动性、积极性为出发点。
根据这一教学理念,结合本节课的内容特点,我采用启发式和讲练结合的教学方法.。
在学习本章之前,学生已经通过折纸对称、平移、旋转、推理、证明等方式认识了许多图形的性质,积累了大量的空间与图形的经验,而学习本节充分体现了学生已有的经验的作用,同时在以前的学习中已经经历了很多合作学习的过程,所以我引导学生采用自主探究与合作探究相结合的学法。
教学目标:(一)知识与技能1.使学生知道圆是中心对称图形,并能运用其特有的性质推出在同圆或等圆中,圆心角、弧、弦之间的关系,2.能运用圆心角、弧、弦之间的关系解决问题,培养学生善于从实验中获取知识的能力,进一步体会和理解研究几何图形的各种方法。
(二)过程与方法1.通过观察、比较、操作、推理、归纳等活动,发展空间观念、推理能力以及概括问题的能力。
2.利用圆的旋转不变性,研究圆心角、弧、弦之间的关系定理。
(三)情感、态度与价值观激发学生探究、发现数学问题的兴趣和欲望,培养学生善于从实验中获取知识的科学的方法。
教学重点:在同圆或等圆中,圆心角、弧、弦三者之间的关系。
教学难点:探索在同一个圆中,圆心角、弧、弦三者之间的关系及应用。
学习目标:(1)理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;(2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力;(3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法.学习重点:圆周角的概念和圆周角定理学习难点:圆周角定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想. 学习方法:指导探索法.学习过程:一、举例:1、已知⊙O 中的弦AB 长等于半径,求弦AB 所对的圆周角和圆心角的度数.2、如图,OA 、OB 、OC 都是圆O 的半径,∠AOB=2∠BOC.求证:∠ACB=2∠BAC3、如图,已知圆心角∠AOB=100°,求圆周角∠ACB、∠ADB 的度数?4、一条弦分圆为1:4两部分,求这弦所对的圆周角的度数?5、已知AB 为⊙O 的直径,AC 和AD 为弦,AB=2,AC=,AD=1,求∠CAD 的度数.6、如图,A 、B 、C 、D 、E 是⊙O 上的五个点,则图中共有个圆周角,分别是.7、如图,已知△ABC 是等边三角形,以BC 为直径的⊙O 交AB 、AC 于D 、E .(1)求证:△DOE 是等边三角形;(2)如图3-3-14,若∠A=60°,AB ≠AC ,则①中结论是否成立?如果成立,请给出证明;如果不成立,请说明理由?28、已知等圆⊙O 1和⊙O 2相交于A 、B 两点,⊙O 1经过O 2,点C 是上任一点(不与A 、O 2、B 重合),连接BC 并延长交⊙O 2于D ,连接AC 、AD .求证: .(1)操作测量:图a )供操作测量用,测量时可使用刻度尺或圆规将图(a )补充完整,并观察和度量AC 、CD 、AD 三条线段的长短,通过观察或度量说出三条线段之间存在怎样的关系?(2)猜想结论(求证部分),并证明你的猜想;(在补充完整的图(a )中进行证明)(3)如图b ),若C 点是的中点,AC 与O 1O 2相交于E 点,连接O 1C ,O 2C .求证:CE 2=O 1O 2·EO 2.教学反思:⌒B AO 2⌒2BO。
圆的对称性教学目的:根据九年级学生已具备的几何基础和教材要求,本节课的知识技能目标为:1、理解圆的相关概念(圆的定义、圆心、半径、弦、直径、弧),会画圆,会表示圆;2、探索并证明垂径定理,能灵活运用解决实际问题。
情感态度目标为通过对垂径定理的探索证明,体验数学的严谨性,感受猜想的数学思想,积累探究的数学活动经验,通过圆的历史和古代数学题让学生了解数学史,激发学生学习数学的动机,培养学生对数学的兴趣,从而培养学生热爱祖国和生活的情感。
教学设计思路:华东师大版九年级下册数学第27章1《圆的认识》主要内容为圆的基本元素和圆的对称性两部分,其中圆的基本元素内容相对较少,如果安排一节课内容,相对比较轻松,而圆的对称性这部分内容里“垂径定理”是圆的重要性质之一,也是全章的基础之一,在整章中占有举足轻重的地位,是今后研究圆与其他图形位置关系和数量关系的基础,这些知识在日常生活和生产中有广泛的应用,由于垂径定理及其推论反映了圆的重要性质,是证明线段相等、角相等、垂直关系的重要依据,因此,它是整节书的重点,教材对这块内容要求也比较高,不但要认识圆是轴对称图形,掌握好垂径定理和垂径定理的推论,还要求掌握好垂径定理及推论的应用。
根据以往的经验,一节课掌握好垂径定理和推论及应用是比较难的,经过深思熟虑,我大胆进行了尝试,我把此两部分的内容作了一些处理,共分为三节课来安排的:第一节内容是圆的定义、弦、直径、半径、弧等概念和圆的对称性(轴对称图形)、垂径定理初步探究及应用;第二节内容是垂径定理推论的探究、垂径定理及推论的应用;第三节内容是圆心角的定义、圆的对称性(中心对称图形)、圆心角定理及应用。
我设计的这节课《圆的对称性》就是本节内容的第一节课内容,所以本节课的重点是圆的有关概念、垂径定理的初步探究及应用,本节课难点是垂径定理的探究及应用。
本节课设计与数学史融合之处说明:第一处是圆的新课引入部分我来读一读环节,展示了四张幻灯片,介绍的是圆的历史;第二处是垂径定理的应用中冒险岛环节,利用垂径定理解决古代《九章数学》中的“圆材埋壁”问题。
教学目标 1.使学生理解圆、等圆、等弧、圆心角等概念,2.让学生深刻认识圆中的基本概念。
教学重点圆中的基本概念的认识。
教学难点对等弧概念的理解。
教学过程(一)情境导入:圆是如何形成的?请同学们画一个圆,并从画圆的过程中阐述圆是如何形成的。
如右图,线段OA绕着它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形。
同学们想一想,如何在操场上画出一个很大的圆?说说你的方法。
由以上的画圆和解答问题的过程中,让同学们思考圆的位置是由什么决定的?而大小又是由谁决定的?(圆的位置由圆心决定,圆的大小由半径长度决定)(二)问题:据统计,某个学校的同学上学方式是,有50%的同学步行上学,有20%的同学坐公共汽车上学,其他方式上学的同学有30%,请你用扇形统计图反映这个学校学生的上学方式。
如图28.1.2,线段OA、OB、OC都是圆的半径,线段AB为直径,.这个以点O为圆心的圆叫作“圆O”,记为“⊙O”。
线段AB 、BC 、AC 都是圆O 中的弦,曲线BC 、BAC 都是圆中的弧,分别记为BC ︵、BAC ︵,其中像弧BC ︵这样小于半圆周的圆弧叫做劣弧, 像弧BAC ︵.这样的大于半圆周的圆弧叫做优弧。
∠AOB 、∠AOC 、∠BOC 就是圆心角。
结合上面的扇形统计图,进一步阐述圆心角、优弧、劣弧等圆中的基本元素。
三、课堂练习1、直径是弦吗?弦是直径吗?2、半圆是弧吗?弧是半圆吗?3、半径相等的两个圆是等圆,而两段弧相等需要什么条件呢?4、比较右图中的三条弧,先估计它们所在圆的半径的大小关系,再用圆规验证你的结论是否正确。
5、说出上右图中的圆心角、优弧、劣弧。
6、直径是圆中最长的弦吗?为什么?(四)课后小结小结本节课我们认识了圆中的一些元素,同学应能从具体的图形中对这些元素加以识别。
课后作业:课后小记:教学目标:1.使学生知道圆是中心对称图形和轴对称图形,并能运用其特有的性质推出在同一个圆中,圆心角、弧、弦之间的关系,2.能运用这些关系解决问题,培养学生善于从实验中获取知识的科学的方法。
华师大版数学九年级下册27.1《圆的认识》教学设计一. 教材分析《圆的认识》是华师大版数学九年级下册第27.1节的内容。
本节主要让学生掌握圆的定义、圆的性质、以及圆的周长与面积的计算方法。
教材通过生活中的实例,引导学生探究圆的特征,培养学生的空间想象能力和抽象思维能力。
二. 学情分析九年级的学生已经具备了一定的几何知识,对图形的认识有一定的基础。
但圆的概念较为抽象,学生对其性质和计算方法的理解可能存在一定的困难。
因此,在教学过程中,要注重引导学生通过实际操作和探究来理解圆的特征。
三. 教学目标1.理解圆的定义和性质;2.掌握圆的周长和面积的计算方法;3.培养学生的空间想象能力和抽象思维能力;4.提高学生的合作交流和问题解决能力。
四. 教学重难点1.圆的定义和性质;2.圆的周长和面积的计算方法;3.圆在实际生活中的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究圆的特征;2.利用实物模型和多媒体辅助教学,帮助学生直观理解圆的概念;3.采用小组合作的学习方式,培养学生的团队协作能力;4.结合实际生活中的实例,让学生感受圆的应用。
六. 教学准备1.准备相关的实物模型和图片,如硬币、圆规等;2.准备多媒体教学课件,包括圆的定义、性质、周长和面积的计算方法等;3.准备练习题和课后作业,以便进行巩固和拓展。
七. 教学过程1.导入(5分钟)利用实物模型和图片,引导学生观察和思考圆的特征。
例如,展示硬币和圆规,让学生说出它们的共同特点。
2.呈现(10分钟)介绍圆的定义和性质。
通过多媒体课件,展示圆的定义,即到一个固定点距离相等的所有点的集合。
然后,引导学生探究圆的性质,如圆的直径、半径、圆心等。
3.操练(10分钟)让学生进行实际操作,加深对圆的认识。
例如,用圆规画圆,测量圆的直径和半径,计算圆的周长和面积等。
4.巩固(10分钟)解答学生的疑问,并通过练习题进行巩固。
可以选择一些有关圆的计算题和应用题,让学生独立完成,然后进行讲解和分析。
第二十八章圆单元教学计划教学内容1.本单元数学的主要内容.(1)圆有关的概念:垂直于弦的直径,弧、弦、圆心角、圆周角.(2)与圆有关的位置关系:点和圆的位置关系,直线与圆的位置关系,•圆和圆的位置关系.(3)正多边形和圆.(4)弧长和扇形面积:弧长和扇形面积,圆锥的侧面积和全面积.2.本单元在教材中的地位与作用.学生在学习本章之前,已通过折叠、对称、平移旋转、推理证明等方式认识了许多图形的性质,积累了大量的空间与图形的经验.本章是在学习了这些直线型图形的有关性质的基础上,进一步来探索一种特殊的曲线──圆的有关性质.通过本章的学习,对学生今后继续学习数学,尤其是逐步树立分类讨论的数学思想、归纳的数学思想起着良好的铺垫作用.本章的学习是高中的数学学习,尤其是圆锥曲线的学习的基础性工程.教学目标1.知识与技能(1)了解圆的有关概念,探索并理解垂径定理,探索并认识圆心角、弧、•弦之间的相等关系的定理,探索并理解圆周角和圆心角的关系定理.(2)探索并理解点和圆、直线与圆以及圆与圆的位置关系:了解切线的概念,•探索切线与过切点的直径之间的关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线.(3)进一步认识和理解正多边形和圆的关系和正多边的有关计算.(4)熟练掌握弧长和扇形面积公式及其它们的应用;•理解圆锥的侧面展开图并熟练掌握圆锥的侧面积和全面积的计算.2.过程与方法(1)积极引导学生从事观察、测量、平移、旋转、推理证明等活动.•了解概念,理解等量关系,掌握定理及公式.(2)在教学过程中,鼓励学生动手、动口、动脑,并进行同伴之间的交流.(3)在探索圆周角和圆心角之间的关系的过程中,•让学生形成分类讨论的数学思想和归纳的数学思想.(4)通过平移、旋转等方式,认识直线与圆、圆与圆的位置关系,•使学生明确图形在运动变化中的特点和规律,进一步发展学生的推理能力.(5)探索弧长、扇形的面积、•圆锥的侧面积和全面积的计算公式并理解公式的意义、理解算法的意义.3.情感、态度与价值观经历探索圆及其相关结论的过程,发展学生的数学思考能力;通过积极引导,帮助学生有意识地积累活动经验,获得成功的体验;利用现实生活和数学中的素材,设计具有挑战性的情景,激发学生求知、探索的欲望.教学重点1.平分弦(不是直径)的直径垂直于弦,•并且平分弦所对的两条弧及其运用.2.在同圆或等圆中,相等的圆心角所对的弧相等,•所对的弦也相等及其运用.3.在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弧所对的圆心角的一半及其运用.4.半圆(或直径)所对的圆周角是直角,90•°的圆周角所对的弦是直径及其运用.5.不在同一直线上的三个点确定一个圆.6.直线L 和⊙O 相交⇔d<r ;直线L 和圆相切⇔d=r ;直线L 和⊙O 相离⇔d>r 及其运用.7.圆的切线垂直于过切点的半径及其运用.8.•经过半径的外端并且垂直于这条半径的直线是圆的切线并利用它解决一些具体问题.9.从圆外一点可以引圆的两条切线,它们的切线长相等,•这一点和圆心的连线平分两条切线的夹角及其运用.10.两圆的位置关系:d 与r 1和r 2之间的关系:外离⇔d>r 1+r 2;外切⇔d=r 1+r 2;相交⇔│r 2-r 1│<d<r 1+r 2;内切⇔d=│r 1-r 2│;内含⇔d<│r 2-r 1│.11.正多边形和圆中的半径R 、边心距r 、中心角θ之间的等量关系并应用这个等量关系解决具体题目.12.n °的圆心角所对的弧长为L=180n R π,n °的圆心角的扇形面积是S 扇形=2360n R π及其运用这两个公式进行计算.13.圆锥的侧面积和全面积的计算.教学难点1.垂径定理的探索与推导及利用它解决一些实际问题.2.弧、弦、圆心有的之间互推的有关定理的探索与推导,•并运用它解决一些实际问题.3.有关圆周角的定理的探索及推导及其它的运用.4.点与圆的位置关系的应用.5.三点确定一个圆的探索及应用.6.直线和圆的位置关系的判定及其应用.7.切线的判定定理与性质定理的运用.8.切线长定理的探索与运用.9.圆和圆的位置关系的判定及其运用.10.正多边形和圆中的半径R 、边心距r 、中心角θ的关系的应用.11.n 的圆心角所对的弧长L=180n R π及S 扇形=2360n R π的公式的应用. 12.圆锥侧面展开图的理解.教学关键1.积极引导学生通过观察、测量、折叠、平移、旋转等数学活动探索定理、•性质、“三个”位置关系并推理证明等活动.2.关注学生思考方式的多样化,注重学生计算能力的培养与提高.3.在观察、操作和推导活动中,使学生有意识地反思其中的数学思想方法,•发展学生有条理的思考能力及语言表达能力.单元课时划分本单元教学时间约需13课时,具体分配如下:28.1 圆的认识 3课时28.2 与圆有关的位置关系 7课时28.3 圆中的计算问题 3课时教学活动、习题课、小结 3课时28.1.1圆的基本元素教学目标:使学生理解圆、等圆、等弧、圆心角等概念,让学生深刻认识圆中的基本概念。
27.1.1 圆的基本认识我们是先用圆规画出一个圆,再将圆划分成一个个 扇形来制作扇形统计图的.(1)圆的定义及表示法图27.1.2 中,线段OA ,OB ,OC 都是圆的半径,通过圆心O 的线段AC 为直径.这个以点 O 为圆心的圆叫 做圆“O ”,记作”O ”.注意:1.确定一个圆需要两个要素:⑴圆心确定圆的位置; ⑵半径确定圆的大小. 2.圆是指“圆周”,而非“圆面”.圆的位置由圆心确定,圆的大小由半径的长度 确定,半径相等的两个圆称为等圆.(2)劣弧,优弧的区别与表示方法线段AB ,BC ,AC 都是O 的弦.曲线BC ,BAC 都是O 的弧,分别记为,其中像弧BC 这样小于半圆周的圆弧叫做劣弧,像弧BAC 这样大于半圆周的圆弧叫做优弧.劣弧用符号“”和弧两端的字母表示如前面的读作“弧BC ”;优弧用符号“”和三个字母表示,如前面的读作弧 “BAC ”在同圆或等圆中,能够互相重合的弧叫做等弧.(3)圆心角∠AOB ,∠BOC 就是我们已知道的圆心角,圆心O 是这些圆心角的顶点.小组讨论,最后在学生充分讨论的基础上,老师用多媒体课件,给出正确的答案让学生以小组单位进行交流探讨,说出圆的性质,让学生体会了知识产生的过程,提高学生的动手、动脑、独立思考、合作交流的能力.在探索中发现,这样才能理解其中的规律并通过新课的讲解以及学生的练习,充分做到讲练结合,让学生更好巩固新知识.巩固练习能加以总结.课堂结圆的基本元素1.圆的定义及表示法2.劣弧,优弧的区别与表示方法弧:圆上任意两点间的部分叫做圆弧,简称弧.弧用符号“⌒”表示.圆的直径把圆分成相等的两部分,每一部分叫做半圆;小于半圆的弧叫做劣弧;大于半圆的弧叫做优弧.3.圆心角可启发学生说出自己的心得体会及疑问.小结本节课的知识要点及数学方法,使知识系统化.。
第3课时 垂径定理教学目标一、基本目标1.理解与掌握垂径定理及其推论.2.运用垂径定理及其推论解决一些有关证明、计算和作图问题.二、重难点目标【教学重点】垂径定理及其推论.【教学难点】利用垂径定理及其推论解决相关计算或证明问题.教学过程一、 自学提纲,生成问题阅读教材P39~P40的内容,完成下面练习.1.垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧.即一条直线如果满足:①直线经过圆心O 且与圆交于C 、D 两点;②AB ⊥CD 交CD 于M .那么AM =BM =12AB ,弧AC=弧BC=12弧AB ,弧AD=弧BD=12弧ADB2.垂径定理的推论:(1)平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两条弧.(2)平分弧的直径垂直平分这条弧所对的弦.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】一根横截面为圆形的下水管道的直径为1米,管内有少量的污水(如图1),此时的水面宽AB 为0.6米,求此时的水深(即阴影部分的弓形高).图1 图2 师:(引发学生思考)要求此时的水深,即阴影部分的弓形高→结合垂径定理,作辅助线(如图2)→构造直角三角形求出CD 长即可.【解答】如图2,过点O 作OD ⊥AB 于点C ,交⊙O 于点D ,连结O B.根据垂径定理,得C 是AB 的中点,D 是的中点,CD 就是水深,则BC =12AB =0.3米. 又由题意可知,OD =OB =0.5米,所以在Rt △OBC 中,由勾股定理,得OC =OB 2-BC 2=0.4米,所以CD =OD -OC =0.1米,即此时的水深为0.1米.总结:(学生总结,老师点评)在圆中求半径、弦等线段的长时,常常借助垂径定理构造直角三角形,再在直角三角形中运用勾股定理来解决.【例2】如图,一条公路的转弯处是一段圆弧(即图中,点O 是所在圆的圆心),其中CD =600 m ,E 为上一点,且OE ⊥CD ,垂足为F ,EF =90 m ,求这段弯路的半径.师:(引发学生思考)要求这段弯路的半径,可转化为求OC 的长,结合已知条件,在Rt △OCF 中利用勾股定理即可求得OC 的长.【解答】连结O C.设弯路的半径为R m ,则OF =(R -90)m.∵OE ⊥CD ,∴CF =12CD =12×600=300(m). 在Rt △OCF 中,根据勾股定理,得OC 2=CF 2+OF 2,即R 2=3002+(R -90)2.解得R =545.∴这段弯路的半径为545 m.总结: (学生总结,老师点评)常用辅助线:连结半径,由半径、半弦、弦心距构造直角三角形.二、 巩固练习(学生独学)1.如图,AB 为⊙O 的弦,⊙O 的半径为5,OC ⊥AB 于点D ,交⊙O 于点C ,且CD =1,则弦AB 的长是多少?解:弦AB 的长是6.2.一条排水管的截面如图所示.已知排水管的半径OB =10 cm ,水面宽AB =16 cm.求截面圆心O 到水面的距离.解:截面圆心O 到水面的距离为6 cm.3.如图,AB 为半圆的直径,O 为圆心,C 为半圆上一点,E 是AC 的中点,OE 交弦AC 于点D ,若AC =8 cm ,DE =2 cm ,求OD 的长.解:OD =3 cm.4.有一石拱桥的桥拱是圆弧形,如图所示,正常水位下水面宽AB =60 m ,水面到拱顶距离CD =18 m ,当洪水泛滥时,水面到拱顶距离为3.5 m 时需要采取紧急措施,当水面宽MN =32 m 时是否需要采取紧急措施?请说明理由.解:不需要采取紧急措施.理由如下:如图,连结OM ,设OA =R m .由题意知,在Rt △AOC 中,AC =12AB =30 m ,CD =18 m ,∴由勾股定理,得R 2=302+(R -18)2,解得R =34.又在Rt △MOE 中,ME =12MN =16 m ,∴342=162+(34-DE )2,解得DE =4 m 或64 m(不合题意,舍去),∴DE =4 m .∵4>3.5,∴不需要采取紧急措施.活动3 拓展延伸(学生对学)【例3】已知⊙O 的半径为13,弦AB =24,弦CD =10,AB ∥CD ,求这两条平行弦AB 、CD 之间的距离.提示:画出几何示意图→要求两条平行弦AB 、CD 之间的距离→利用垂径定理求解→作辅助线,构造直角三角形【解答】分两种情况讨论:当弦AB 和CD 在圆心同侧时,如图1,过点O 作OF ⊥CD 于点F ,交AB 于点E ,连结OC 、O A.由题意可知,OA =OC =13.∵AB ∥CD ,OF ⊥CD ,∴OE ⊥A B.又∵AB =24,CD =10,∴由垂径定理,得AE =12AB =12,CF =12CD =5, ∴由勾股定理,得EO =OA 2-AE 2=5,OF =OC 2-CF 2=12,∴EF =OF -OE =7.图1 图2 当弦AB 和CD 在圆心异侧时,如图2,过点O 作OF ⊥CD 于点F ,反向延长OF 交AB 于点E ,连结OC 、O A.同理可得,EO =5,OF =12,∴EF =OF +OE =17.综上,两条平行弦AB 与CD 之间的距离为7或17.总结:(学生总结,老师点评)解此类题时,要考虑两弦在圆心的同侧还是异侧,再结合实际作出半径和弦心距,利用勾股定理和垂径定理求解即可.要注意分类讨论思想的应用,小心别漏解.环节3 课堂小结,当堂达标(学生总结,老师点评)垂径定理及其逆定理,以及常用的辅助线(作垂径)和解题思路(构造由半径、半弦、弦心距组成的直角三角形).练习设计请完成本课时相关训练。