当前位置:文档之家› 1964年诺贝尔物理学奖——微波激射器和激光器的发明

1964年诺贝尔物理学奖——微波激射器和激光器的发明

1964年诺贝尔物理学奖——微波激射器和激光器的发明
1964年诺贝尔物理学奖——微波激射器和激光器的发明

1964年诺贝尔物理学奖——微波激射器和激光器的发明

1964年诺贝尔物理学奖一半授予美国马萨诸塞州坎布里奇的麻省理工学院的汤斯(Charles H.Townes,1915—),另一半授予苏联莫斯科苏联科学院列别捷夫物理研究所的巴索夫(Nikolay G.Basov,1922—)和普罗霍罗夫(Aleksandr M.Prokhorov,1916—),以表彰他们从事量子电子学方面的基础工作,这些工作导致了基于微波激射器和激光原理制成的振荡器和放大器。

激光器的发明是20世纪科学技术有划时代意义的一项成就。从60年代一开始,激光理论、激光器件、激光应用各方面的研究广泛开展,各种激光器如雨后春笋一般涌现。几十年来,激光科学成果累累,已成为影响人类社会文明的又一重要因素。

量子电子学是无线电电子学和光学的结合点,更与量子物理学和原子物理学的发展密切相关。普朗克的能量子假说和爱因斯坦的光量子理论为量子电子学的发展奠定了基础。特别是爱因斯坦1916年对辐射理论的分析,为激光提供了理论基础。而20世纪40年代雷达的发展促进了微波技术应用于微波与分子的相互作用的研究。汤斯正是期望从这一研究中取得分子、原子和核结构的各种信息,探索出一条通过原子和分子谐振在极短波段实现相干振荡器和放大器的途径。

汤斯1915年7月28日出生于美国南卡罗莱纳州的格林维尔(Greenville),十五岁高中毕业后进入格林维尔的佛曼(Furman)大学,他不但物理学得很好,还对语言科学有特殊的兴趣。1935年19岁就以优异的成绩获得了物理和语言学两科的学位。他在很多方面都得到了发展,曾是博物馆的讲解员和校刊记者,参加游泳队、足球队。1936年在杜克(Duke)大学获物理学硕士学位,1939年在加州理工学院获博士学位,研究的题目是有关同位素分离和核自旋的问题。

汤斯从1933年进入贝尔实验室,一直到1947年都在技术部工作。二次大战期间,他致力于雷达轰炸瞄准系统,并取得了很多与技术有关的专利,因此,他对微波等技术比较熟悉。当时,人们力图提高雷达的工作频率以改善测量精度。美国空军要求他所在的贝尔实验室研制频率为24000MHz的雷达,实验室又把这个任务交给了汤斯。

汤斯对这项工作有自己的看法,他认为这样高的频率对雷达是不适宜的,因为这一频率的辐射极易被大气中的水蒸汽吸收,因此雷达信号无法在空间传播。但是美国空军当局坚持要他做下去。结果仪器做出来了,军事上毫无价值,却成了汤斯手中极为有利的实验装置,这台仪器达到当时从未有过的高频率和高分辨率,汤斯从此对微波波谱学产生了兴趣,成了这方面的专家。他研究的是微波和分子之间的相互作用。

这时珀赛尔和庞德在哈佛大学已经实现了粒子数反转①,不过信号太弱,人们无法加以利用。当时人们已经认识到,粒子数反转是放大的必要条件。汤斯认为,并不是不能实现粒子数反转,而是没有办法放大。他一直在苦思这个问题。他设想如果将介质置于谐振腔内,利用振荡和反馈,也许可以放大。汤斯很熟悉无线电工程,所以别人没有想到的,他先想到了。

1951年春的一天,汤斯正在华盛顿参加一个毫米波会议,他和肖洛(A.L.Schawlow)同住一个房间。后来肖洛是汤斯的重要合作者。汤斯起身很早,为了不打扰肖洛,他出去在公园旁的长凳上坐下,思考是什么原因无法制成毫米

波发生器。他需要找到一种制作体形极小而又精致的谐振器的方法。这种谐振器具有可以与电磁场耦合的某种能量。他想,如果能找到这样的材料,它一定也是象分子之类的东西,要做出这样小的谐振器并供给能量该会遇到多么大的技术困难!看来真正的希望在于找到一种利用分子的方法。也许正是早晨新鲜的空气使汤斯突然看清了这个方案的可行性。几分钟内汤斯就草拟好了方案,并计算出把分子束系统的高能态从低能态分开,并使之馈入腔中的条件。他还考虑到腔中应充有电磁辐射以便激发分子进一步辐射,从而提供了反馈,保持持续振荡。

汤斯在会上没有透露任何想法,他立即返回哥伦比亚,把他的研究组成员召集拢来,开始按他的新方案进行工作。这个组的成员有博士后齐格尔(H.J.Zeiger)和博士生戈登(J.P.Gordon)。后来齐格尔离开哥伦比亚,由中国学生王天眷接替。汤斯选择氨分子作为激活介质。这是因为他从理论上预见到,氨分子的锥形结构中有一对能级可以实现受激辐射,跃迁频率为23870MHz。氨分子还有一个特性,就是在电场作用下,可以感应产生电偶极矩。氨的分子光谱早在1934年即有人用微波方法作出了透彻研究。1946年又有人对其精细结构作了观察,这都为汤斯的工作奠定了基础。

汤斯小组历经两年的试验,终于在1953年制成了第一台微波激射器,取名为“微波激射放大器”(Microwave Amplification byStimulated Emission of Radiation),简称MASER(微波激射器)。

与此同时,还有几个科学集体在尝试实现微波的放大。其中在苏联有莫斯科的列别捷夫物理研究所普洛霍洛夫和巴索夫的小组,他们一直在研究分子转动和振动光谱,探索利用微波波谱方法建立频率和时间的标准。他们认定,只要人为地改变能级的集居数就可以大大增加波谱仪的灵敏度,并且预言,利用受激辐射有可能实现这一目标。他们也用非均匀电场使不同能态的分子分离,不过他们的装置比汤斯小组的晚了几个月才运转。

普罗霍罗夫1916年7月11日出生于澳大利亚昆士兰州艾瑟顿一个流亡的俄国革命工人家庭里,1923年回到祖国苏联。从小学到大学,他的学习成绩始终名列前茅。1939年以优异成绩毕业于列宁格勒大学物理系,同年进入苏联科学院列别捷夫研究所振动实验室当研究生。1941年—1944年战争期间在作战部队服役,负伤后复员回到列别捷夫研究所,继续从事研究工作。1960年,普罗霍罗夫当选为苏联科学院通讯院士,1966年当选为院士。1968年他被任命为列别捷夫物理研究所副所长。普罗霍罗夫由于研制分子振荡器与他的同事巴索夫一起获得列宁奖金,他还由于在亚毫米波波谱学方面的工作获得苏联国家奖。他被授予社会主义劳动英雄称号,曾四次获列宁勋章。

普罗霍罗夫在他当研究生的1944年—1950年间,就建立了关于电子管振荡器中的频率稳定性理论,首次获得同步加速器中电子的超高额相干辐射,并开始了气体波谱学的研究。就在这些研究中,他萌发了研制分子振荡器的想法。

普罗霍罗夫所依据的原理是物质中电子的受激发射效应。实际上就是爱因斯

坦早在1916年就提出的受激辐射概念。设有两个能级,其能量分别为E

1及E

2

若上能级粒子数密度大于下能级粒子数密度,就形成了

波同频率、同方向、同偏振,因而就使入射电磁波得到放大。一个能放大的

系统,如果适当加大正反馈,就能形成振荡。这就是量子放大与量子振荡的基本原理。

1952年5月普罗霍罗夫和他的合作者巴索夫在全苏波谱学会议上提出了获得量子放大与振荡的可能性的报告。接着,在1954年10月出版的苏联《实验与理论物理》杂志上,他们发表的论文提出了一个具体方案。选用分子的转动能级,不同的转动能级其电偶极矩也不同。具有电偶极矩的分子束在不均匀电场中会发生偏转,所以处于不同转动能级的分子偏转程度有所不同。这样就可以把它们分开,使处于上能级的分子进入实验区。这样就人为地造成了粒子数反转状态,从而实现微波的放大和振荡。他们对氟化铯(CsF)分子两基态之间的跃迁进行理论估算,在《苏联科学院报告》上发表了“分子放大与振荡理论”的论文,应用量子力学进行理论分析。普罗霍罗夫与巴索夫和汤斯与肖洛在大约相同的时间内对微波激射器作出了开创性的工作。两组人思路基本相同,汤斯和肖洛首先在实验上获得成功,而普罗霍罗夫和巴索夫则首先奠定了理论基础。

氨分子激射器作为第一个量子电子学器件,有其重要的历史意义。它制成后不久,就被做成氨分子钟,作为时间和频率的基准。但由分子束或气体制成的微波激射器波段有限,浓度低,功率小。还有待于继续发展。

后来普罗霍罗夫把氨分子激射器的工作波长减小到亚毫米量级,把频率提高了一两个量级。从1955年起,普罗霍罗夫又把注意力转向顺磁共振微波激射器,他在几年内研究了一系列顺磁晶体的顺磁共振与弛豫特性,并于1958年获得了微波激射。

1958年普罗霍罗夫和汤斯分别发表文章,指出光学中使用的法布里-珀罗标准具可用作从亚毫米波直到可见光波段的谐振腔。与微波谐振腔相比,这是一种开放式的腔。两块具有高反射率的半透镜对面放置,其间隔远大于波长。但入射电磁波从垂直于镜面的方向射入腔中后,在两镜面间来回反射,形成驻波,起着谐振腔的作用。在他们的理论指导下,两年后就发明了激光器。

巴索夫1922年12月14日出生于俄罗斯的乌斯曼,父亲是一位大学教授。巴索夫于1941年在优龙涅什中学毕业。卫国战争中在部队服役。1946年进入莫斯科机械学院,1950年毕业。从1948年起,巴索夫就在苏联科学院列别捷夫物理研究所振动实验室任实验员,大学毕业后继续在该研究所工作,并升任工程师,1956年获得博士学位,1963年,任该所新建立的量子电子学实验室主任,兼莫斯科工程物理学院(原莫斯科机械学院)教授。普罗霍罗夫与巴索夫联名发表的两篇有关微波激射器的开创性论文,第一作者都是巴索夫,第二作者是普罗霍罗夫。可见,巴索夫在这项有历史意义的工作中起了何等的作用。当时巴索夫还未取得博士学位。

巴索夫又一项重要的科学贡献是对半导体激光器的研究。早在第一台激光器问世以前,巴索夫在1959年就提出了半导体激光器的方案。在半导体上加上足够强的脉冲电场,在强电场作用下,大量原子通过碰撞而被电离,导带中的电子数及价带中的空穴数均急剧增多。当电场撤去后,在一定条件下,可以产生粒子数反转状态。1961年,巴索夫又提出p-n结注入式激光器的原理,发表于苏联《实验与理论物理》杂志上。他还导出了产生受激发射的条件。据此,好几个研究组在1962年先后制成了半导体激光器。巴索夫用砷化镓(GaAs)在77K下获得近红外光的受激辐射。这种类型的激光器后来得到不断的完善,改进了结构,降低了阈值电流,提高了效率,压缩了激光线宽,特别是使其能在室温下工作。到了70年代后期,已逐渐形成了在应用上大发展的局面。成为当前应用最广的一种

半导体激光器。

巴索夫倡导激光引发热核聚变,在1962年苏联科学院主席团会议上,以及在1963年巴黎国际量子电子学大会上,他都提出了这个建议。他一方面研制大功率的激光器和研究靶技术;另一方面深入了解产生这种效应的物理条件。1968年,实现了用强激光照射氘化锂(LiD)靶,首次发现从靶中产生出了中子。

巴索夫还致力于寻求新的原理与途径以产生大功率激光。从1962年起,他和他的合作者在化学激光器方面进行了深入研究,制成大功率脉冲和连续的氟化氢化学激光器、大功率纳秒脉冲光解离碘激光器、用电离的新型高气压气体激光器和准分子激光器。他们在信息的光学处理方法、激光稳频、激光频标、激光诱发化学反应、金属表面的激光涂层与固化等方面都有重要工作。在非线性光学方面,产生激波的爆发性化学激光器方面,巴索夫都起到了先驱者的作用。

①粒子数反转指的是高能态的集居数密度大于低能态的集居数密度的特殊情况,这时有可能发生受激辐射。

【历届诺贝尔奖得主(五)】1956年物理学奖得主

物理学奖 美国,布拉顿(WalterHouserBrattain1902-1987),研究半导体、发明晶体管 获奖理由:因对半导体的研究和发现了晶体管效应,与肖克利和巴丁分享了1956年度的诺贝尔物理学奖金。 简历 布拉顿(Brattain,WalterHouser)美国物理学家。1902年2月10日生于中国(父母是美国人)厦门。布拉顿的少年时期是在牧场上度过的。他1924年毕业于惠特曼学院(在华盛顿州沃拉沃拉),1929年在明尼苏达大学取得博士学位。同年,他进入贝尔电话实验室,成为一名物理学研究人员。第二次世界大战期间,他在那里从事潜艇磁探测的工作。他同肖克利和巴丁共同获得1956年诺贝尔物理学奖。1967年,他接受惠特曼学院的聘请,担任了自己母校的教授。 美国,巴丁(JohnBardeen1908-1991),研究半导体、发明晶体管 生平 1908年5月23日生于威斯康星州麦迪逊城,1923年入威斯康星大学电机工程系就学,毕业后即留在该校担任电机工程研究助理。1930-1933年在匹兹堡海湾实验研究所从事地球磁场及重力场勘测方法的研究。1928年获威斯康星大学理学士学位,1929年获硕士学位。1936年获普林斯顿大学博士学位。1933年到普林斯顿大学,在E·P·维格纳的指导下,从事固态理论的研究。1935-1938年任哈佛大学研究员。1936年以《金属功函数理论》的论文从普林斯顿大学获得哲学博士学位。1938-1941年任明尼苏达大学物理学助理教授,1941-1945年在华盛顿海军军械实验室工作,1945-1951年在贝尔电话公司实验研究所研究半导体及金属的导电机制、半导体表面性能等基本问题。1947年和其同事W·H·布喇顿共同发明第一个半导体三极管,一个月后,W·肖克莱发明PN结晶体管。这一发明使他们三人获得1956年诺贝尔物理学奖,巴丁并被选为美国科学院院士。 科研方向与获奖情况 1951年迄今,他同时任伊利诺伊大学物理系和电机工程系教授。他和L·N·库珀、J·R·施里弗合作,于1957年提出低温超导理论(BCS理论),为此,他们三人被授予1972年诺贝尔物理学奖,在同一领域(固态理论)中,一个人两次获得诺贝尔奖,历史上还是第一次。 晚年他研究如何用简单而基本的成分理解大自然非常复杂的性质,对整个近代理论物理学发展提出明确的见解。1980年他发表题为《物质结构的概念统一》的总结性论文,强调相同的基本物理概念可以广泛地用于表面上似乎悬殊的各个问题上,包括固体、液晶、核物质、高能粒子等领域。 巴丁发明了晶体管.1956年和肖拉克一起获得了诺贝尔物理学奖.1972年巴丁,库柏,施里弗一起获得了诺贝尔物理学奖. 巴丁于1991年1月30日上午8时45分去世 美国,肖克利(WilliamBradfordShockley1910-1989),研究半导体、发明晶体管 发明创造 获奖理由:因对半导体的研究和发现了晶体管效应,与巴丁和布拉顿分享了1956年度

2010年诺贝尔物理学奖揭晓

2010年诺贝尔物理学奖揭晓 英国曼彻斯特大学2位科学家因在石墨烯方面的开创性实验获奖 安德烈·盖姆 康斯坦丁·诺沃肖罗夫

北京时间10月5日下午5点45分,2010年诺贝尔物理学奖揭晓,英国曼彻斯特大学2位科学家安德烈·盖姆(Andre Geim)和康斯坦丁·诺沃肖罗夫(Konstantin Novoselov)因在二维空间材料石墨烯(graphene)方面的开创性实验而获奖。 安德烈·盖姆(Andre Geim),荷兰公民。1958年出生于俄罗斯索契。1987年从俄罗斯科学院固态物理研究所获得博士学位。英国曼彻斯特大学介观科学与纳米技术中心主任。曼彻斯特大学物理学教授及皇家学会2010周年纪念研究教授。 康斯坦丁·诺沃肖罗夫(Konstantin Novoselov),英国和俄罗斯公民。1974年出生于俄罗斯下塔吉尔。2004年从荷兰内梅亨大学获得博士学位。英国曼彻斯特大学教授及皇家学会研究员。 只有一个原子厚度,看似普通的一层薄薄的碳,缔造了本年度的诺贝尔物理学奖。安德烈·盖姆和康斯坦丁·诺沃肖罗夫向世人展现了形状如此平整的碳元素在量子物理学的神奇世界中所具有的杰出性能。 作为由碳组成的一种结构,石墨烯是一种全新的材料——不单单是其厚度达到前所未有的小,而且其强度也是非常高。同时,它也具有和铜一样的良好导电性,在导热方面,更是超越了目前已知的其他所有材料。石墨烯近乎完全透明,但其原子排列之紧密,却连具有最小气体分子结构的氦都无法穿透它。碳——地球生命的基本组成元素——再次让世人吃惊。 安德烈·盖姆和康斯坦丁·诺沃肖罗夫是从一块普通得不能再普通的石墨中发现石墨烯的。他们使用普通胶带获得了只有一个原子厚度的一小片碳。而在当时,很多人都认为如此薄的结晶材料是非常不稳定的。 然而,有了石墨烯,物理学家们对具有独特性能的新型二维材料的研制如今已成为可能。石墨烯的出现使得量子物理学研究实验发生了新的转折。同时,包括新材料的发明、新型电子器件的制造在内的许多实际应用也变得可行。人们预测,石墨烯制成的晶体管将大大超越现今的硅晶体管,从而有助生产出更高性能的计算机。 由于几乎透明的特性以及良好的传导性,石墨烯可望用于透明触摸屏、导光板、甚至是太阳能电池的制造。 当混入塑料,石墨烯能将它们转变成电导体,且增强抗热和机械性能。这种弹性可用于制造新型超强材料,质薄而轻,且具有弹性。将来,人造卫星、飞机及汽车都可用这种新型合成材料制造。 今年的获奖者在一起工作了很长时间。36岁的康斯坦丁·诺沃肖罗夫最初在荷兰以博士生身份与51岁的安德烈·盖姆开始合作。后来他跟随盖姆去到英国。不过他们两人最初都是在俄罗斯学习并开始物理学家生涯。现在他们均为曼彻斯特大学的教授。 爱玩是他们的特点之一,玩的过程总是会让人学到点东西,没准就这么着中了头彩。就像他们现在这样,凭石墨烯而将自己载入科学的史册。

对诺贝尔物理学奖获得者的统计与分析

对诺贝尔物理学奖获得者的统计与分析 物理是一门神奇的学科,在努力学好规定课程外,还应该多了解一些课外知识,随着2012年诺贝尔奖揭晓仪式将于10月8日起陆续举行,物理学奖于2012年10月9日揭晓。我们对历届诺贝尔物理学将获得者是否有一些共性产生了兴趣,为此组成了课题组对历届诺贝尔物理学奖获得者进行了统计与分析。 诺贝尔物理学奖是根据诺贝尔遗嘱而设立的五个基本奖项之一,旨在奖励那些在物理学领域里做出突出贡献的科学家。自1901年首届诺贝尔物理学奖颁发至2012年112年间,除了1916 年因第一次世界大战,1931年和1934 年因世界经济大萧条,以及1940~1942年因第二次世界大战未颁发外,一共授奖106次,共有192人次,191人获得此项殊荣。其中美国科学家巴丁是唯一一位两次荣获诺贝尔物理学奖的物理学家。他分别在1956年因发明晶体管及对晶体管效应的研究以及时隔16年后与库伯、施里弗创立BCS超导微观理论而两次获此殊荣。获奖者中有2名女科学奖。她们是法国的居里夫人1903年因发现自发放射性和在放射学方面的深入研究和杰出贡献而获奖,以及美国的迈耶夫人1963年因对原子核和基本粒子理论所做的贡献,特别是对称性基本原理的发现和应用获得该奖,其余186人皆为男性。对女性科学家的关注不够是造成这种现象的重要原因。而居里夫妇也是这112年中唯一一对获得该奖的夫妻,更令世人对他们的甜蜜爱情和同登科学高峰的研究精神羡慕钦佩。在这112年中,最年轻的物理学奖得主是1915年获此殊荣的英国物理学家劳伦斯·布拉格,时年25岁;最年长的物理学奖得主是2002年获得该奖的美国物理学家雷蒙德·戴维斯,他得奖时已是85岁高龄。112年中曾出现过布拉格父子、汤姆孙父子、玻尔父子和西格班父子等四对父子获得诺贝尔物理学奖,他们父子情深、追求卓越、同攀科学高峰的精神彪炳史册,为世人学习和铭记。 一、诺贝尔获奖者所处的环境 影响诺贝尔物理学奖获得者的环境因素很多,经过查阅资料发现诺贝尔物理学奖获得者所处的环境的几个共同点是:开放的国家环境、稳定的社会环境、激发创造活力的教育环境与和谐的人际关系。以马克斯·玻恩为例(1954年获奖),在获奖前,他的主要经历是1907年哥廷根大学获得博士,1908年剑桥大学学习物理知识,1909年至1915年先后在哥廷根大学,及印度科学院学习和工作。后来在爱丁堡大学工作17年。许多获奖物理学家都有相似的经历,而这样的经历又只有在开放的国家环境中才能实现。稳定的社会环境是科学家潜心研究的必要条件战争和动乱是对科学研究的最大干扰,对科学家的身心也是极大的磨损和消耗。以德国为例,1933年希特勒上台后,德国在22年里无一人获奖,其中奥托·斯特恩、马克斯·玻恩、贝蒂、加波等四位科学家是在希特勒执政时离开德国分别在美英继续研究。可见一个稳定的社会环境对科学研究时多么的重要。富有创造活力的教育环境是科学幼苗成长为科学巨匠的适宜土壤。因发现泡利不相容原理而于1945年获诺贝尔物理学奖的泡利其成长经历就是一例,证上中学时18岁的泡利就写了一篇关于相对论的论文讨论了引力场动量一能量张量的能量分量,他把论文带到了慕尼黑经过著名物理学家索末菲的推荐发表在德国期刊上,此后他继续研究了广义相对论问题发表的论文引起了同行们的注意。随后又和数学家克莱因合作编写《数理科学全书》第五卷,不久泡利就写出了一篇250页左右的综述文章。克莱因看完文章后,把著作权给了泡利。这篇稿子成了全面论述爱因斯坦的数学思想和物理观念的最早论著之一,而且至今仍是有关相对论的重要经典。 192位获奖者不仅在物理学研究领域有很高的造诣而且大多表现出了高尚的人格魅力和处理人际关系的艺术,师生关系和谐、合作伙伴关系和谐、家庭,和谐是科学家研究取得突破的重要基础。例如居里夫妇,劳伦斯·布拉格父子等等。

历年诺贝尔物理学奖得主(1901-2016)汇总

历年诺贝尔物理学奖得主(1901-2016)年份获奖者国籍获奖原因 1901年威廉·康拉德·伦琴德国“发现不寻常的射线,之后以他的名字命名”(即X 射线,又称伦琴射线,并伦琴做为辐射量的单位) 1902年亨得里克·洛仑兹荷兰 “关于磁场对辐射现象影响的研究”(即塞曼效应)彼得·塞曼荷兰 1903年亨利·贝克勒法国“发现天然放射性” 皮埃尔·居里法国“他们对亨利·贝克勒教授所发现的放射性现象的 共同研究” 玛丽·居里法国 1904年约翰·威廉·斯特拉斯英国“对那些重要的气体的密度的测定,以及由这些研究而发现氩”(对氢气、氧气、氮气等气体密度的测量,并因测量氮气而发现氩) 1905年菲利普·爱德华·安 东·冯·莱纳德 德国“关于阴极射线的研究” 1906年约瑟夫·汤姆孙英国"对气体导电的理论和实验研究" 1907年阿尔伯特·迈克耳孙美国“他的精密光学仪器,以及借助它们所做的光谱学和计量学研究” 1908年加布里埃尔·李普曼法国“他的利用干涉现象来重现色彩于照片上的方法” 1909年古列尔莫·马可尼意大利 “他们对无线电报的发展的贡献”卡尔·费迪南德·布劳恩德国 1910年范德华荷兰“关于气体和液体的状态方程的研究”1911年威廉·维恩德国“发现那些影响热辐射的定律” 1912年尼尔斯·古斯塔夫·达伦瑞典“发明用于控制灯塔和浮标中气体蓄积器的自动调节阀” 1913年海克·卡末林·昂内斯荷兰“他在低温下物体性质的研究,尤其是液态氦的制成” 1914年马克斯·冯·劳厄德国“发现晶体中的X射线衍射现象” 1915年威廉·亨利·布拉格英国 “用X射线对晶体结构的研究”威廉·劳伦斯·布拉格英国 1917年查尔斯·格洛弗·巴克拉英国“发现元素的特征伦琴辐射” 1918年马克斯·普朗克德国“因他的对量子的发现而推动物理学的发展” 1919年约翰尼斯·斯塔克德国“发现极隧射线的多普勒效应以及电场作用下谱线的分裂现象” 1920年夏尔·爱德华·纪尧姆瑞士“他的,推动物理学的精密测量的,有关镍钢合金的反常现象的发现” 1921年阿尔伯特·爱因斯坦德国“他对理论物理学的成就,特别是光电效应定律的发现” 1922年尼尔斯·玻尔丹麦“他对原子结构以及由原子发射出的辐射的研究”1923年罗伯特·安德鲁·密立根美国“他的关于基本电荷以及光电效应的工作” 1924年卡尔·曼内·乔奇·塞格 巴恩 瑞典“他在X射线光谱学领域的发现和研究”[3]

1998年诺贝尔物理学奖

·1998年诺贝尔物理学奖——分数量子霍耳效应的发现 1998年诺贝尔物理学奖授予美国加州斯坦福大学的劳克林(Robert https://www.doczj.com/doc/991107779.html,ughlin,195O—),美国纽约哥伦比亚大学与新泽西州贝尔实验室的施特默(Horst L.St rmer,1949—)和美国新泽西州普林斯顿大学电气工程系的崔琦(Daniel C.Tsui,1939—),以表彰他们发现了一种具有分数电荷激发状态的新型量子流体,这种状态起因于所谓的分数量子霍耳效应。 量子流体早在研究极低温状态下的液氦和超导体时就已有所了解。在这些领域里,已经有好几位物理学家获得过诺贝尔物理学奖。例如,卡末林-昂内斯由于液氦的研究和超导电性的发现获1913年诺贝尔物理学奖;朗道由于液氦和超流理论获1962年诺贝尔物理学奖;巴丁、库珀和施里弗由于提出超导电性的BCS 理论获1972年诺贝尔物理学奖;卡皮查由于发现氦的超流动性获1978年诺贝尔物理学奖;柏诺兹和缪勒由于发现高温超导获1987年诺贝尔物理学奖;戴维·李、奥谢罗夫和R.C.里查森则因发现氦-3的超流动性获1996年诺贝尔物理学奖。这么多的物理学家受到如此殊荣,说明凝聚态物理学在20世纪有极大的发展,而低温和超导在这一领域内又具有特殊重要的地位。分数量子霍耳效应正是继高温超导之后凝聚态物理学又一项崭新课题。 分数量子霍耳效应是继霍耳效应和量子霍耳效应①的发现之后发现的又一项有重要意义的凝聚态物质中的宏观量子效应。冯·克利青由于在1980年发现了量子霍耳效应而于1985年获得诺贝尔物理学奖。图98-1表示冯·克利青所得霍耳电阻随磁场变化的台阶形曲线。台阶高度等于物理常数h/e2除以整数i。e 与h是自然的基本常数——e是电子的基本电荷,h是普朗克常数。h/e2值大约 为25kΩ。图中给出了i=2,3,4,5,6,8,10的各层平台。下面带峰的曲线表示欧姆电阻,在每个平台处趋于消失。量子数i也可用填充因子f 代替,填 充因子f由电子密度和磁通密度确定,可以定义为电子数N与磁通量子数Nφ(=φ/φ0)之比,即f=N/Nφ,其中φ为通过某一截面的磁通,φ0为磁通量子, φ0=h/e=4.1×10-15Vs.当f是整数时,电子完全填充相应数量的简并能级(朗 道能级),这种情况的量子霍耳效应叫做整数量子霍耳效应,以与分数量子霍耳效应相区别。

1955年诺贝尔物理学奖

1955年诺贝尔物理学奖 1955年的物理学奖,被美国的两位物理学家分享,他们是威利斯·兰姆(Willis https://www.doczj.com/doc/991107779.html,mb)和波利卡普·库什(Polykarp Kusch)。兰姆使用微波技术探究氢原子的精细结构,发现了兰姆位移;库什使用射频束精确地测量了电子的磁矩,完善了核理论。二人都对量子电动力学的创立和发展起到重大的推动作用。 兰姆和库什都是在第二次世界大战前不久进入哥伦比亚大学辐射实验室的,两人都是拉比的追随者与合作者。兰姆先是从事理论研究,发表过多篇论文。库什则直接参与了拉比的磁共振方法研究。他们二人在第二次世界大战期间都从事过雷达技术的工作,从而促使他们对微波有所了解,并在后来的实验中用到这一技术。他们在同一个实验室中工作,但分别领导着一个小组,在同一年完成并且可以用同样的原理来解释各自的发现,这一原理就是关于电子与电磁辐射相互作用的理论。显然,他们的研究工作是相互促进的,尽管使用的方法与实验装置有所不同。 威利斯·尤金·兰姆(Willis Eugene Lamb,1913—2008),出生于美国加利福尼亚州的洛杉矶,父亲是一位电话工程师。1930年,兰姆进入伯克利加州大学,1934年获化学学士学位。随后在奥本海默的指导下研究理论物理学,1934年获得博士学位。1938年,兰姆到哥伦比亚大学任教。从1943年到1951年,兰姆在哥伦比亚大学辐射实验室工作,在那里完成了他的主要成就。2008年,逝世于亚利桑那洲的图森。 1

兰姆的发现与氢原子有关,氢原子中有一个电子,沿一系列的轨道绕其核旋转,每条轨道对应于确定的能级,各能级都具有精细结构。长期以来,精细结构的解释是使用狄拉克的相对论性量子力学,并且得到了公认。然而,用光学方法验证狄拉克的精细结构理论,历经一二十年,始终未获得成功。 氢光谱作为最典型、最简单的一种原子光谱,对它的研究历时一百多年。1885年,巴耳末发现14根氢谱线的波长可以用一个简单的公式来表示,这就是巴耳末公式。随后不久的1887年,迈克尔逊和莫雷发现这一谱系的第一条谱线Hα线有精细结构,当时由于谱线本底太强,无法分辨结构的细节,只能认为是由双线组成。后人根据谱线强度的包络线作出种种猜测,例如,有人认为里面包含五条强度不等的细线。1913年,玻尔提出定态跃迁原子模型,成功地推出了巴耳末公式,然而仍不能解释精细结构。1916年,索末菲对玻尔的理论进行了修正,计算出了双线的理论值,与实验所得基本吻合。1926年,海林堡等人用量子力学计算能级,与索末菲的结果稍有出入。1928年,狄拉克用相对论量子力学,考虑到自旋和轨道耦合,提出了狄拉克方程,可以描述氢原子的能级,据此得出氢光谱中Hα的精细结构。只是由于与Hα有关的能级中22S1/2和22P1/2、32S1/2和32P1/2、32S3/2和32P3/2能级分别相等,所以实际上Hα只有五个成分。 为了检验狄拉克理论的正确性,人们对氢光谱作了大量的光学实验,均未有定论。其中只有加州理工学院的豪斯顿(W.V.Houston)和谢玉铭的实验取得了明确结论,他们的实 2

1977年诺贝尔物理学奖——电子结构理论

1977年诺贝尔物理学奖——电子结构理论1977年诺贝尔物理学奖授予美国新泽西州缪勒山(Murray Hill)贝尔实验室 的P.W.安德森(Philip W.Anderson,1923—)、英国剑桥大学的莫特(Nevill Mott,1905—1996)和美国哈佛大学的范弗莱克(John Van Vleck,1899—1980),以表彰他们对磁性和无序系统的电子结构所作的基础理论研究。 P.W.安德森1923年12月13日出生于美国依利诺斯州的印第安纳波利斯(Indianapolis)。父亲是依利诺斯大学的植物学教授,在他父母的亲友中有许多物理学家,他们激发了P.W.安德森对物理的爱好。中学毕业后,进入哈佛大学,主修数学。可是不久第二次世界大战爆发。P.W.安德森在此期间应召入伍,被分配去学习电子物理,不久派遣到海军研究实验室建造天线。这项工作使他对西方电器公司和贝尔实验室有所了解。战争结束后,P.W.安德森返回哈佛大学,就下决心向物理学家学习,做一名物理学家。在这些物理学家中,以电子结构理论著称的磁学专家范弗莱克是他最敬佩的物理学家之一。他和范弗莱克曾经一起在军事部门工作过,范弗莱克是哈佛大学的著名教授,正是范弗莱克的指引,P.W.安德森后来决心把自己的研究方向定位在固体的电子结构和现代磁学,在范弗莱克的指导下研究了微波和红外光谱的压力增宽。他为了用分子间相互作用解释这些谱线在高密度下增宽的现象,借助于洛伦兹等人的理论发展了一种更普遍的方法,运用于从微波到红外和可见光的光谱学。他还根据已知的分子作用计算出了初步的定量结果。 后来,P.W.安德森的注意力聚焦于绝缘的磁性材料,诸如铁淦氧体和反磁性的氧化物,也就是要研究是什么因素导致原子磁矩和自旋以及人们观测到的那些特殊排列。他在克拉默斯(H.A.Kramers)的“超交换”这一旧概念的基础上,探讨了相互作用的机制。他对相互作用所作的假设可解释自旋花样和居里-奈尔点。 在这项工作之后,P.W.安德森研究了所谓的近藤(Kondo)效应,这个效应涉及磁杂质对极低能自由电子的畸形散射,并对低温状态的情况给出了初步定性解答。这是重正化技术对固体和统计力学问题最早的应用之一。 50年代初,科学家开始研究不同领域的磁共振谱学中的谱线形状和宽度问题。布隆姆贝根、珀塞尔和庞德(Pound)对核共振、范弗莱克对电子共振提出了许多有用的概念,但从观测到的谱线进一步理解原子运动和相互作用,尚需有定量的数学表述。从这一观点看,铁磁共振是一个空白。P.W.安德森对此提供了一种数学上的方法,来处理“交换变窄”和“运动变窄”等问题,并把这些问题与原子运动和交换联系在一起。他还对相互作用和机制进行了许多研究。在铁磁共振方面,他和苏尔(H.Suhl)等人合作,首先提出了杂质增宽和自旋波激发等概念,使这个领域得以澄清。当解释超导电性的BCS理论在1957年刚刚提出时,基本原理问题还存在。P.W.安德森是最早解释这些问题并将巴丁、库珀和施里弗的方法普遍化中的一位。

历届诺贝尔物理学奖

历届诺贝尔物理学奖 1901年威尔姆·康拉德·伦琴(德国人)发现X 射线 1902年亨德瑞克·安图恩·洛伦兹、P. 塞曼(荷兰人)研究磁场对辐射的影响 1903年安东尼·亨利·贝克勒尔(法国人)发现物质的放射性皮埃尔·居里(法国人)、玛丽·居里(波兰人)从事放射性研究 1904年J.W.瑞利(英国人)从事气体密度的研究并发现氩元素 1905年P.E.A.雷纳尔德(德国人)从事阴极线的研究 1906年约瑟夫·约翰·汤姆生(英国人)对气体放电理论和实验研究作出重要贡献1907年 A.A.迈克尔逊(美国人)发明了光学干涉仪并且借助这些仪器进行光谱学和度量学的研究 1908年加布里埃尔·李普曼(法国人)发明了彩色照相干涉法(即李普曼干涉定律)1909年伽利尔摩·马可尼(意大利人)、K . F. 布劳恩(德国人)开发了无线电通信O.W.理查森(英国人)从事热离子现象的研究,特别是发现理查森定律 1910年翰尼斯·迪德里克·范德华(荷兰人)从事气态和液态议程式方面的研究1911年W.维恩(德国人)发现热辐射定律 1912年N.G.达伦(瑞典人)发明了可以和燃点航标、浮标气体蓄电池联合使用的自动节装置 1913年H·卡末林—昂内斯(荷兰人)从事液体氦的超导研究 1914年马克斯·凡·劳厄(德国人)发现晶体中的X射线衍射现象 1915年威廉·亨利·布拉格、威廉·劳伦斯·布拉格(英国人)借助X射线,对晶体结构进行分析 1916年未颁奖 1917年 C.G.巴克拉(英国人)发现元素的次级X 辐射的特征 1918年马克斯·卡尔·欧内斯特·路德维希·普朗克(德国人)对确立量子理论作出巨大贡献 1919年J.斯塔克(德国人)发现极隧射线的多普勒效应以及电场作用下光谱线的分裂现象 1920年 C.E.纪尧姆(瑞士人)发现镍钢合金的反常现象及其在精密物理学中的重要性

1956年诺贝尔物理学奖——晶体管的发明(可编辑修改word版)

1956 年诺贝尔物理学奖——晶体管的发明 1956 年诺贝尔物理学奖授予美国加利福尼亚州景山(MountainView)贝克曼仪器公司半导体实验室的肖克利(William Shockley,1910—1989)、美国伊利诺斯州乌尔班那伊利诺斯大学的巴丁(JohnBardeen,1908—1991)和美国纽约州缪勒海尔(Murray Hill)贝尔电话实验室的布拉坦(Walter Brattain,1902—1987),以表彰他们对半导体的研究和晶体管效应的发现。 晶体管的发明是20 世纪中叶科学技术领域有划时代意义的一件大事。由于晶体管比电子管有体积小、耗电省、寿命长、易固化等优点,它的诞生使电子学发生了根本性的变革,它拨快了自动化和信息化的步伐,从而对人类社会的经济和文化产生了不可估量的影响。 应该指出,晶体管效应的发现是科学家长期探索的结晶,更是基础研究引向应用开发的必然成果。半导体的研究可以追溯到19 世纪,例如,1833 年法拉第曾经观察过某些化合物(例如硫化银)电阻具有负温度系数。这是半导体效应的先声。1874 年,布劳恩(F.Braun)注意到金属和硫化物接触时有整流特性,而1876 年亚当斯(W.G.Adams)等人发现光生电动势。1883 年,弗利兹(C.E.Fritts)制成第一个实用的硒整流器。无线电报出现后,矿石作为检波器被广泛应用,主要成分是硫化铜,后来用上了硅和锗。氧化铜整流器和硒光电池的商品化,要求科学家深入研究有关现象的实质和原理。 1926 年,索末菲用费米-狄拉克统计解释了金属中电子的行为。他的学生布洛赫(F.Bloch)研究晶体点阵对电子运动的影响,提出在周期性势场中电子占据的能级可能形成能带。1931 年A.H.威耳逊(A.H.Wilson)进一步对固体提出量子

【历届诺贝尔奖得主(八)】1983年物理学奖

1983年12月10日第八十三届诺贝尔奖颁发。 物理学奖 美国科学家昌德拉塞卡因对恒星结构方面的杰出贡献、美国科学家福勒因与元素有关的核电应方面的重要实验和理论而共同获得诺贝尔物理学奖。 苏布拉马尼扬·钱德拉塞卡是一位印度裔美国籍物理学家和天体物理学家。钱德拉塞卡在1983年因在星体结构和进化的研究而与另一位美国体物理学家威廉·艾尔弗雷德·福勒共同获诺贝尔物理学奖。他也是另一个获诺贝尔奖的物理学家拉曼的亲戚。钱德拉塞卡从1937年开始在芝加哥大学任职,直到1995年去世为止。他在1953年成为美国的公民。钱德拉塞卡兴趣广泛,年轻时曾学习过德语,并读遍自莎士比亚到托马斯·哈代时代的各种文学作品。 人物简介 苏布拉马尼扬·钱德拉塞卡(SubrahmanyanChandrasekhar,1910年10月19日 —1995年8月15日),在恒星内部结构理论、恒星和行星大气的辐射转移理论、星系动力学、等离子体天体物理学、宇宙磁流体力学和相对论天体物理学等方面都有重要贡献。1983年因在星体结构和进化的研究而获诺贝尔物理学奖。他是另一个获诺贝尔奖的物理学家拉曼的亲戚。 他一生中写了约四百篇论文和诸多书籍。他兴趣广泛,年青时曾学习德语,读遍自莎士比亚到托马斯·哈代的文学作品。 1937年起钱德拉塞卡在芝加哥大学工作,1953年取得美国国籍。晚年他曾研读牛顿的《自然哲学的数学原理》,并写了《Newton'sPrincipiafortheCommonReader》。此书出版后不久他便逝世了。 他算过白矮星的最高质量,即钱德拉塞卡极限。所谓“钱德拉塞卡极限”是指一颗白矮星能拥有的最大质量,任何超过这一质量的恒星将以中子星或黑洞的形式结束它们的命运。 人物生平 钱德拉塞卡于1910年出生在英属印度旁遮普地区拉合尔(现在的巴基斯坦),在家中排名第3,父亲为印度会计暨审计部门的高阶官员。 钱德拉塞卡的父亲也是一位技术娴熟的卡纳蒂克音乐(Carnaticmusic)演奏者与一些音乐学著作的作者。他的母亲则是一位知识份子,并曾将亨利克·易卜生的剧作《玩偶之家》翻译成泰米尔语。 钱德拉塞卡起初在家中学习,后来则进入清奈的高中就读(1922年至1925年间)。他在1925年至1930年进入了清奈的院长学院(PresidencyCollege),并获得学士学位。钱德拉塞卡在1930年7月获得印度政府的奖学金,于是前往英国剑桥大学深造。他后来进入剑桥三一学院就读,并成为劳夫·哈沃德·福勒(RalphHowardFowler)的学生。在保罗·狄拉克的建议下,钱德拉塞卡花费一年的时间在哥本哈根进行研究,并且认识了尼尔斯·玻尔。 钱德拉塞卡在1933年夏天获得剑桥大学的博士学位,并且在当年十月成为三一学院的研究员(1933年-1937年),他在这段时期认识了天文学家亚瑟·爱丁顿与爱德华·亚瑟·米尔恩(EdwardArthurMilne)。 钱德拉塞卡在1936年与LalithaDoraiswamy结婚。 学术生涯 苏布拉马尼扬·钱德拉塞卡,1930年毕业于印度马德拉斯大学,1933年获得英国剑桥大学三一学院博士学位。 1930~1934年在英国剑桥大学三一学院学习理论物理。

1945年诺贝尔物理学奖

1945年诺贝尔物理学奖 1945年物理学奖得主,是奥地利的沃尔夫冈·泡利(Wolfgang E.Pauli),获奖理由是他提出了泡利不相容原理。 沃尔夫冈·厄恩斯特·泡利(Wolfgang Ernst Pauli,1900—1958),出生于奥地利维也纳。父亲是维也纳大学的生化学家,母亲是一名作家。他小他受到良好的教育,中学阶段就自学了大学物理和数学分析教程,被当作物理和数学神童。中学毕业后,泡利带着父亲的介绍信去慕尼黑找著名的物理学家索茉菲学习理论物理。泡利申请不学大学课程而直接读研究生,并要求参加高年级研究生的讨论班。这让索茉菲惊讶不已,觉得这个年轻人有些不知天高地厚。不久后,索茉菲发现在讨论班上,泡利发言最快,观点鲜明,才肯定了他的才华。当时,德国准备出版一本百科全书,其中有关相对论的章节,请索茉菲代为起草。索茉菲自己没有动笔,却把这个任务交给了泡利。泡利以惊人的速度,很快写出了一份250页的有关相对论的综述文章,再次让索茉菲惊叹不已。这篇文章写就于1921年,即使在今天,这篇文章和外尔(weyl)所著的《空间、时间和物质》,仍然被公认为评述相对论的经典著作。同年,在索茉菲的推荐下,泡利来到哥丁根大学做玻恩的助手。这年秋天,泡利与师弟海森堡一起,随导师索茉菲在哥丁根参加了一个会议。在这次会议上,泡利遇到了著名的理论物理学家玻尔。玻尔很快发现这两个年轻人非同一般,马上邀请他们去哥本哈根理论物理研究所工作。从此,泡利、海森堡与玻尔结下了深厚的友谊。泡利不 1

是一个好的演讲者,或者说他对演讲和讲课不感兴起,讲解时经常自言自语,在黑板上写的字又小又乱。他还有一个癖好,就是在讲课时也在思考自己的课题,因而影响到教学效果。泡利在与人争论学术问题时,往往言词犀利,不留情面,让人有点难以接受。传说有一次在讨论会上,玻尔发言时被泡利突然打断:“住口,别冒傻气!”玻尔了解泡利的脾气,并未生气,而是温和地说:“但是泡利,你听我说完。”泡利立刻回口:“不,我一个字也不想听。”1928年,泡利转到瑞士苏黎世联邦工学院任物理学教授,一直工作到退休。1956年,杨振宁和李政道为解释τ-θ之谜而提出了在弱相互作用中宇称不守恒的理论,泡利曾极力反对,直到该理论被吴健雄证实。1958年,泡利在瑞士苏黎世去世,享年58岁。 1922年,泡利应玻尔之邀到哥本哈根工作,致力于研究不规则的塞曼效应。当时玻尔、索茉菲和兰德都认为,尤其是在碱金属中,价电子所围绕运动的原子核心具有角动量,造成了原子的不规则磁性。泡利持不同意见,他认为,不规则磁性与核心无关,是由电子的属性引起的。根据薛定谔描述量子规律的波动方程,已知的量子数有三个:n、l和m。主量子数n给出电子到达原子核的近似距离,这是极可能发现电子的地点。n值的范围从1到无穷大,对于处于基态的原子,n不超过7。第二量子数l给出电子的角动量值,这个数值一般与电子所占区域的形状有关,对于一给定电子,l值总是低于n值。第三量子数m叫作磁性量子数,它给出电子的角动量在磁场中的定向,其值范围从负l到正l。因此,对于l的第一个值都有m的容许值2l+1。 2

1918年诺贝尔物理学奖——能量子的发现

1918年诺贝尔物理学奖——能量子的发现 1918年诺贝尔物理学奖授予德国柏林大学的普朗克(Max KarlErnst Ludwig Planck ,1858—1947),以承认他发现能量子对物理学的进展所作的贡献。 1895年前后,普朗克正在德国柏林大学当理论物理学教授,由于鲁本斯(H.Rubens )的介绍,经常参加以基本量度基准为主要任务的德国帝国技术物理研究所(Physikalisch Technische Reichsanstalt ,简称PTR )有关热辐射的讨论。这时PTR 的理论核心人物维恩(W.Wien )因故离开PTR ,PTR 的实验研究成果需要有理论研究工作者的配合,普朗克正好补了这个空缺。 维恩在1893年提出了关于辐射能量分布的定律,即著名的维恩分布定律: T a e b u --=5λ 其中u 表示能量随波长λ分布的函数,也叫能量密度,T 表示绝对温度,a ,b 是两个任意常数。 维恩分布定律发表后引起了物理学界的注意。实验物理学家力图用更精确的实验予以检验;理论物理学家则希望把它纳入热力学的理论体系。普朗克认为维恩的推导过程不大令人信服,假设太多,似乎是凑出来的。于是从1897年起,普朗克就投身于这个问题的研究。他企图用更系统的方法以尽量少的假设从基本理论推出维恩公式。经过二三年的努力,终于在1899年达到了目的。他把电磁理论用于热辐射和谐振子的相互作用,通过熵的计算,得到了维恩分布定律,从而使这个定律获得了普遍的意义。 然而就在这时,PTR 成员的实验结果表明维恩分布定律与实验有偏差。1899年卢梅尔(O.R.Lummer )与普林舍姆(E.Pringsheim )向德国物理学会报告说,他们把空腔加热到800K ~1400K ,所测波长为0.2μm ~6μm ,得到的能量分布曲线基本上与维恩公式相符,但公式中的常数,似乎随温度的升高略有增加。第二年2月,他们再次报告,在长波方向(他们的实验测得8μm )有系统偏差。 根据维恩公式,应有:lnu=ln (bλ-5)T a λ- 从而lnu ~T 1曲线应为一根直线。但是,他们却发现温度越高,偏离得越厉害。 接着,鲁本斯和库尔班(F.Kurlbaum )将长波测量扩展到5.2μm 。他们发现在长波区域辐射能量分布函数(即能量密度)与绝对温度成正比。 普朗克刚刚从经典理论推导出的辐射能量分布定律,看来又需作某些修正。正在这时,瑞利(Lord Rayleigh )从另一途径也提出了能量分布定律。

近五年诺贝尔物理学奖简介

2008年至2012年诺贝尔物理学奖获得者及其主要贡献简介 获奖年度:2012年 获奖者:沙吉·哈罗彻(Serge Haroche)大卫·温兰德(David J. Wineland) 获奖者简介:沙吉·哈罗彻1944年生于摩洛哥的卡萨布兰卡,现为法 国籍。他1971年在巴黎第六大学获得博士学位,曾任职于法国国家科研中心和法国综合理工大学,现为法兰西学院和巴黎高等师范学院教授。 大卫·温兰德1944年生于美国密尔沃基,1970年在哈佛大学获得博士学位,现任职于美国国家标准与技术研究所和科罗拉多大学博尔德分校。 获奖原因 瑞典皇家科学院授予这二人奖项的原因是他们在“突破性的试验方法使得测量和操纵单个量子系统成为可能”。 塞尔日·阿罗什和大卫·维因兰德独立地发明并拓展出能够在保持个体粒子的量子力学属性的情况下对其进行测量和操控的方法,而这在之前被认为是不能实现的。 在不破坏单个量子粒子的前提下实现对其直接观测,两位获奖者以这样的方式为量子物理学实验新纪元开辟了一扇大门。对于单个光子或物质粒子来说,经典物理学定律已不再适用,量子物理学开始“接手”。但从环境中分离出单个粒子并非易事,而且一旦粒子融入外在世界,其神秘的量子性质便会消失。因此,许多通过量子物理学推测出来的现象看似荒诞,也不能被直接观测到,研究人员也只能进行一些猜想实验,试图从原理上证明这些荒诞的现象。 通过巧妙的实验方法,阿罗什和维因兰德与研究小组一起成功地实现对量子碎片的测量和控制,颠覆了之前人们认为的其无法被直接观测到的看法。这套新方法允许他们检验、控制并计算粒子。 两位获奖者均在量子光学领域研究光与物质间的基本相互作用,这一领域自1980年代中期以来获得了相当多的成就。他们的突破性的方法,使得这一领域的研究朝着基于量子物理学而建造一种新型超快计算机迈出了第一步。就如传统计算机在上世纪的影响那样,或许量子计算机将在本世纪以同样根本性的方式改变我们的日常生活。极端精准的时钟在他们研究的推动下应运而生,有望成为未来新型时间标准的基础,而其精准度超越现代铯时钟百倍以上。

1979年诺贝尔物理学奖——弱电统一理论

1979年诺贝尔物理学奖——弱电统一理论1979年诺贝尔物理学奖授予美国马萨诸塞州坎伯利基哈佛大学莱曼实验室 的格拉肖(Sheldon L.Glashow,1932—)、英国伦敦帝国科技学院的巴基斯坦物理学家萨拉姆(Abdus Salam,1926—1996)和美国马萨诸塞州坎伯利基哈佛大学的温伯格(Steven Weinberg,1933—),以表彰他们在发展基本粒子之间的弱电相互作用理论的贡献,特别是预言了弱中性流①。 有人说,相对论和量子力学是20世纪物理学最重要的成果,而把电磁力和弱力统一在一起的弱电相互作用理论则是20世纪的最高点,这无疑是恰当的评价。 格拉肖1932年12月5日出生于美国纽约。父亲为了躲避沙俄对犹太人的迫害,年轻时从俄国移居到美国,当了一名管钳工。格拉肖有两个哥哥,比他大十几岁。父母和哥哥都很喜欢他,给他创造了较好的条件,让他学习科学。他在家里的地下室有自己的化学实验室,从小就对科学有强烈的兴趣。1947年格拉肖进纽约的布朗克斯理科中学,温伯格是他的同窗好友。从这时起就开始了他们之间的共同追求。格拉肖酷爱读书,并组织了一个科学幻想俱乐部,出版了中学科学幻想杂志。1950年格拉肖和温伯格一起进入康奈尔大学。格拉肖对这里的本科教学不大满意,因为有名的教授都去给研究生开课,于是就在三四年级时选修了经典电磁理论、量子场论之类的研究生课程。他还经常参加学术报告会。和中学时期一样,他喜欢和同学们讨论问题。1954年大学毕业,格拉肖来到哈佛大学,选择了著名物理学家施温格当自己的导师。在施温格的指导下,格拉肖选取了“基本粒子衰变中的矢量介子”作为自己的博士论文题目。1958年获博士学位。后得到一笔美国科学基金会资助来到丹麦的理论物理研究所。在这里做了两年的研究工作,就在这段时期,他发现了关于弱电统一理论的SU(2)×U(1)模型。 这项重要工作实际上在做博士论文时就已有准备,他在论文附录中就提到了弱电统一的思想,而这一思想正是他的导师施温格首先倡导的。 1956年施温格就已开始考虑弱电统一理论。这件事的由来还应追溯到李政道和杨振宁对弱相互作用中宇称不守恒的发现。这一发现促使人们认识到弱相互作用是普适的V-A型理论,并使人们注意到弱相互作用和电磁相互作用之间有某种共同点,从而进一步考虑两者之间的统一性。施温格在1957年发表的论文中提出弱相互作用是由光子和两个矢量玻色子传递的,这三种粒子应该组成三重态。这个理论虽然因为本身的缺陷:是张量型的而不是V-A型的,又没有考虑到弱中性流,因此没有成功。 1958年格拉肖把他的博士论文附录扩展为以“矢量介子相互作用的可重正性”为题的论文,他主张弱电统一理论应以杨振宁和米尔斯(https://www.doczj.com/doc/991107779.html,ls)的规范理论为基础。在这篇论文中他还试图证明杨-米尔斯理论是可重正的。 这一年格拉肖到英国就他自己对弱电统一理论的看法作了一次学术报告,听

【历届诺贝尔奖得主(三)】1937年物理学奖

物理学奖 英国,汤姆逊(GeorgePagetThomson1892-1975),发现电子在晶体中的衍射现象 汤姆逊,英国物理学家,世界著名的卡文迪什研究所所长。 约瑟夫·约翰·汤姆逊 Thomson,JosephJohn约瑟夫·约翰·汤姆逊(1856~1940年)。1891年用法拉第管开始了原子核结构的理论研究。他研究了阴极射线在磁场和电场中的偏转,作了比值e/m(电子的电荷与质量之比)的测定,结果他从实验上发现了电子的存在。他把电子看成原子的组成部分,用原子内电子的数目和分布来解释元素的化学性质。提出了原子模型,把原子看成是一个带正电的球,电子在球内运动。他还进一步研究了原子的内部构造和阳极射线。1912年与阿斯顿共同进行阳极射线的质量分析,发现了氖的同位素。1906年他因在气体导电研究方面的成就获得了诺贝尔物理学奖。另有,威廉·汤姆逊(1824~1907年)。亦译为汤姆生。英国物理学家。 汤姆逊集团 THOMSON汤姆逊是法国最大的国有企业集团,具有100多年的历史, 是全球四大消费电子类生产商之一,他在其所有涉足的业务领域中都处于世界领导地位。 汤姆逊公司的主要业务集中在视听通讯产品系列和数码技术处理的范围,业务遍及100多个国家和地区, 全球雇员72000多人,其中42%在美洲,32%在亚洲,26%在欧洲;汤姆逊公司拥有超过34000项业务领域的技术专利权和6000多项发明。 汤姆逊集团目前在中国约有11,000名员工,主要从事制造、研发、专利许可以及营销工作。其中,大约100名的高素质人员受聘于新近在北京落成的研发中心。2003年,汤姆逊集团在中国的运营收入达4.5亿欧元。 为成为媒体与娱乐业的最佳合作伙伴而努力 自1968年以来,汤姆逊集团开展了一系列生产、开发以及销售活动,一直致力于中国的产业和经济发展。 汤姆逊集团对媒体娱乐市场越来越关注,这无疑为中国的媒体娱乐经济起到了推波助澜的作用。再加上2008北京奥运会这一盛事,中国的媒体娱乐产业在各方面都得到了飞速的发展。 随着国外影像制品的大量引进,中国国内电影电视的质量和数量将不断得到重视。这些工艺技术的需求,更加突出了汤姆逊在以下方面的领导趋势: 电影、电视以及广告的后期制作和特效处理; 数字影院–在中国主要城市建成大型多幕影院并促进全国各地的影院建设; 网络电视——现有有线电视网的补充; 数字广播电视节目以及与之相关的传输安全问题; 高清电视、数字有线电视、地面电视、卫星电视、三重播放系统(Tripleplay——影像、声音、数据同步传输)、数字移动电视等等。 实际上,中国政府计划在2008年之前在全国范围内实现电视的数字联播,使每一个人都能够实时体验奥林匹克盛会的整个过程。为把握这一时机,汤姆逊集团也积极与中国各大企业团体合作,引进先进的技术工艺,以适应不断发展的数字市场的需求,并为各项技术标准的建立提供帮助。此外,集团还与中国一些研究院和大学建立了合作关系,将先进的知识和数字技术传入中国。

【历届诺贝尔奖得主(九)】1997年物理学奖1

1997年12月10日第九十七届诺贝尔奖颁发。 物理学奖 美籍华裔科学家朱棣文、美国科学家菲利普斯、法国科学家科昂·塔努吉因发明了用激光冷却和俘获原子的方法,而共同获得诺贝尔物理学奖。 朱棣文(StevenChu,1948年2月28日-),美国华裔物理学家,生于美国圣路易斯;因“发展了用激光冷却和捕获原子的方法”而获得1997年诺贝尔物理学奖。现任美国能源部部长。 生平简介 朱棣文(1948.2)男,祖籍江苏太仓,生于美国密苏里州圣路易斯。汉族,1997年获诺贝尔物理学奖。中国 工作的朱棣文 科学院外籍院士,美国第56届当选总统奥巴马提名美国能源部长。 工作的朱棣文朱棣文的父 亲朱汝瑾是太仓人,母亲李静贞是天津人,他的祖父母也是太仓人。他们40年代来到美国育有三子,都学有所成。朱棣文排行老二。在太仓创建了朱棣文小学,1998年曾经访校一次。 朱棣文1970年毕业于罗切斯特大学,获数学学士和物理学学士学位,1976年获加利福尼亚大学伯克利分校物理学博士学位,后留校做了两年博士后研究,1978年到贝尔电话实验室工作,1983年任该实验室量子电子学研究部主任。1987年任美国斯坦福大学物理学教授,1990年任该校物理系主任。1993年6月被选为美国国家科学院院士。1997年因“发明了用激光冷却和俘获原子的方法”荣获诺贝尔物理学奖,与他同获该奖项的是美国科学家威廉·菲利普斯和一名法国学者。还曾获费萨尔国王国际科学奖。1998年6月5日,当选为中国科学院外籍院士。2004年6月被任命为位于加利福尼亚州的美国能源部下属的劳伦斯·伯克利国家实验室主任。2008年获得美国第56届当选总统奥巴马提名出任美国能源部长。 朱棣文高中毕业时,父亲本不赞成他选择物理学,认为善於绘画的他应该去学建筑,因为物理学界高手太多,不易出成就,而且做实验是枯燥无味的,然而朱棣文却对物理学情有独钟,学问做得津津有味。从1983年起朱棣文开始从事原子冷却技术的研究,1985年发表第一篇学术论文。他荣获诺贝尔奖的科研项目的主要工作是1987年到1992年期间在斯坦福大学完成的。 朱棣文从事的是目前世界上最尖端的激光致冷捕捉技术研究,有着非常广泛的实际用途,这项研究为帮助人类了解放射线与物质之间的相互作用,特别是深入理解气体在低温下的量子物理特性开辟了道路。在原子与分子物理学中,研究气体的原子与分子相当困难,因为它们即使在室温下,也会以上百公里的速度朝四面八方移动,唯一可行的方法是冷却,然而,一般冷却方法会让气体凝结为液体进而结冻。朱棣文等3位学者则利用激光达到冷却气体的效果,即用激光束(molassos)达到万分之一绝对温度,等于非常接近绝对零度(摄氏零下273度)。原子一旦陷入其中,速度将变得非常缓慢,而变得容易俘获。该技术可以用来做精确测量,特别是做"重力测量";人们还可以利用此技术做成重力分析图,由此解开地球上的许多谜团:例如观察油田的内层、勘探海底或地层内的矿物质,在生物科技上可以解读去氧核糖核酸(DNA)的密码;科学家还可以借此研究“原子激光”,制造精密的电子元件;也可以测量万有引力,进一步发展太空宇航系统,进行准确的地面卫星定位。科学家们普遍认为,这的确是一个了不起的研究成果。

相关主题
文本预览
相关文档 最新文档