历届诺贝尔物理学奖
- 格式:doc
- 大小:42.50 KB
- 文档页数:7
物理学大事年表约公元前6世纪,泰勒斯(Thales,公元前624?—546)记述了摩擦后的琥珀吸引轻小物体和磁石吸铁的现象。
公元前6世纪,《管子》中总结和声规律。
阐述标准调音频率,具体记载三分损益法。
约公元前5世纪,《考工记》中记述了滚动摩擦、斜面运动、惯性浮力等现象。
公元前5世纪,德谟克利特(Democritus,公元前460?—370?)提出万物由原子组成。
公元前400年,墨翟(公元前478?—前392?)在《墨经》中记载并论述了杠杆、滑轮、平衡、斜面、小孔成像及光色与温度的关系。
公元前4世纪,亚里士多德(Aristotle,前384—前322)在其所著《物理学》中总结了若干观察到的事实和实际的经验。
他的自然哲学支配西方近2000年。
公元前3世纪,欧几里得(Euclid,前330?—前260?)论述光的直线传播和反射定律。
公元前3世纪,阿基米德(Archimedes,前287?—前212)发明许多机械,包括阿基米德螺旋;发现杠杆原理和浮力定律;研究过重心。
公元前3世纪,古书《韩非子》记载有司南;《吕氏春秋》记有慈石召铁。
公元前2世纪,刘安《前179—前122》著《准南子》,记载用冰作透镜,用反射镜作潜望镜,还提到人造磁铁和磁极斥力等。
1世纪,古书《汉书》记载尖端放电、避雷知识和有关的装置。
王充(27—97)著《论衡》,记载有关力学、热学、声学、磁学等方面的物理知识。
希龙(Heron,62—150)创制蒸汽旋转器,是利用蒸汔动力的最早尝试,他还制造过虹吸管。
2世纪,托勒密(C.Ptolemaeus,100?—170?)发现大气折射。
张衡(78—139)创制地动仪,可以测报地震方位,创制浑天仪。
王符(85—162)著《潜夫论》分析人眼的作用。
5世纪,祖冲之(429—500),改造指南车,精确推算л值,在天文学上精确编制《大明历》。
8世纪,王冰(唐代人)记载并探讨了大气压力现象。
11世纪,沈括(1031—1095)著《梦溪笔谈》,记载地磁偏角的发现,凹面镜成像原理和共振现象等。
历届诺贝尔物理学奖伦琴(1845-1923)Willhelm Konrad Rotgen1901年诺贝尔物理学奖——X射线的发现1901年,首届诺贝尔物理学奖授予德国物理学家伦琴(Willhelm Konrad Rotgen,1845-1923),以表彰他在1895年发现的X射线.1895年,物理学已经有了相当的发展,它的几个主要部门-牛顿力学,热力学和分子运动论,电磁学和光学,都已经建立了完整的理论,在应用上也取得了巨大成果.这时物理学家普遍认为,物理学已经发展到顶了,以后的任务无非是在细节上作些补充和修正而已,没有太多的事情好做了.正是由于X射线的发现唤醒了沉睡的物理学界.它像一声春雷,引发了一系列重大的发现,把人们的注意力引向更深入,更广阔的天地,从而揭开了现代物理学的序幕.1902年诺贝尔物理学奖——塞曼效应的发现和研究塞曼(1865-1943)Pieter Zeeman洛伦兹(1853 -1928)Hendrik Antoon Lorentz1902年诺贝尔物理学奖授予荷兰莱顿大学的洛伦兹(Hendrik Antoon Lorentz,1853-1928)和荷兰阿姆斯特丹大学塞曼(Pieter Zeeman,1865-1943),以表彰他们在研究磁性对辐射现象的影响所作的特殊贡献.磁性对辐射现象的影响也叫塞曼效应,是塞曼在1896年发现的.它是继法拉第效应和克尔效应之后又一项反映光的电磁特性的效应.塞曼效应更进一步涉及了光的辐射机理,因此人们把它看成是继X射线之后物理学最重要的发现之一.洛伦兹是荷兰物理学家,他的主要贡献是创立了经典电子论,这一理论能解释物质中一系列的电磁现象,以及物质在电磁场中运动的一些效应.由于塞曼效应发现时及时地从洛伦兹理论得到了解释,由此所确定的电子荷质比与J.J.汤姆孙用阴极射线所得数量级相同,相互间得到验证,因此1902年洛伦兹与塞曼共享诺贝尔物理学奖.贝克勒尔(1852 -1908)Antoine Henri Becquerel塞曼也是荷兰人,1885年进入莱顿大学后,与洛伦兹多年共事,并当过洛伦兹的助教.塞曼对洛伦兹的电磁理论很熟悉,实验技术也很精湛,1892年曾因仔细测量克尔效应而获金质奖章,并于1893年获博士学位.他在研究辐射对光谱的影响时,得益于洛轮兹的指导和洛轮兹理论,从而作出了有重大意义的发现.居里夫妇(1867 - 1934)Marie Sklodowska1903年诺贝尔物理学奖——放射性的发现和研究1903年诺贝尔物理学奖一半授予法国物理学家亨利·贝克勒尔(Antoine Henri Becquerel,1852-1908),以表彰他发现了自发放射性;另一半授予法国物理学家皮埃尔.居里(Pierre Curie ,1859-1906)和玛丽.斯可罗夫斯卡.居里(Marie Sklodowska,1867-1934),以表彰他们对贝克勒尔发现的辐射现象所作的卓越贡献.亨利·贝克勒尔是法国科学院院士,擅长于荧光和磷光的研究.1895年底,伦琴将他的初步通信:《一种新射线》和一些X射线照片分别寄给各国著名的物理学家,其中包括法国的庞加莱(H.Poincare).庞加莱是著名的数学物理学家,法国科学院院士.1896年1月20日法国科学院开会,他带伦琴寄给他的论文,并展示给与会的科学家.这件事大大激励了亨利.贝克勒尔的兴趣.他问这种穿透射线是这样产生的庞加莱回答说,这一射线似乎是从阴极对面发荧光的那部分管壁上发出的.贝克勒尔推想,可见光的产生和不可见X射线的产生或许是出于同一机理.第二天他就开始实验荧光物质会不会产生X射线.然而,贝克勒尔最初的一些实验却是失败的.正在这个时候,庞加莱在法国一家科普杂志上发表了一篇介绍X射线的文章,文章有一次提到荧光物质是否会同时辐射可见光和X射线的问题.贝克勒尔读到后非常很受鼓舞,于是再次投入荧光和磷光的实验,终于找到了铀盐有这种效应,他用厚黑纸包了一张感光底片,纸非常厚,即使放在太阳下晒一整天也不至于使底片变翳.他在黑纸上面放一层铀盐,然后拿到太阳下晒几个小时,显影之后,他在底片上看到了磷光物质的黑影.然后他又在磷光物质和黑纸之间夹一层玻璃,也作出同样的实验,证明这一效应不是由于太阳光线的热使磷光物质发出某种蒸气而产生化学作用所致.于是得出结论:铀盐在强光照射下不但会发可见光,还会发穿透力很强的X射线.贝克勒尔这一结论并不正确,一次偶然的机遇使他作出了真正的发现.瑞利(1842 -1919)Lord Rayleigh1904年诺贝尔物理学奖——氩的发现1904年诺贝尔物理学奖授予英国皇家研究所的瑞利勋爵(Lord Rayleigh,1842-1919),以表彰他在研究最重要的一些气体的密度以及在这些研究中发现了氩.瑞利以严谨,广博,精深著称,并善于用简单的设备作实验而能获得十分精确的数据.他是在19世纪末年达到经典物理学颠峰的少数学者之一,在众多学科中都有成果,其中尤以光学中的瑞利散射和瑞利判据,物性学中的气体密度测量几方面影响最为深远. 1905年诺贝尔物理学奖——阴极射线的研究勒纳德(1862-1947)Philipp Lenard1905年诺贝尔物理学奖授予德国基尔大学的勒纳德(Philipp Lenard,1862-1947),表彰他在阴极射线方面所作的工作.1888年,当勒纳德于海德堡大学在昆开(Quincke)的指导下工作时,就在阴极射线方面作了最初的研究.他研究了赫兹关于这种射线与紫外线相似的观点.为此他做了这个实验,观察阴极射线是否能想紫外线一样通过放大电管壁的石英窗.他发现阴极射线不能穿过.但是1892年,他在波恩大学担任赫兹的助手时,赫兹让他看了自己的一项新发现:将一块被铝箔包着的含铀玻璃片放入电管中,当时阴极射线轰击这快铝箔时,铝箔下面发出了光.当时赫兹以为可以用一片铝箔将空间隔开,一边是按普通方法产生的阴极射线;而在另一边则是纯粹状态下的阴极射线.这个实验以前从未做过.赫兹太忙了,没有时间做这个实验,就让勒纳德做,就这样,勒纳德作出了"勒纳德窗"的重大发现.汤姆孙(1856-1940)Sir Joseph Thomon1906年诺贝尔物理学奖——气体导电1906年诺贝尔物理学奖授予英国剑桥大学的J.J.汤姆孙爵士(Sir Joseph Thomon,1856-1940),以表彰他对气体导电的理论和实验所作的贡献.J.J.汤姆孙对气体导电的理论和实验研究最重要的结果是发现了电子,这是继X射线和放射性之后又一重大的发现.人们把这三件事称为世纪之交的三大发现.迈克耳孙(1852 -1931Albert Abrham Michelson1907年诺贝尔物理学奖——光学精密计量和光谱学研究1907年诺贝尔物理学奖授予芝加哥大学的迈克耳孙(Albert Abrham Michelson,1852-1931),以表彰他对光学精密仪器及用之于光谱学与计量学研究所作的贡献.迈克耳孙是著名的实验物理学家.他以精密测量光的速度和以空前精密度进行以太漂移实验而闻名于世.他发现的以他的名字命名的干涉仪至今还有广泛的应用.李普曼(1845-1921)Gabried Lippmann1908年诺贝尔物理学奖——照片彩色重现1908年诺贝尔物理学奖授予法国巴黎大学的李普曼(Gabried Lippmann,1845-1921), 以表彰他基于干涉现象用照片重现彩色方法所作的贡献.李普曼1845年8月16日生于卢森堡的霍勒利希(Hollenrich),双亲是法国人,后来他的家牵到巴黎,他在家中接受了早期教育.1858年他进入拿破仑中学,十年后进入综合师范大学.他的学业并不是很好,因为他只注重他感兴趣的科目,不重视他不喜欢的课程,因此他没有通过教师资格的考试.1873年,他被任命为政府的科学使节,到德国学习科学教育方法.在海得堡曾随库恩(Kuhne)和基尔霍夫一起工作,在柏林曾和亥姆霍兹一起工作.布劳恩(1850-1918)Karl Braun马克尼(1874-1937)Guglielmo Marcoin1909年诺贝尔物理学奖——无线电报1909年诺贝尔物理学奖授予英国伦敦马克尼无线电报公司的意大利物理学家马克尼(Guglielmo Marcoin,1874-1937)和德国阿尔萨斯州特拉斯堡大学的布劳恩(Karl Braun,1850-1918),以承认他们在发展无线电报上所作的贡献.范德瓦尔斯(1837-1923)Johannes Diderik van Waals1910年诺贝尔物理学奖——气夜状态方程1910年诺贝尔物理学奖授予荷兰阿姆斯特丹大学的范得瓦尔斯(Johannes Diderik van Waals,1837-1923),以表彰他对气体和液体的状态方程所作的工作.19世纪末,分子运动逐步形成一门有严密体系的精确科学.与此同时实验也越来越精,人们发现绝大多数气体的行为与理想气体的性质不符.维恩(1864-1928)WilhelmWien1911年诺贝尔物理学奖——热辐射定律的发现1911年诺贝尔物理学奖授予德国乌尔兹堡大学的维恩(WilhelmWien,1864-1928),以表彰他发现了热辐射定律.热辐射是19世纪发展起来的一门新学科,它的研究得到了热力学和光谱学的支持,同时用到了电磁学和光学的新技术,因此发展很快.到19世纪末,这个领域已经达到如此顶峰,以至于量子论这个婴儿注定要从这里诞生.达伦( 1869-1937)Nils Gustaf1912年诺贝尔物理学奖——航标灯自动调节器1912年诺贝尔物理学奖授予瑞典德哥尔摩储气器公司的达伦(Nils Gustaf ,1869-1937),以表彰他分明用于灯塔和浮标照明的储气器的自动调节器.卡末林-昂内斯(1853-1936)Heike Kamerlingh Onnes1913年诺贝尔物理学奖——低温物质的特性1913年诺贝尔物理学将授予荷兰莱顿大学的卡末林-昂内斯(Heike Kamerlingh Onnes,1853-1936), 以表彰他对低温物质特性的研究,特别是这些研究导致液氦的生产.19世纪末,20世纪初,在低温的实验研究上展开过一场世界性的角逐.在这场轰动科坛的竞赛中,领先的是西北欧的一个小国――荷兰首都莱顿的低温实验室.1914年诺贝尔物理学奖——晶体的X射线衍射劳厄(1879-1960)Max von Laue1914年诺贝尔物理学奖授予德国法兰克福大学的劳厄(Max von Laue,1879-1960),以表彰他发现了晶体的X射线衍射.劳厄发现X射线衍射是20世纪物理学中的一件有深远意义的大事,因为这一发现不仅说明了X射线的认识迈出了关键的一步,而且还第一次对晶体的空间点阵假说作出了实验验证,使晶体物理学发生了质的飞跃.这一发现继佩兰(Perrin)的布朗运动实验之后,又一次向科学界提供证据,证明原子的真实性.从此以后,X射线学在理论和实验方法上飞速发展,形成了一门内容极其丰富,应用极其广泛的综合学科.1915年诺贝尔物理学奖——X射线晶体结构分析劳伦斯·布拉格(1890-1971)Sir William Lawrence Bragg亨利·布拉格(1862-1942)Sir William Henry Bragg1915年诺贝尔物理学奖授予英国伦敦大学的亨利.布拉格(Sir William Henry Bragg,1862-1942)和他的儿子英国曼彻斯特维克托利亚大学的劳伦斯.布拉格(Sir William Lawrence Bragg,1890-1971),以表彰他们用X射线对晶体结构的分析所作的贡献.1912年,劳厄关于X射线的论文发表之后不久,就引起了布拉格父子的关注.当时,亨利·布拉格正在利兹大学当物理学教授,劳伦斯.布拉格刚刚从剑桥大学卡文迪什实验室毕业,留在实验室工作,开始从事科学研究.1916年未授奖巴克拉(1877-1944)Charles Glover Barkla1917年诺贝尔物理学奖——元素的标识X辐射1917年诺贝尔物理学奖授予英国爱丁堡大学的巴克拉(Charles Glover Barkla,1877-1944),以表彰他发现了标识伦琴射线.巴克拉是第五位因研究X射线获得物理学奖的学者,在他之前有1901年获奖的伦琴,1914年的劳厄和1915年布拉格父子不到20年就有5位诺贝尔物理学奖获得者,占当时总数的四分之一以上,由此可见,X射线的研究成果在20世纪20年中占有何等重要的地位.普郎克(1858-1947)Max Karl Ernst Ludwig Plank1918年诺贝尔物理学奖——能量级的发现1918年诺贝尔物理学奖授予德国柏林大学的普郎克(Max Karl Ernst LudwigPlank,1858-1947),以承认他发现能量级对物理学的进展所作的贡献.1895年前后,普朗克正在德国柏林大学当物理学教授,由于鲁本斯(H.Rubens)的介绍,经常参加以基本量度基准为主要任务的德国帝国技术物理研究所(Physikalisch Technische Reichsanstalt,简称PTR)有关热辐射的讨论.这时PTR的理论的核心人物维恩(W.Wien)因故离开PTR,PTR的实验研究成果需要有理论研究工作者的配合,普郎克正好补充了这个空缺.斯塔克(1874-1957)Johnnes Stark1919 年诺贝尔物理学奖——斯塔克效应的发现1919年诺贝尔物理学奖授予德国格雷复斯瓦尔大学的斯塔克(Johnnes Stark,1874-1957),以表彰他在极遂射线中发现了多普勒效应和电路中发现了分裂的普线.极遂射线是哥尔茨坦在1896年在含稀薄气体的放电管中发现的,这种射线后来证明主要是由放电管中带电的气体原子组成的,这些带正电的原子在电场的作用下以很高的速度沿着射线运动.纪尧姆(1861-1938)Charles Edouard Guillaume1920年诺贝尔物理学奖——合金的反常特性1920年诺贝尔物理学奖授予舍夫勒国际计量局的纪尧姆(Charles Edouard Guillaume,1861-1938),以承认他由于他发现镍钢合金的反常特性对精密计量物理学所作的贡献.纪尧姆长期担任国际计量局局长,他发现的因瓦合金和艾林瓦合金对精密计量有非常重大的意义.1921诺贝尔物理学奖——对理论物理学的贡献1921年诺贝尔物理学奖授予德国柏林马克斯·普朗克物理研究所的爱因斯坦(Allbert Einstein,1879-1955),以表彰他在理论物理学上的发现,特别是发现了光电效应的定律. 众所周知,爱因斯坦是20世纪最杰出的理论物理学家.爱因斯坦最重要的科学贡献是在1905年创建了狭义相对论.然而在颁发1921年诺贝尔物理学奖时,却只字不提相对论的建立,诺贝尔委员会特别申明,授予爱因斯坦诺贝尔物理学奖不是由于他建立了相对论,而是"为了表彰他在理论物理学上的研究,特别是发现光电效应的定律".尼尔斯·玻尔(1885-1962)Niels Bohr1922年诺贝尔物理学奖——原子结构和原子光谱1922年诺贝尔物理学奖授予丹麦哥本哈根的尼尔斯·玻尔(Niels Bohr,1885-1962),以表彰他在研究原子结构,特别是研究从原子发出的辐射所作的贡献.密立根(1868-1953)Robert Andrews Millikan1923年诺贝尔物理学奖——基本电荷和光电效应实验1923年诺贝尔物理学奖授予美国加利福尼亚州帕萨迪那加州理工学院的密立根(Robert Andrews Millikan,1868-1953),以表彰他对基本电荷和光电效应的工作.卡尔(1886-1978)Karl Manne Georg Siegbahn1924年诺贝尔物理学奖——X射线光谱学1924年诺贝尔物理学奖授予瑞典乌普沙拉(Uppsala)大学的卡尔·西格班(Karl ManneGeorg Siegbahn,1886-1978),以表彰他在X射线光谱学领域的发现与研究.卡尔·西格班是继巴克拉之后,又一次因X射线学的贡献而获得诺贝尔物理学奖的物理学家.弗兰克(1882-1964)James Franck1925年诺贝尔物理学家——弗兰克-赫兹实验1924年诺贝尔物理学奖授予德国格丁根大学的弗兰克(James Franck,1882-1964)和哈雷大学的G.赫兹(Gustav Hertz,1887-1975),以表彰他们发现原子受电子碰撞的定律. 佩兰(1870-1942)Jean Baptiste Perrin1926年诺贝尔物理学奖——物质结构的不连续性1926年诺贝尔物理学奖授予法国巴黎索本大学的佩兰(Jean Baptiste Perrin,1870-1942),以表彰他在物质不连续结构方面的工作,特别是对沉积平衡的发现. 佩兰关于物质不连续结构的工作,主要是他是对布郎运动的研究.康普顿(1892-1962)Arthur Holly Compton1927年诺贝尔物理学奖——康普顿效应和威尔逊云室1927年诺贝尔物理学奖的一半授予美国的芝加哥大学的A.H.康普顿(Arthur Holly Compton,1892-1962),以表彰他发现以他的名字命名的效应;另一半授予英国剑桥大学的C.T.R.威尔逊(Charles Thomon Rees Wilsion,1869-1959),以表彰他用蒸汽凝聚使带电粒子的径迹成为可见的方法.里查逊(1879-1959)Sir Owen Willans Richardson1928年诺贝尔物理学奖——热电子发射定律1928年诺贝尔物理学奖授予英国伦敦大学的O.W.里查逊(Sir Owen Willans Richardson,1879-1959),以表彰他对热电子发射现象的工作,特别是发现了以他名字命名的定律.德布罗意(1892-1987)PrinceLouis-victor de Broglie1929年诺贝尔物理学奖——电子的波动性1929年诺贝尔物理学奖授予法国巴黎索本大学的路易斯.德布罗意(PrinceLouis-victor de Broglie,1892-1987),以表彰他发现了电子的波动性.拉曼(1888-1970)Sir Chandraskhara Venkata Raman1930年诺贝尔物理学奖——拉曼效应1930年诺贝尔物理学奖授予印度加尔各答大学的拉曼(Sir Chandraskhara Venkata Raman,1888-1970),以表彰他研究了光的散射和发现了以他的名字命名的定律.1931年未授奖海森伯(1901-1976)Werner Heisenberg1932年诺贝尔物理学奖——量子力学的创立1932年诺贝尔物理学奖授予德国莱比锡(Leipzig)大学的海森伯(Werner Heisenberg,1901-1976),以表彰他创立了量子力学,尤其是他的应用导致了发现氢的同素异形体.薛定谔(1887-1961)Erwin Schrodinger1933年诺贝尔物理学奖——原子理论的新形式狄拉克(1902-1984)Paul Adrien Maurice Dirac1933年诺贝尔物理学奖授予德国柏林大学的奥地利物理学家薛定谔(Erwin Schrodinger,1887-1961)和英国剑桥大学的狄拉克(Paul Adrien Maurice Dirac,1902-1984),以表彰他们发现了原子理论的新式.查德威克(1891-1974)Sir James Chadwick1934年未授奖1935年诺贝尔学奖——中子的发现1935年诺贝尔物理学奖授予英国利物浦的查德威克(Sir James Chadwick,1891-1974),以表彰他发现了中子.中子的发现具有深远的影响.由此引起了一系列后果:第一是为核模型理论提供了重要的依据,苏联物理学家伊万宁科(D.Ivanenko)据此首先提出原子核是由质子和中子组成的理论;其次是激发了一系列新课题的研究,引起一连串的新发现;第三是找到了核能实际应用的途径.用中子作为炮弹轰击原子核,比粒子有很大的威力.因为他像一把钥匙,打开了原子核的大门.1936年诺贝尔物理学奖——宇宙辐射和正电子的发现赫斯(1883-1964)Victor Franz Hess安德森(1883-1964)Carl David Anderson1936年诺贝尔物理学奖一半授予奥地利茵斯布拉克(Innsbruck)大学的赫斯(Victor Franz Hess,1883-1964),以表彰他发现了宇宙辐射;另一半授予美国加利福尼亚州帕萨迪那加州理工学院的C.D.安德森(Carl David Anderson ,1883-1964) ,以表彰他发现了正电子.1937年诺贝尔物理学奖——电子衍射汤姆孙(1892-1975)Sir George Paget Thomson戴维森(1881-1958)Clinton Joseph Davissio1937年诺贝尔物理学奖授予美国纽约州的贝尔电话实验室的戴维森(Clinton Joseph Davission ,1881-1958)和英国伦敦大学的G .P .汤姆孙(Sir George Paget Thomson ,1892-1975),以表彰他们用晶体对电子衍射所作的实验发现.20世纪20年代中期物理学发展的关键时期.波动力学已经由薛定谔在德布罗意的物质波假设的基础上建立起来,和海森伯从不同的途径创立的矩阵力学,共同形成微观体系的基本理论.这一巨大变革的实验基础自然成了人们关切的课题,这就激励了许多物理学家致力于证实离子的波动性.然而,直到1927年,才由美国的戴维森和英国的G .P .汤姆孙分别作出电子衍射实验.虽然这时量子力学已得到广泛的运用,但电子衍射实验成功引起了世人的注意.费米(1901-1954)Enrico Fermi1938年诺贝尔物理学奖——中子辐照产生新放射性元素1938年诺贝尔物理学奖授予意大利罗马的费米(Enrico Fermi,1901-1954),以表彰他演示用中子辐射产生新放射性元素以及用慢中子引起的核反应的有所发现.20世纪30年代是核物理学大发展的年代.自从卢瑟福1911年发现原子核和1919年实现了人工原子蜕变之后,中间经过沉闷的十年,物理学孕育着新的突破.30年代一开始,就以正电子,氘和中子这三大发现,又一次惊震了科学界.接着,1934年,约里奥-居里(Joliot-Curies)夫妇发现了人工放射性.加速器和计数器的发明和应用则大大加快了核物理学发展的进程.在次基础上,人们迫切需要掌握原子核蜕变的规律性,利用核物理学的成果为人类服务.当时虽然尚未预见原子能的巨大价值,但元素之间的相互转变有可能把人类带进新的世界,却早日是指日可待的了.劳伦斯(1901-1958)Ernest Orlando Lawrence1939年诺贝尔物理学奖——回旋加速器的发明1939年诺贝尔物理学奖授予美国加利福尼亚伯克利加州大学的劳伦斯,以表彰他发明和发展了回旋加速器,以及用之所得到的结果,特别是人工放射性元素.核物理学的诞生揭开了物理学发展史中崭新的一页,它不但标志了人类对物质结构的认识进入了更深的一个层次,而且还意味着人类开始以更积极的方式改变自然,探索自然,开发自然和更充分地利用大自然的潜力.各种加速器的发明对核物理学的发展起了很大的作用,而劳伦斯的回旋加速器则是这类创造中最有成效的一项.1940年未授奖1941年未授奖斯特恩(1888-1969)Otto Stem1942年未授奖1943年诺贝尔物理学奖——分子束方法和质子磁矩1943年诺贝尔物理学奖授予美国宾夕法尼亚州皮兹堡的卡内奇技术学院的德国物理学家斯特恩,以表彰他在发展分子束方法上所作的贡献和发现了质子的磁矩.拉比(1898-1988)Isidor Isaac Rabi1944年诺贝尔物理学奖——原子核的磁特性1944年诺贝尔物理学奖授予美国纽约州纽约市哥伦比亚大学的拉比(Isidor Isaac Rabi ,1898-1988),以表彰他用共振方法纪录原子核磁特性.拉比的最大功绩是发展了斯特恩的分子束法,并用之于磁共振.分子束磁共振在研究原子和原子核特性方面有独特的功能,后来形成了一系列的物理学分支.泡利(1900-1958)Wolfgang Pauli1945年诺贝尔物理学奖——泡利不相容原理1945年诺贝尔物理学奖授予美国新泽西州普林斯顿大学的奥地利物理学家泡利(Wolfgang Pauli,1900-1958),以表彰他发现所谓泡利不相容原理.不相容原理是原子理论中重要的原理,是1925年1月由泡利提出的.这一原理可以表述为:对于完全确定的量子态来说,每一量子态不可能存在多于一个粒子.泡利后来用量子力学理论处理了h/4p自旋问题,引入了二分量波函数的概念和所谓的泡利自旋矩阵.通过泡利等人对量子场的研究,人们认识到只有自旋为半径整数的粒子(即费米子)才受不相容原理的限制,从而确立了自旋统计关系.布里奇曼(1882-1961)Percy Williams Bridgman1946年诺贝尔物理学奖——高压物理学1946年诺贝尔物理学奖授予美国妈萨诸塞州坎伯利基哈佛大学的布里奇曼(Percy Williams Bridgman,1882-1961),以表彰他发明了产生极高压强的设备,并用这些设备在高压物理领域中所作出的发现.阿普顿(1892-1965)Sir Edward Victor Appleton1947年诺贝尔物理学奖——电离层的研究1947年诺贝尔物理学奖授英国林顿科学与工业研究部的阿普顿(Sir Edward Victor Appleton ,1892-1965),以表彰他对上大气层物理的研究,特别是发现了所谓的阿普顿层.电离层的研究对通讯事业有极大意义.电离层是从离地面约50km开始一直伸展到约1000km高度的地球高层大气空域,其中存在相当多的自由电子和离子,能使无线电波改变传播速度,发生折射\反射和散射,产生极化面的旋转并受到不同程度的吸收. 布拉开(1897-1974)Lord Patrick M.S.Blackett1948年诺贝尔物理学奖——云室方法的改进1948年诺贝尔物理学奖授予英国曼彻斯特维克托利亚大学的布拉开(Lord Patrick M.S.Blackett ,1897-1974),以表彰他发展了威尔逊云室方法,以及这一方法在核物理和宇宙辐射领域所作的发现.汤川秀树(1907-1981)YukawaHideki1949年诺贝尔物理学奖——预言介子的存在1949年诺贝尔物理学奖授予日本东京帝国大学的汤川秀树(YukawaHideki, 1907-1981),以表彰他在核力的理论基础上预言了介子的存在.汤川秀树是日本著名的理论物理学家,他于1935年在大阪写了一篇划时代的论文,发表在《日本数学和物理学会杂志》上.尽管这篇论文不够全面,但他有些重要的新思想极富有创造性,对未来物理学的发展有着深远的影响.鲍威尔(1903-1969)Cecil Frank Powell1950年诺贝尔物理学奖——核乳胶的发明1950年诺贝尔物理学奖授予英国布利斯托尔大学的鲍威尔(Cecil Frank Powell ,1903-1969),以表彰他发现了研究核过程的光学方法,并用这一方法作出的有关介子的发现.所谓研究核过程的光学方法,指的是运用特制的照相乳胶记录核反应和粒子径迹的方法,这种特制的乳胶就叫核乳胶.1951年诺贝尔物理学奖——人工加速带电粒子1951年诺贝尔物理学奖授予英国哈维尔(Harwell)原子能研究所署的考可饶夫(Sir John Douglas Cockcroft ,1897-1967)和爱尔兰都在柏林大学的瓦尔顿(Ernest Thomas Sinton Walton ,1903-1995),以表彰他们在发展用人工加速原子性粒子的方法使原子。
诺贝尔物理学奖诺贝尔物理学奖是1900年6月根据诺贝尔的遗嘱设立的,属诺贝尔奖之一。
该奖项旨在奖励那些对人类物理学领域里作出突出贡献的科学家。
由瑞典皇家科学院颁发奖金,每年的奖项候选人由瑞典皇家自然科学院的瑞典或外国院士、诺贝尔物理和化学委员会的委员、曾被授与诺贝尔物理或化学奖金的科学家、在乌普萨拉、隆德、奥斯陆、哥本哈根、赫尔辛基大学、卡罗琳医学院和皇家技术学院永久或临时任职的物理和化学教授等科学家推荐。
奖项由来诺贝尔生于瑞典的斯德哥尔摩,诺贝尔一生致力于炸药的研究,在硝化甘油的研究方面取得了重大成就。
他不仅从事理论研究,而且进行工业实践。
他一生共获得技术发明专利355项,并在欧美等五大洲20个国家开设了约100家公司和工厂,积累了巨额财富。
1896年12月10日,诺贝尔在意大利逝世。
逝世的前一年,他留下了遗嘱,设立诺贝尔奖。
据此,1900年6月瑞典政府批准设置了诺贝尔基金会,并于次年诺贝尔逝世5周年纪念日,即1901年12月10日首次颁发诺贝尔奖。
自此以后,除因战时中断外,每年的这一天分别在瑞典首都斯德哥尔摩和挪威首都奥斯陆举行隆重授奖仪式。
1968年瑞典中央银行于建行300周年之际,提供资金增设诺贝尔经济奖(全称为瑞典中央银行纪念阿尔弗雷德·伯恩德·诺贝尔经济科学奖金,亦称纪念诺贝尔经济学奖,并于1969年开始与其他5项奖同时颁发。
诺贝尔经济学奖的评选原则是授予在经济科学研究领域作出有重大价值贡献的人,并优先奖励那些早期作出重大贡献者。
颁奖时间每次诺贝尔奖的发奖仪式都是下午举行,这是因为诺贝尔是1896年12月10日下午4:30去世的。
为了纪念这位对人类进步和文明作出过重大贡献的科学家,在1901年第一次颁奖时,人们便选择在诺贝尔逝世的时刻举行仪式。
这一有特殊意义的做法一直沿袭到如今。
评选过程每年9月至次年1月31日,接受各项诺贝尔奖推荐的候选人。
通常每年推荐的候选人有1000— 2000人。
诺贝尔奖中的物理学家的共性祖纳·斯万伯格院士近日应邀到杭州参加学术活动,并给浙江大学的上百名学子做了一场题为“科学的魔力———诺贝尔与物理学”的科普讲座。
由于其特殊的身份,席间,中国人如何才能获得诺贝尔奖,成为听者最为关心的话题。
“我曾经在吉林大学和哈尔滨工业大学做过荣誉教授,接触过很多优秀的中国物理学家,他们的钻研精神以及积极创新的研究态度让我深受感动。
”祖纳·斯万伯格说,“中国的物理学研究正在大踏步前进,中国科学家获得这一奖项只是时间问题。
”他说,华裔物理学研究者中有好几位曾经获得过诺贝尔奖,这是个非常好的传统。
同时,近些年随着中国经济、社会、文化等的飞速发展,科学研究的基础环境正在一点点好转,很多高等学府的科研机构不亚于国外。
中国的物理学研究也在不断取得进步,并在一些领域处于领先水平,尤其是基础物理学逐渐被重视起来,这些都是获奖的重要保证。
科学家获奖与所处环境条件有关作为瑞典皇家科学院和工程院两院院士,祖纳·斯万伯格在原子物理学和激光学等领域的基础性研究以及这些领域与能源、环境、医疗等相结合的应用性研究方面造诣颇深,并对这些领域的发展作出了杰出贡献。
从1998年起,祖纳·斯万伯格开始担任诺贝尔物理学奖评委会成员。
2004年以来,他一直担任诺贝尔物理学奖评委会主席一职。
“按照惯例,每年2月1日,各国科学院的物理学家、前任诺奖得主进行对本届的诺奖得主进行提名。
8月,名单经委员会初选后递交瑞典皇家科学院。
10月,获奖名单予以公布。
12月,举行盛大的颁奖仪式。
”作为物理学奖委员会主席,祖纳·斯万伯格熟知诺贝尔奖产生的程序。
根据历年来诺贝尔奖的获奖名单统计,从1985到2005年,共52位诺贝尔物理学奖获奖人中,有34位为美国人或在美国居住,占64%;47位化学奖获奖者中有28位为美国人或在美国从事研究工作,占59.6%;生理学或医学奖的46位获奖者中,有28位美国人,占46%;33位经济学奖获奖者中,有23.5位美国人(其中一人为以色列和美国双重国籍),占71.2%。
历年诺贝尔物理学奖1901W.C.伦琴德国发现伦琴射线(X射线)1902H.A.洛伦兹荷兰塞曼效应的发现和研究P.塞曼荷兰1903H.A.贝克勒尔法国发现天然铀元素的放射性P.居里法国放射性物质的研究,发现放射性元素钋与镭并发现钍也有放射性M.S.居里法国1904L.瑞利英国在气体密度的研究中发现氩1905P.勒钠德德国阴极射线的研究1906J.J汤姆孙英国通过气体电传导性的研究,测出电子的电荷与质量的比值1907 A.A迈克耳孙美国创造精密的光学仪器和用以进行光谱学度量学的研究,并精确测出光速1908G.里普曼法国发明应用干涉现象的天然彩色摄影技术1909G.马可尼意大利发明无线电极及其对发展无线电通讯的贡献C.F.布劳恩德国1910J.D.范德瓦耳斯荷兰对气体和液体状态方程的研究1911W.维恩德国热辐射定律的导出和研究1912N.G.达伦瑞典发明点燃航标灯和浮标灯的瓦斯自动调节器1913H.K.昂尼斯荷兰在低温下研究物质的性质并制成液态氦1914M.V.劳厄德国发现伦琴射线通过晶体时的衍射,既用于决定X射线的波长又证明了晶体的原子点阵结构1915W.H.布拉格英国用伦琴射线分析晶体结构W.L.布拉格英国1917 C.G.巴克拉英国发现标识元素的次级伦琴辐射1918M.V.普朗克德国研究辐射的量子理论,发现基本量子,提出能量量子化的假设,解释了电磁辐射的经验定律1919J.斯塔克德国发现阴极射线中的多普勒效应和原子光谱线在电场中的分裂1920 C.E.吉洛姆法国发现镍钢合金的反常性以及在精密仪器中的应用1921 A.爱因斯坦德国对现物理方面的贡献,特别是阐明光电效应的定律1922N.玻尔丹麦研究原子结构和原子辐射,提出他的原子结构模型1923R.A.密立根美国研究元电荷和光电效应,通过油滴实验证明电荷有最小单位1924K.M.G.西格班瑞典伦琴射线光谱学方面的发现和研究1925J.弗兰克德国发现电子撞击原子时出现的规律性G .L.赫兹德国1926J.B.佩林法国研究物质分裂结构,并发现沉积作用的平衡1927A.H.康普顿美国发现康普顿效应C.T.R.威尔孙英国发明用云雾室观察带电粒子,使带电粒子的轧迹变为可见1928O.W.里查孙英国热离子现象的研究,并发现里查孙定律1929L.V.德布罗意法国电子波动性的理论研究1930C.V.拉曼印度研究光的散射并发现拉曼效应1932W.海森堡德国创立量子力学,并导致氢的同素异形的发现1933E.薛定谔奥地利量子力学的广泛发展P.A.M.狄立克英国量子力学的广泛发展,并预言正电子的存在1935J.查德威克英国发现中子1936V.F 赫斯奥地利发现宇宙射线C.D.安德孙美国发现正电子1937J.P.汤姆孙英国通过实验发现受电子照射的晶体中的干涉现象C.J.戴维孙美国通过实验发现晶体对电子的衍射作用1938E.费米意大利发现新放射性元素和慢中子引起的核反应1939F.O.劳伦斯美国研制回旋加速器以及利用它所取得的成果,特别是有关人工放射性元素的研究1943O.斯特恩美国测定质子磁矩1944I.I.拉比美国用共振方法测量原子核的磁性1945W.泡利奥地利发现泡利不相容原理1946P.W.布里奇曼美国研制高压装置并创立了高压物理1947E.V.阿普顿英国发现电离层中反射无线电波的阿普顿层1948P.M.S.布莱克特英国改进威尔孙云雾室及在核物理和宇宙线方面的发现1949汤川秀树日本用数学方法预见介子的存在1950 C.F.鲍威尔英国研究核过程的摄影法并发现介子1951J.D.科克罗夫特英国首先利用人工所加速的粒子开展原子核E.T.S.瓦尔顿爱尔兰蜕变的研究1952E.M.珀塞尔美国核磁精密测量新方法的发展及有关的发现F.布洛赫美国1953 F.塞尔尼克荷兰论证相衬法,特别是研制相差显微镜1954M.玻恩德国对量子力学的基础研究,特别是量子力学中波函数的统计解释W.W.G.玻特德国符合法的提出及分析宇宙辐射1955P.库什美国精密测定电子磁矩W.E.拉姆美国发现氢光谱的精细结构1956W.肖克莱美国研究半导体并发明晶体管W.H.布拉顿美国J.巴丁美国1957李政道美国否定弱相互作用下宇称守恒定律,使基本粒子研究获重大发现杨振宁美国1958P.A.切连柯夫前苏联发现并解释切连柯夫效应(高速带电粒子在透明物质中传递时放出蓝光的现象)I.M.弗兰克前苏联I.Y.塔姆前苏联1959E.萨克雷美国发现反质子O.张伯伦美国1960 D.A.格拉塞尔美国发明气泡室1961R.霍夫斯塔特美国由高能电子散射研究原子核的结构R.L.穆斯堡德国研究r射线的无反冲共振吸收和发现穆斯堡效应1962L.D.朗道前苏联研究凝聚态物质的理论,特别是液氦的研究1963E.P.维格纳美国原子核和基本粒子理论的研究,特别是发现和应用对称性基本原理方面的贡献M.G.迈耶美国发现原子核结构壳层模型理论,成功地解释原子核的长周期和其它幻数性质的问题J.H.D.詹森德国1964C.H.汤斯美国在量子电子学领域中的基础研究导致了根据微波激射器和激光器的原理构成振荡器和放大器N.G.巴索夫前苏联用于产生激光光束的振荡器和放大器的研究工作A.M.普洛霍罗夫前苏联在量子电子学中的研究工作导致微波激射器和激光器的制作1965R.P.费曼美国量子电动力学的研究,包括对基本粒子物理学的意义深远的结果J.S.施温格美国朝永振一郎日本1966 A.卡斯特莱法国发现并发展光学方法以研究原子的能级的贡献1967H.A.贝特美国恒星能量的产生方面的理论1968L.W.阿尔瓦雷斯美国对基本粒子物理学的决定性的贡献,特别是通过发展氢气泡室和数据分析技术而发现许多共振态1969M.盖尔曼美国关于基本粒子的分类和相互作用的发现,提出“夸克”粒子理论1970H.O.G.阿尔文瑞典磁流体力学的基础研究和发现并在等离子体物理中找到广泛应用L.E.F.尼尔法国反铁磁性和铁氧体磁性的基本研究和发现,这在固体物理中具有重要的应用1971 D.加波英国全息摄影术的发明及发展1972J.巴丁美国提出所谓BCS理论的超导性理论L.N.库珀美国J.R.斯莱弗美国1973B.D.约瑟夫森英国关于固体中隧道现象的发现,从理论上预言了超导电流能够通过隧道阻挡层(即约瑟夫森效应)江崎岭于奈日本从实验上发现半导体中的隧道效应I.迦埃弗美国从实验上发现超导体中的隧道效应1974M.赖尔英国研究射电天文学,尤其是孔径综合技术方面的创造与发展A.赫威期英国射电天文学方面的先驱性研究,在发现脉冲星方面起决定性角色1975A.N.玻尔丹麦发现原子核中集体运动与粒子运动之间的联系,并在此基础上发展了原子核结构理论B.R.莫特尔孙丹麦原子核内部结构的研究工作L.J.雷恩瓦特美国1976B.里克特美国分别独立地发现了新粒子J/Ψ,其质量约为质子质量的三倍,寿命比共振态的寿命长上万倍丁肇中美国1977P.W.安德孙美国对晶态与非晶态固体的电子结构作了基本的理论研究,提出“固态”物理理论J.H.范弗莱克美国对磁性与不规则系统的电子结构作了基本研究N.F.莫特英国1978A.A.彭齐亚斯美国3K宇宙微波背景的发现R.W.威尔孙美国P.L.卡皮查前苏联建成液化氮的新装置,证实氮亚超流低温物理学1979S.L.格拉肖美国建立弱电统一理论,特别是预言弱电流的存在S.温伯格美国A.L.萨拉姆巴基斯坦1980J.W.克罗宁美国CP不对称性的发现V.L.菲奇美国1981N.布洛姆伯根美国激光光谱学与非线性光学的研究A.L.肖洛美国K.M.瑟巴瑞典高分辨电子能谱的研究1982K.威尔孙美国关于相变的临界现象1983S.钱德拉塞卡尔美国恒星结构和演化方面的理论研究W.福勒美国宇宙间化学元素形成方面的核反应的理论研究和实验1984C.鲁比亚意大利由于他们的努力导致了中间玻色子的发现S.范德梅尔荷兰1985K.V.克利青德国量子霍耳效应1986E.鲁斯卡德国电子物理领域的基础研究工作,设计出世界上第1架电子显微镜G.宾尼瑞士设计出扫描式隧道效应显微镜H.罗雷尔瑞士1987J.G.柏诺兹美国发现新的超导材料K.A.穆勒美国1988L.M.莱德曼美国从事中微子波束工作及通过发现μ介子中微子从而对轻粒子对称结构进行论证M.施瓦茨美国J.斯坦伯格英国1989N.F.拉姆齐美国发明原子铯钟及提出氢微波激射技术W.保罗德国创造捕集原子的方法以达到能极其精确地研究一个电子或离子H.G.德梅尔特美国1990J.杰罗姆美国发现夸克存在的第一个实验证明H.肯德尔美国R.泰勒加拿大1991P.G.德燃纳法国液晶基础研究1992J.夏帕克法国对粒子探测器特别是多丝正比室的发明和发展1993J.泰勒美国发现一对脉冲星,质量为两个太阳的质量,而直径仅10-30km,故引力场极强,为引力波的存在提供了间接证据L.赫尔斯美国1994C.沙尔美国发展中子散射技术B.布罗克豪斯加拿大1995M.L.珀尔美国珀尔及其合作者发现了τ轻子雷恩斯与 C.考温首次成F.雷恩斯美国功地观察到电子反中微子他们在轻子研究方面的先驱性工作,为建立轻子-夸克层次上的物质结构图像作出了重大贡献1996戴维.李美国发现氦-3中的超流动性奥谢罗夫美国R.C.里查森美国1997朱棣文美国激光冷却和陷俘原子K.塔诺季法国菲利浦斯美国1998劳克林美国分数量子霍尔效应的发现斯特默美国崔琦美国1999H.霍夫特荷兰M.韦尔特曼荷兰。
若雷斯·阿尔费罗夫 2000 年赫伯特·克勒默杰克·基尔比埃里克·康奈尔2001 年卡尔·威曼沃尔夫冈·克特勒雷蒙德·戴维斯 2002 年小柴昌俊里卡尔多·贾科尼阿列克谢·阿布里科索夫 2003 年维塔利·金兹堡安东尼·莱格特戴维·格罗斯 2004 年戴维·普利策弗朗克·韦尔切克 2005 罗伊·格劳伯俄罗斯德国美国美国美国德国美国日本美国俄罗斯俄罗斯英国美国美国美国美“发展了用于高速电子学和光电子学的半导体异质结构” “在发明集成电路中所做的贡献” “在碱性原子稀薄气体的玻色-爱因斯坦凝聚态方面取得的成就,以及凝聚态物质属性质的早期基础性研究” “在天体物理学领域做出的先驱性贡献,尤其是探测宇宙中微子” “在天体物理学领域做出的先驱性贡献,这些研究导致了宇宙X 射线源的发现” “对超导体和超流体理论做出的先驱性贡献” “发现强相互作用理论中的渐近自由” “对光学相干的量子理论的贡献”年约翰·霍尔特奥多尔·亨施 2006 年约翰·马瑟乔治·斯穆特艾尔伯·费尔彼得·格林贝格小林诚 2008 年益川敏英南部阳一郎高锟 2009 年威拉德·博伊尔乔治·史密斯安德烈·海姆康斯坦丁·诺沃肖洛夫布莱恩·施密特国美国德国美国美国法国德国日本日本美国英国美国美国荷兰英/ 俄澳大利亚美国“发现对称性破缺的来源,并预测了至少三大类夸克在自然界中的存在” “发现巨磁阻效应” “发现宇宙微波背景辐射的黑体形式和各向异性” “对包括光频梳技术在内的,基于激光的精密光谱学发展做出的贡献,” 2007 年“发现亚原子物理学的自发对称性破缺机制” “在光学通信领域光在纤维中传输方面的突破性成就” “发明半导体成像器件电荷耦合器件” 2010 年“在二维石墨烯材料的开创性实验”[3] 2011 “透过观测遥距超新星而发现宇宙加速膨胀” 亚当·里斯索尔·珀尔马特塞尔日·阿罗什大卫·维因兰德彼得·希格斯 2013 弗朗索瓦·恩格勒赤崎勇 2014 天野浩中村修二 2015 梶田隆章阿瑟·B·麦克唐纳 2016 戴维·索利斯迈克尔·科斯特利茨邓肯·霍尔丹美国法国美国英国比利时日本日本美国日本加拿大英/美英/美英国他们发现中微子振荡现象,该发现表明中微子拥有质量。
历届诺贝尔物理学奖历届诺贝尔物理学奖1901年威尔姆·康拉德·伦琴(德国人)发现X 射线1902年亨德瑞克·安图恩·洛伦兹、P. 塞曼(荷兰人)研究磁场对辐射的影响1903年安东尼·亨利·贝克勒尔(法国人)发现物质的放射性皮埃尔·居里(法国人)、玛丽·居里(波兰人)从事放射性研究1904年J.W.瑞利(英国人)从事气体密度的研究并发现氩元素1905年P.E.A.雷纳尔德(德国人)从事阴极线的研究1906年约瑟夫·约翰·汤姆生(英国人)对气体放电理论和实验研究作出重要贡献1907年 A.A.迈克尔逊(美国人)发明了光学干涉仪并且借助这些仪器进行光谱学和度量学的研究1908年加布里埃尔·李普曼(法国人)发明了彩色照相干涉法(即李普曼干涉定律)1909年伽利尔摩·马可尼(意大利人)、K . F. 布劳恩(德国人)开发了无线电通信O.W.理查森(英国人)从事热离子现象的线的多普勒效应以及电场作用下光谱线的分裂现象1920年 C.E.纪尧姆(瑞士人)发现镍钢合金的反常现象及其在精密物理学中的重要性1921年阿尔伯特·爱因斯坦(美籍犹太人)发现了光电效应定律等1922年尼尔斯·亨利克·大卫·玻尔(丹麦人)从事原子结构和原子辐射的研究1923年R.A.米利肯从事基本电荷和光电效应的研究1924年K.M.G.西格巴恩(瑞典人)发现了X 射线中的光谱线1925年詹姆斯·弗兰克、G.赫兹(德国人)发现原子和电子的碰撞规律1926年J.B.佩兰(法国人)研究物质不连续结构和发现沉积平衡1927年阿瑟·霍利·康普顿(美国人)发现康普顿效应(也称康普顿散射) C.T.R.威尔逊(英国人)发明了云雾室,能显示出电子穿过水蒸气的径迹1928年O.W 理查森(英国人)从事热离子现象的研究,特别是发现理查森定律1929年路易斯·维克多·德布罗意(法国人)发现物质波1930年 C.V.拉曼(印度人)从事光散方面的研究,发现拉曼效应1931年未颁奖1932年维尔纳·K.海森伯(德国人)创建了量子力学1933年埃尔温·薛定谔(奥地利人)、P.A.M.狄拉克(英国人)发现原子理论新的有效形式1934年未颁奖1935年J.查德威克(英国人)发现中子1936年V.F.赫斯(奥地利人)发现宇宙射线; C.D.安德森(美国人)发现正电子1937年 C.J.戴维森(美国人)、G.P.汤姆森(英国人)发现晶体对电子的衍射现象1938年 E.费米(意大利人)发现中子轰击产生的新放射性元素并发现用慢中子实现核反应1939年 E.O.劳伦斯(美国人)发明和发展了回旋加速器并以此取得了有关人工放射性等成果1940年~ 1942年未颁奖1943年O.斯特恩(美国人)开发了分子束方法以及质子磁矩的测量1944年I.I.拉比(美国人)发明了著名气核磁共振法1945年沃尔夫冈·E.泡利(奥地利人)发现不相容原理1946年P.W.布里奇曼(美国人)发明了超高压装置,并在高压物理学方面取得成就1947年 E.V.阿普尔顿(英国人)从事大气层物理学的研究,特别是发现高空无线电短波电离层(阿普尔顿层)1948年P.M.S.布莱克特(英国人)改进了威尔逊云雾室方法,并由此导致了在核物理领域和宇宙射线方面的一系列发现1949年汤川秀树(日本人)提出核子的介子理论,并预言介子的存在1950年 C.F.鲍威尔(英国人)开发了用以研究核破坏过程的照相乳胶记录法并发现各种介子1951年J.D.科克罗夫特(英国人)、E.T.S.沃尔顿(爱尔兰人)通过人工加速的粒子轰击原子,促使其产生核反应(嬗变)1952年 F.布洛赫、E.M.珀塞尔(美国人)从事物质核磁共振现象的研究并创立原子核磁力测量法1953年 F.泽尔尼克(荷兰人)发明了相衬显微镜1954年马克斯·玻恩在量子力学和波函数的统计解释及研究方面作出贡献W. 博特(德国人)发明了符合计数法,用以研究原子核反应和γ射线1955年W.E.拉姆(美国人)发明了微波技术,进而研究氢原子的精细结构P.库什(美国人)用射频束技术精确地测定出电子磁矩,创新了核理论1956年W.H.布拉顿、J.巴丁、W.B.肖克利(美国人)从事半导体研究并发现了晶体管效应1957年李政道、杨振宁(美籍华人)对宇称定律作了深入研究1958年P.A.切伦科夫、I.E.塔姆、I.M.弗兰克(俄国人)发现并解释了切伦科夫效应1959年 E .G. 塞格雷、O. 张伯伦(美国人)发现反质子1960年 D.A.格拉塞(美国人)发明气泡室,取代了威尔逊的云雾室1961年R.霍夫斯塔特(美国人)利用直线加速器从事高能电子散射研究并发现核子R.L.穆斯保尔(德国人)从事γ射线的共振吸收现象研究并发现了穆斯保尔效应1962年列夫·达维多维奇·朗道(俄国人)开创了凝集态物质特别是液氦理论1963年 E. P.威格纳(美国人)发现基本粒子的对称性以及原子核中支配质子与中子相互作用的原理M.G.迈耶(美国人)、J.H.D.延森(德国人)从事原子核壳层模型理论的研究1964年 C.H.汤斯(美国人)、N.G.巴索夫、A.M.普罗霍罗夫(俄国人)发明微波射器和激光器,并从事量子电子学方面的基础研究1965年朝永振一郎(日本人)、J. S . 施温格、R.P.费曼(美国人)在量子电动力学方面进行对基本粒子物理学具有深刻影响的基础研究1966年 A.卡斯特勒(法国人)发现和开发了把光的共振和磁的共振合起来,使光束与射频电磁发生双共振的双共振法1967年H.A.贝蒂(美国人)以核反应理论作出贡献,特别是发现了星球中的能源1968年L.W.阿尔瓦雷斯(美国人)通过发展液态氢气泡和数据分析技术,从而发现许多共振态1969年M.盖尔曼(美国人)发现基本粒子的分类和相互作用1970年L.内尔(法国人)从事铁磁和反铁磁方面的研究H.阿尔文(瑞典人)从事磁流体力学方面的基础研究1971年 D.加博尔(英国人)发明并发展了全息摄影法1972年J. 巴丁、L. N. 库柏、J.R.施里弗(美国人)从理论上解释了超导现象1973年江崎玲于奈(日本人)、I.贾埃弗(美国人)通过实验发现半导体中的“隧道效应”和超导物质 B.D.约瑟夫森(英国人)发现超导电流通过隧道阻挡层的约瑟夫森效应1974年M.赖尔、A.赫威斯(英国人)从事射电天文学方面的开拓性研究1975年 A.N. 玻尔、B.R.莫特尔森(丹麦人)、J.雷恩沃特(美国人)从事原子核内部结构方面的研究1976年 B. 里克特(美国人)、丁肇中(美籍华人)发现很重的中性介子–J /φ粒子1977年P.W. 安德林、J.H. 范弗莱克(美国人)、N.F.莫特(英国人)从事磁性和无序系统电子结构的基础研究1978年P.卡尔察(俄国人)从事低温学方面的研究 A.A.彭齐亚斯、R.W.威尔逊(美国人)发现宇宙微波背景辐射1979年谢尔登·李·格拉肖、史蒂文·温伯格(美国人)、A. 萨拉姆(巴基斯坦)预言存在弱中性流,并对基本粒子之间的弱作用和电磁作用的统一理论作出贡献1980年J.W.克罗宁、V.L.菲奇(美国人)发现中性K介子衰变中的宇称(CP)不守恒1981年K.M.西格巴恩(瑞典人)开发出高分辨率测量仪器N.布洛姆伯根、A.肖洛(美国人)对发展激光光谱学和高分辨率电子光谱做出贡献1982年K.G.威尔逊(美国人)提出与相变有关的临界现象理论1983年S.昌德拉塞卡、W.A.福勒(美国人)从事星体进化的物理过程的研究1984年 C.鲁比亚(意大利人)、S. 范德梅尔(荷兰人)对导致发现弱相互作用的传递者场粒子W±和Z 0的大型工程作出了决定性贡献1985年K. 冯·克里津(德国人)发现量了霍耳效应并开发了测定物理常数的技术1986年 E.鲁斯卡(德国人)在电光学领域做了大量基础研究,开发了第一架电子显微镜G.比尼格(德国人)、H.罗雷尔(瑞士人)设计并研制了新型电子显微镜——扫描隧道显微镜1987年J.G.贝德诺尔斯(德国人)、K.A.米勒(瑞士人)发现氧化物高温超导体1988年L.莱德曼、M.施瓦茨、J.斯坦伯格(美国人)发现μ子型中微子,从而揭示了轻子的内部结构1989年W.保罗(德国人)、H.G.德默尔特、N.F.拉姆齐(美国人)创造了世界上最准确的时间计测方法——原子钟,为物理学测量作出杰出贡献1990年J.I.弗里德曼、H.W.肯德尔(美国人)、理查德·E.泰勒(加拿大人)通过实验首次证明了夸克的存在1991年皮埃尔—吉勒·德·热纳(法国人)从事对液晶、聚合物的理论研究1992年G.夏帕克(法国人)开发了多丝正比计数管1993年R.A.赫尔斯、J.H.泰勒(美国人)发现一对脉冲双星,为有关引力的研究提供了新的机会1994年BN.布罗克豪斯(加拿大人)、C.G.沙尔(美国人)在凝聚态物质的研究中发展了中子散射技术2019年M.L.佩尔、F.莱因斯(美国人)发现了自然界中的亚原子粒子:Υ轻子、中微子2019年 D. M . 李(美国人)、D.D.奥谢罗夫(美国人)、理查德·C.理查森(美国人)发现在低温状态下可以无摩擦流动的氦- 32019年朱棣文(美籍华人)、W.D.菲利普斯(美国人)、C.科昂–塔努吉(法国人)发明了用激光冷却和俘获原子的方法2019年劳克林(美国)、斯特默(美国)、崔琦(美籍华人)发现了分数量子霍尔效应2019年H.霍夫特(荷兰)、M.韦尔特曼(荷兰)阐明了物理中电镀弱交互作用的定量结构. 2019年阿尔费罗夫(俄罗斯人)、基尔比(美国人)、克雷默(美国人)因其研究具有开拓性,奠定资讯技术的基础,分享今年诺贝尔物理奖。
2011年诺贝尔物理学奖获奖者为美国加州大学伯克利分校教授索尔·佩尔马特,澳大利亚国立大学教授布莱恩·施密特,以及美国约翰斯·霍普金斯大学教授亚当·里斯。
他们的贡献是,通过对超新星的观测证明宇宙在加速膨胀、变冷。
2010年诺贝尔物理学奖获奖者为英国曼彻斯特大学科学家安德烈·海姆和康斯坦丁·诺沃肖洛夫。
他们在2004年制成石墨烯材料。
石墨烯是目前已知材料中最薄的一种,被普遍认为会最终替代硅,从而引发电子工业的再次革命。
2009年诺贝尔物理学奖获奖者为英国华裔科学家高锟以及美国科学家威拉德·博伊尔和乔治·史密斯。
高锟获奖是由于在“有关光在纤维中的传输以用于光学通信方面”作出了突破性成就,而两位美国科学家的主要成就是发明半导体成像器件——电荷耦合器件(CCD)图像传感器。
2008年诺贝尔物理学奖获奖者为美国籍科学家南部阳一郎和日本科学家小林诚、益川敏英。
南部阳一郎的贡献是发现了亚原子物理学中的自发对称性破缺机制,而小林诚和益川敏英的贡献是发现了有关对称性破缺的起源。
2007年,法国科学家阿尔贝·费尔和德国科学家彼得·格林贝格尔因发现“巨磁电阻”效应而获诺贝尔物理学奖。
2006年,美国科学家约翰·马瑟和乔治·斯穆特因发现了宇宙微波背景辐射的黑体形式和各向异性而获奖。
2005年,美国科学家罗伊·格劳伯、约翰·霍尔和德国科学家特奥多尔·亨施因为“对光学相干的量子理论的贡献”和对基于激光的精密光谱学发展作出了贡献而获奖。
2004年,诺贝尔物理学奖归属美国科学家戴维·格罗斯、戴维·波利策和弗兰克·维尔切克。
他们发现了粒子物理强相互作用理论中的渐近自由现象。
2003年诺贝尔物理学奖——超导和超流体理论研究领域的卓越贡献2003年度诺贝尔物理奖授予拥有俄罗斯和美国双重国籍的科学家阿列克谢·阿布里科索夫、俄罗斯科学家维塔利·金茨堡以及拥有英国和美国双重国籍的科学家安东尼·莱格特,以表彰他们由于在超导和超流体理论研究领域所作出的开创性贡献。
历届诺贝尔物理学奖1901年威尔姆·康拉德·伦琴(德国人)发现X 射线1902年亨德瑞克·安图恩·洛伦兹、P. 塞曼(荷兰人)研究磁场对辐射的影响1903年安东尼·亨利·贝克勒尔(法国人)发现物质的放射性皮埃尔·居里(法国人)、玛丽·居里(波兰人)从事放射性研究1904年J.W.瑞利(英国人)从事气体密度的研究并发现氩元素1905年P.E.A.雷纳尔德(德国人)从事阴极线的研究1906年约瑟夫·约翰·汤姆生(英国人)对气体放电理论和实验研究作出重要贡献1907年 A.A.迈克尔逊(美国人)发明了光学干涉仪并且借助这些仪器进行光谱学和度量学的研究1908年加布里埃尔·李普曼(法国人)发明了彩色照相干涉法(即李普曼干涉定律)1909年伽利尔摩·马可尼(意大利人)、K . F. 布劳恩(德国人)开发了无线电通信O.W.理查森(英国人)从事热离子现象的研究,特别是发现理查森定律1910年翰尼斯·迪德里克·范德华(荷兰人)从事气态和液态议程式方面的研究1911年W.维恩(德国人)发现热辐射定律1912年N.G.达伦(瑞典人)发明了可以和燃点航标、浮标气体蓄电池联合使用的自动节装置1913年H·卡末林—昂内斯(荷兰人)从事液体氦的超导研究1914年马克斯·凡·劳厄(德国人)发现晶体中的X射线衍射现象1915年威廉·亨利·布拉格、威廉·劳伦斯·布拉格(英国人)借助X射线,对晶体结构进行分析1916年未颁奖1917年 C.G.巴克拉(英国人)发现元素的次级X 辐射的特征1918年马克斯·卡尔·欧内斯特·路德维希·普朗克(德国人)对确立量子理论作出巨大贡献1919年J.斯塔克(德国人)发现极隧射线的多普勒效应以及电场作用下光谱线的分裂现象1920年 C.E.纪尧姆(瑞士人)发现镍钢合金的反常现象及其在精密物理学中的重要性1921年阿尔伯特·爱因斯坦(美籍犹太人)发现了光电效应定律等1922年尼尔斯·亨利克·大卫·玻尔(丹麦人)从事原子结构和原子辐射的研究1923年R.A.米利肯从事基本电荷和光电效应的研究1924年K.M.G.西格巴恩(瑞典人)发现了X 射线中的光谱线1925年詹姆斯·弗兰克、G.赫兹(德国人)发现原子和电子的碰撞规律1926年J.B.佩兰(法国人)研究物质不连续结构和发现沉积平衡1927年阿瑟·霍利·康普顿(美国人)发现康普顿效应(也称康普顿散射) C.T.R.威尔逊(英国人)发明了云雾室,能显示出电子穿过水蒸气的径迹1928年O.W 理查森(英国人)从事热离子现象的研究,特别是发现理查森定律1929年路易斯·维克多·德布罗意(法国人)发现物质波1930年 C.V.拉曼(印度人)从事光散方面的研究,发现拉曼效应1931年未颁奖1932年维尔纳·K.海森伯(德国人)创建了量子力学1933年埃尔温·薛定谔(奥地利人)、P.A.M.狄拉克(英国人)发现原子理论新的有效形式1934年未颁奖1935年J.查德威克(英国人)发现中子1936年V.F.赫斯(奥地利人)发现宇宙射线; C.D.安德森(美国人)发现正电子1937年 C.J.戴维森(美国人)、G.P.汤姆森(英国人)发现晶体对电子的衍射现象1938年 E.费米(意大利人)发现中子轰击产生的新放射性元素并发现用慢中子实现核反应1939年 E.O.劳伦斯(美国人)发明和发展了回旋加速器并以此取得了有关人工放射性等成果1940年~1942年未颁奖1943年O.斯特恩(美国人)开发了分子束方法以及质子磁矩的测量1944年I.I.拉比(美国人)发明了著名气核磁共振法1945年沃尔夫冈·E.泡利(奥地利人)发现不相容原理1946年P.W.布里奇曼(美国人)发明了超高压装置,并在高压物理学方面取得成就1947年 E.V.阿普尔顿(英国人)从事大气层物理学的研究,特别是发现高空无线电短波电离层(阿普尔顿层)1948年P.M.S.布莱克特(英国人)改进了威尔逊云雾室方法,并由此导致了在核物理领域和宇宙射线方面的一系列发现1949年汤川秀树(日本人)提出核子的介子理论,并预言介子的存在1950年 C.F.鲍威尔(英国人)开发了用以研究核破坏过程的照相乳胶记录法并发现各种介子1951年J.D.科克罗夫特(英国人)、E.T.S.沃尔顿(爱尔兰人)通过人工加速的粒子轰击原子,促使其产生核反应(嬗变)1952年 F.布洛赫、E.M.珀塞尔(美国人)从事物质核磁共振现象的研究并创立原子核磁力测量法1953年 F.泽尔尼克(荷兰人)发明了相衬显微镜1954年马克斯·玻恩在量子力学和波函数的统计解释及研究方面作出贡献W. 博特(德国人)发明了符合计数法,用以研究原子核反应和γ射线1955年W.E.拉姆(美国人)发明了微波技术,进而研究氢原子的精细结构P.库什(美国人)用射频束技术精确地测定出电子磁矩,创新了核理论1956年W.H.布拉顿、J.巴丁、W.B.肖克利(美国人)从事半导体研究并发现了晶体管效应1957年李政道、杨振宁(美籍华人)对宇称定律作了深入研究1958年P.A.切伦科夫、I.E.塔姆、I.M.弗兰克(俄国人)发现并解释了切伦科夫效应1959年 E .G. 塞格雷、O. 张伯伦(美国人)发现反质子1960年 D.A.格拉塞(美国人)发明气泡室,取代了威尔逊的云雾室1961年R.霍夫斯塔特(美国人)利用直线加速器从事高能电子散射研究并发现核子R.L.穆斯保尔(德国人)从事γ射线的共振吸收现象研究并发现了穆斯保尔效应1962年列夫·达维多维奇·朗道(俄国人)开创了凝集态物质特别是液氦理论1963年 E. P.威格纳(美国人)发现基本粒子的对称性以及原子核中支配质子与中子相互作用的原理M.G.迈耶(美国人)、J.H.D.延森(德国人)从事原子核壳层模型理论的研究1964年 C.H.汤斯(美国人)、N.G.巴索夫、A.M.普罗霍罗夫(俄国人)发明微波射器和激光器,并从事量子电子学方面的基础研究1965年朝永振一郎(日本人)、J. S . 施温格、R.P.费曼(美国人)在量子电动力学方面进行对基本粒子物理学具有深刻影响的基础研究1966年 A.卡斯特勒(法国人)发现和开发了把光的共振和磁的共振合起来,使光束与射频电磁发生双共振的双共振法1967年H.A.贝蒂(美国人)以核反应理论作出贡献,特别是发现了星球中的能源1968年L.W.阿尔瓦雷斯(美国人)通过发展液态氢气泡和数据分析技术,从而发现许多共振态1969年M.盖尔曼(美国人)发现基本粒子的分类和相互作用1970年L.内尔(法国人)从事铁磁和反铁磁方面的研究H.阿尔文(瑞典人)从事磁流体力学方面的基础研究1971年 D.加博尔(英国人)发明并发展了全息摄影法1972年J. 巴丁、L. N. 库柏、J.R.施里弗(美国人)从理论上解释了超导现象1973年江崎玲于奈(日本人)、I.贾埃弗(美国人)通过实验发现半导体中的“隧道效应”和超导物质 B.D.约瑟夫森(英国人)发现超导电流通过隧道阻挡层的约瑟夫森效应1974年M.赖尔、A.赫威斯(英国人)从事射电天文学方面的开拓性研究1975年 A.N. 玻尔、B.R.莫特尔森(丹麦人)、J.雷恩沃特(美国人)从事原子核内部结构方面的研究1976年 B. 里克特(美国人)、丁肇中(美籍华人)发现很重的中性介子–J /φ粒子1977年P.W. 安德林、J.H. 范弗莱克(美国人)、N.F.莫特(英国人)从事磁性和无序系统电子结构的基础研究1978年P.卡尔察(俄国人)从事低温学方面的研究 A.A.彭齐亚斯、R.W.威尔逊(美国人)发现宇宙微波背景辐射1979年谢尔登·李·格拉肖、史蒂文·温伯格(美国人)、A. 萨拉姆(巴基斯坦)预言存在弱中性流,并对基本粒子之间的弱作用和电磁作用的统一理论作出贡献1980年J.W.克罗宁、V.L.菲奇(美国人)发现中性K介子衰变中的宇称(CP)不守恒1981年K.M.西格巴恩(瑞典人)开发出高分辨率测量仪器N.布洛姆伯根、A.肖洛(美国人)对发展激光光谱学和高分辨率电子光谱做出贡献1982年K.G.威尔逊(美国人)提出与相变有关的临界现象理论1983年S.昌德拉塞卡、W.A.福勒(美国人)从事星体进化的物理过程的研究1984年 C.鲁比亚(意大利人)、S. 范德梅尔(荷兰人)对导致发现弱相互作用的传递者场粒子W±和Z 0的大型工程作出了决定性贡献1985年K. 冯·克里津(德国人)发现量了霍耳效应并开发了测定物理常数的技术1986年 E.鲁斯卡(德国人)在电光学领域做了大量基础研究,开发了第一架电子显微镜G.比尼格(德国人)、H.罗雷尔(瑞士人)设计并研制了新型电子显微镜——扫描隧道显微镜1987年J.G.贝德诺尔斯(德国人)、K.A.米勒(瑞士人)发现氧化物高温超导体1988年L.莱德曼、M.施瓦茨、J.斯坦伯格(美国人)发现μ子型中微子,从而揭示了轻子的内部结构1989年W.保罗(德国人)、H.G.德默尔特、N.F.拉姆齐(美国人)创造了世界上最准确的时间计测方法——原子钟,为物理学测量作出杰出贡献1990年J.I.弗里德曼、H.W.肯德尔(美国人)、理查德·E.泰勒(加拿大人)通过实验首次证明了夸克的存在1991年皮埃尔—吉勒·德·热纳(法国人)从事对液晶、聚合物的理论研究1992年G.夏帕克(法国人)开发了多丝正比计数管1993年R.A.赫尔斯、J.H.泰勒(美国人)发现一对脉冲双星,为有关引力的研究提供了新的机会1994年BN.布罗克豪斯(加拿大人)、C.G.沙尔(美国人)在凝聚态物质的研究中发展了中子散射技术1995年M.L.佩尔、F.莱因斯(美国人)发现了自然界中的亚原子粒子:Υ轻子、中微子1996年 D. M . 李(美国人)、D.D.奥谢罗夫(美国人)、理查德·C.理查森(美国人)发现在低温状态下可以无摩擦流动的氦- 31997年朱棣文(美籍华人)、W.D.菲利普斯(美国人)、C.科昂–塔努吉(法国人)发明了用激光冷却和俘获原子的方法1998年劳克林(美国)、斯特默(美国)、崔琦(美籍华人)发现了分数量子霍尔效应1999年H.霍夫特(荷兰)、M.韦尔特曼(荷兰)阐明了物理中电镀弱交互作用的定量结构.2000年阿尔费罗夫(俄罗斯人)、基尔比(美国人)、克雷默(美国人)因其研究具有开拓性,奠定资讯技术的基础,分享今年诺贝尔物理奖。