浅谈初等函数在高中数学中的重要性
- 格式:doc
- 大小:208.00 KB
- 文档页数:8
数学·必修1(人教版)基本初等函数一、目标解读函数是高中数学的主要内容之一,这是因为函数思想方法灵活多样,逻辑思维性强,许多数学问题都可以从函数的角度来认识、研究.函数知识与数学的其他各分支的巧妙结合容易形成综合性较强的新颖的试题,这样的试题往往成为高考中极具份量的一类解答题,综合考查考生应用函数知识分析问题、解决问题的能力.而在命题的具体设计上,总是具有从易到难、逐步设问的特点,以较隐蔽的方式给出解题思路,在考查函数内容的同时也考查应用函数的思想方法,观察问题、分析问题和解决问题的能力,同时考查学生数形结合的思想和分类讨论的思想的应用能力.函数是中学数学的重要组成部分.它所涉及的内容是升入大学继续学习的基础,因此,函数不仅是中学数学教学的重点,也是高考考查的重点.近年来,函数的分值占30%左右.函数是高中代数的主线.它体系完整,内容丰富,应用广泛.由于它描述的是自然界中量的依存关系,是对问题本身数量的制约关系的一种刻画,所以是对数量关系本质特征的一种揭示,为我们从运动、变化、联系、发展的角度认识问题打开了思路.本章主要研究的是基本初等函数:指数函数、对数函数和幂函数的概念、图象和性质.包括理解分数指数幂的概念,掌握有理指数幂的运算性质,理解对数的概念,掌握对数的运算性质,能运用函数的一般性质和指数函数、对数函数的特征性质解决某些简单的实际问题.指数函数与对数函数都是初等超越函数.在历年的高考题中出现的频率较大.出现在小题时是较基本的考查方式;出现在大题中时,往往与其他知识综合形成开放性问题,加大对开放性问题的考查力度.通过本章的学习达到以下基本目标:①了解指数函数模型的实际背景,体会指数函数是一类重要的函数模型.②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.③理解指数函数的概念和意义,能画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点.④了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型.⑤能画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点.⑥理解对数的概念及其运算性质,能用换底公式将一般对数转化成自然对数或常用对数.⑦了解指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数.⑧了解幂函数的概念,结合函数y =x α(α=1,2,3,12,-1)的图象,了解它们的变化情况.二、主干知识(一)指数与指数幂的运算 1.整数指数幂的概念. (1)正整数指数幂的意义:(2)零指数幂:a 0=1(a ≠0).(3)负整数指数幂:a -n =1an (a ≠0,n ∈N *).2.整数指数幂的运算性质: ①a m ·a n =a m +n ;②(a m )n =a mn ;③(ab )n =a n b n .3.如果x n =a ,那么x 叫做a 的n 次方根,其中n >0,且n ∈N *.(1)当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数.此时a 的n 次方根用符号na 表示.(2)方根的性质:①当n 是奇数时,na n=a ; ②当n 是偶数时,nan=|a |=⎩⎪⎨⎪⎧aa ≥0,-a a <0.4.分数指数幂.(1)正数的分数指数幂的意义:设a >0,m ,n ∈N *,n >1,规定(2)0的正分数指数幂等于0,0的负分数指数幂没有意义.5.有理指数幂的运算性质: ①a r ·a s =a r +s(a >0,r ,s ∈Q);②(a r )s =a rs(a >0,r ,s ∈Q);③(ab )r =a r b r(a >0,b >0,r ∈Q).(二)指数函数及其性质1.函数y =a x(a >0,且a ≠1)叫做指数函数,其中x 是自变量.2.指数函数y =a x(a >0,且a ≠1)的图象和性质(见下表):(1.如果a x=N (a >0,a ≠1),那么数x 叫做以a 为底N 的对数.记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.对数式的书写格式:(1)以10为底的对数叫做常用对数,并把常用对数log 10N 简记为lg N ;(2)以无理数e =2.718 28……为底的对数,叫自然对数,并把自然对数log e N 简记为ln N .2.指数与对数的关系:设a >0,且a ≠1,则a x=N ⇔log a N =x .3.对数的性质.(1)在指数式中N >0,故0和负数没有对数,即式子log a N 中N 必须大于0;(2)设a >0,a ≠1,则有a 0=1,所以log a 1=0,即1的对数为0;(3)设a >0,a ≠1,则有a 1=a ,所以log a a =1,即底数的对数为1.4.对数恒等式.(1)如果把a b=N 中的b 写成log a N 形式,则有(2)如果把x =log a N 中的N 写成a x 形式,则有log a a x=x .5.对数的运算性质.设a >0,a ≠1,M >0,N >0,则有:(1)log a (MN )=log a M +log a N ,简记为:积的对数=对数的和;(2)log a M N =log a M -log a N ,简记为:商的对数=对数的差;(3)log a M n=n log a M (n ∈R).(四)对数函数及其性质1.函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).2.对数函数的图象、性质(见下表):函数y=log a x(a>1)y=log a x(0<a<1)图象定义域R+R+值域R R单调性增函数减函数过定点(1,0)(1,0)(1)当a>1时,若x>1,则log a x>0,若0<x<1,则log a x<0;(2)当0<a<1时,若0<x<1,则log a x>0,若x>1,则log a x<0.3.函数y=a x与y=log a x(a>0,且a≠1)互为反函数,互为反函数的两个函数的图象关于直线y=x对称.(五)幂函数1.形如y=xα(α∈R)的函数叫做幂函数,其中α为常数.只研究α为有理数的情形.3.幂函数的性质.(1)幂函数在(0,+∞)都有定义,并且图象都过点(1,1).(2)当α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸.(3)当α<0时,幂函数的图象在区间(0,+∞)上是减函数.在第一象限内,当x从右边趋向原点时,图象在y轴右方无限地逼近y轴正半轴,当x趋于+∞时,图象在x轴上方无限地逼近x轴正半轴.4.图象形状:当α>0(α≠1)时,图象为抛物线型;当α<0时,图象为双曲线型;当α=0,1时,图象为直线型.1.正数的分数指数幂的意义:设a>0,m,n∈N*,n>1,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义.2.有理指数幂的运算性质:①a r·a s=a r+s(a>0,r,s∈Q);②(a r)s=a rs(a>0,r,s∈Q);③(ab)r=a r b r(a>0,b>0,r∈Q).答案:12 011►跟踪训练解析:由平方差公式化简即得答案.答案:-27答案:-6a指数幂的运算3.幂函数y =f (x )的图象经过点⎝⎛⎭⎪⎫-2,-18,则满足f (x )=27的x 的值是________.答案:131.设a >0,且a ≠1,则a x =N ⇔log a N =x ;a log a N =N; log a a x=x .2.设a >0,a ≠1, M >0,N >0 ,则有 (1)log a (MN )=log a M +log a N ,(2)log a M N=log a M -log a N ,(3)log a M n=n log a M (n ∈R).3.设a >0,a ≠1,b >0,b ≠1,则log a x =log b xlog b a.设2a =5b=m ,且1a +1b=2,则m =( )A.10 B .10 C .20 D .100解析:由2a =5b=m 得a =log 2m ,b =log 5m , ∴1a +1b=log m 2+log m 5=log m 10=2,∴m 2=10,又∵m >0,∴m =10.答案:A►跟踪训练4.已知函数f (x )=log 2(x +1),若f (α)=1,则α=( ) A .0 B .1C .2D .3解析:α+1=2,故α=1,选B. 答案:B指数与对数运算5.2log 510+log 50.25=( ) A .0 B .1C .2D .4解析:2log 510+log 50.25=log 5100+log 50.25=log 525=2. 答案:C6.已知函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,2x,x ≤0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫19=( ) A .4 B.14C .-4D .-147.设g (x )=⎩⎪⎨⎪⎧e x,x ≤0,ln x ,x >0,则g ⎝ ⎛⎭⎪⎫g ⎝ ⎛⎭⎪⎫12=________.解析:答案:121.指数函数y =a x(a >0,且a ≠1)的定义域是R ,值域是()0,+∞,过定点(0,1).当a >1时,指数函数y =a x 是R 上的增函数;当0<a <1时,指数函数y =a x是R 上的减函数.2.对数函数y =log a x (a >0,且a ≠1)的定义域是()0,+∞,值域是R ,过定点(1,0). 当a >1时,对数函数y =log a x 是()0,+∞上的增函数;当0<a <1时,对数函数y =log a x 是()0,+∞上的减函数.函数y =1log 0.54x -3的定义域为( )指数函数与对数函数的性质A.⎝ ⎛⎭⎪⎫34,1B.⎝ ⎛⎭⎪⎫34,+∞ C .(1,+∞) D.⎝ ⎛⎭⎪⎫34,1∪(1,+∞) 解析:由log 0.5(4x -3)>0且4x -3>0可解得34<x <1,故A 正确.答案:A►跟踪训练8.函数y =2x 的图象大致是()答案:C9.函数f (x )=lg(x -1)的定义域是( ) A .(2,+∞) B .(1,+∞)C .[1,+∞)D .[2,+∞) 解析:x -1>0,得x >1,选B. 答案:B10.函数f (x )=log 2(3x+1)的值域为( ) A .(0,+∞) B .[0,+∞)C .(1,+∞)D .[1,+∞)答案:A研究由基本初等函数的和与差等运算构成的新函数的性质时,必须明确各基本初等函数的相关性质.设函数的集合P =f (x )=log 2(x +a )+研究基本初等函数及其组合的性质A .4个B .6个C .8个D .10个解析:当a =0,b =0;a =0,b =1;a =12,b =0; a =12,b =1;a =1,b =-1;a =1,b =1时满足题意,选B.答案:B►跟踪训练11.若函数f (x )=3x +3-x 与g (x )=3x -3-x的定义域均为R ,则( ) A .f (x )与g (x )均为偶函数B .f (x )为偶函数,g (x )为奇函数C .f (x )与g (x )均为奇函数D .f (x )为奇函数,g (x )为偶函数解析:f (-x )=3-x +3x =f (x ),g (-x )=3-x -3x=-g (x ). 答案:BA .①②B .②③C .③④D .①④答案:B13.设函数f (x )=x (e x +a e -x)(x ∈R)是偶函数,则实数a =________.解析:由条件知,g (x )=e x +a e -x为奇函数,故g (0)=0,得a =-1. 答案:-1数形结合的思想方法是根据数量与图形的对应关系,通过数与形的相互转化来解决问题的一种思想方法.转化与化归的思想方法则是将问题不断转化,直到转化为比较容易解决或已经解决的问题.而分类讨论的核心是通过增强条件来分情况逐一研究,使问题易于解决.一、数形结合思想数学思想方法的应用直线y =1与曲线y =x 2-||x +a 有四个交点,则a 的取值范围是 _______ .解析:曲线y =x 2-|x |+a 关于y 轴对称,当x ≥0时,y =x 2-x +a =⎝ ⎛⎭⎪⎫x -122+a -14,结合图象要使直线y =1与曲线y =x 2-|x |+a 有四个交点,需⎩⎪⎨⎪⎧a >1,a -14<1,解得1<a <54.故a 的取值范围是⎝ ⎛⎭⎪⎫1,54.答案:⎝ ⎛⎭⎪⎫1,54►跟踪训练14.已知c <0,下列不等式中成立的一个是( )A .c >2cB .c >⎝ ⎛⎭⎪⎫12cC .2c <⎝ ⎛⎭⎪⎫12cD .2c>⎝ ⎛⎭⎪⎫12c解析:在同一直角坐标系下作出y =x ,y =⎝ ⎛⎭⎪⎫12x ,y =2x 的图象,显然c <0时,x <2x <⎝ ⎛⎭⎪⎫12x ,即c <0时,c <2c<⎝ ⎛⎭⎪⎫12c .答案:C15.下列函数图象中,正确的是( )答案:C16.已知y =f (x )是偶函数,当x >0时,y =f (x )是减函数,并且f (1)>0>f (2),则方程f (x )=0的实根的个数是_________个.答案:2二、转化与化归的思想设a =333+1334+1,b =334+1335+1,试比较a 、b 的大小. 解析:如果比较a -b 与0或a b与1的大小,即用作差法、作商法来做,较繁杂、不易判断.由于a 、b 两数的结构特点可构造函数f (x )=3x +13x +1+1,则a =f (33),b =f (34),若能判断出此函数的单调性,那么就可简捷地比较出a 、b 的大小.f (x )=3x +13x +1+1=3x +1+333x +1+1=3x +1+1+233x +1+1=13+233x +1+1. ∵3x +1在R 上递增,∴233x +1+1在R 上递减. ∴ f (x )=13+233x +1+1在R 上递减. ∴ f (33)>f (34),即a >b .►跟踪训练17.解方程:(lg 2x )·(lg 3x )=lg 2·lg 3.解析:原方程可化为(lg 2+lg x )(lg 3+lg x )=lg 2·lg 3,即lg 2x +lg 6·lg x =0,解得lg x =0或lg x =-lg 6.∴x =1或x =16, 经检验x =1,x =16都是原方程的解. ∴原方程的解为x 1=1或 x 2=16.18.比较log 0.30.1和log 0.20.1的大小.解析:log 0.30.1=1log 0.10.3>0, log 0.20.1=1log 0.10.2>0. ∵log 0.10.3<log 0.10.2,∴log 0.30.1>log 0.20.1.19.某池塘中野生水葫芦的面积与时间的函数关系的图象如下图所示.假设其关系为指数函数,并给出下列说法:①此指数函数的底数为2;②在第5个月时,野生水葫芦的面积就会超过30 m 2;③野生水葫芦从4 m 2蔓延到12 m 2只需1.5个月;④设野生水葫芦蔓延到2 m 2,3 m 2,6 m 2所需的时间分别为t 1,t 2,t 3, 则有t 1+t 2=t 3;⑤野生水葫芦在第1到第3个月之间蔓延的平均速度等于在第2到第4个月之间蔓延的平均速度.其中正确的说法有 ______________ (填序号).答案:①②④三、分类讨论思想若a >0,且a ≠1,p =log a (a 3+a +1),q =log a (a 2+a +1),则p 、q 的大小关系为( )A .p =qB .p <qC .p >qD .a >1时,p >q ;0<a <1时,p <q解析:要比较p 、q 的大小,只需先比较a 3+a +1与a 2+a +1的大小,再利用对数函数的单调性.而决定a 3+a +1与a 2+a +1的大小的a 值的分界点为使(a 3+a +1)-(a 2+a +1)=a 2(a -1)=0的a 值:a =1,当a >1时,a 3+a +1>a 2+a +1,此时log a (a 3+a +1)>log a (a 2+a +1),即p >q .当0<a <1时,a 3+a +1<a 2+a +1,此时log a (a 3+a +1)>log a (a 2+a +1),即p >q .可见,不论a >1还是0<a <1,都有p >q .答案:C►跟踪训练20.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,2x ,x ≤0. 若f (a )=12,则a =( ) A .-1 B. 2C .-1或 2D .1或- 2解析:讨论a >0和a ≤0两种情况.答案:C21.已知函数f (x )=log a x 在[2,π]上的最大值比最小值大1,则a 等于( ) A.2π B.π2C.2π或π2D .不同于A 、B 、C 答案解析:研究函数的最值需考查函数的单调性,而题中对数函数的增减性与底数a 的取值有关,故应对a 进行分类讨论.(1)当a >1时,f (x )在[2,π]上是增函数,最大值是f (π),最小值是f (2),据题意,f (π)-f (2)=1,即log a π-log a 2=1,∴a =π2. (2)当0<a <1时,f (x )在[2,π]上是减函数,最大值是,最小值是f (π),故f (2)-f (π)=1,即log a 2-log a π=1,∴a =2π. 由(1)(2)知,选C.答案: C22.已知f (x )=1+log x 3,g (x )=2log x 2试比较f (x )和g (x )的大小.解析:f (x )-g (x )=log x 3x 4. (1)当⎩⎪⎨⎪⎧ x >1,3x 4>1⇒x >43,或⎩⎪⎨⎪⎧ 0<x <1,0<3x 4<1⇒0<x <1,即x >43或0<x <1时,f (x )>g (x ). (2)当3x 4=1即x =43时,f (x )=g (x ). (3)当⎩⎪⎨⎪⎧ x >1,0<3x 4<1⇒1<x <43,或⎩⎪⎨⎪⎧ 0<x <1,3x 4>1⇒x ∈∅,即1<x <43时,f (x )<g (x ). 综上所述:①当x ∈(0,1)∪⎝ ⎛⎭⎪⎫43,+∞时,f (x )>g (x ); ②当x =43时,f (x )=g (x ); ③当x ∈⎝ ⎛⎭⎪⎫1,43时,f (x )<g (x ).23.已知f (x )=log a (a x -1)(a >0且a ≠1).(1)求定义域;(2)讨论函数的单调区间.解析:(1)由a x -1>0⇒a x >1,当a >1时,函数定义域为(0,+∞),当0<a <1时,函数定义域为(-∞,0).点评:底数含字母a ,要进行分类讨论.。
三角函数在中学数学的研究意义
三角函数在中学数学中占据了重要的地位,它是高中数学教材基本初等函数部分的核心内容之一。
首先,三角函数沟通了高中的代数和几何,为学生提供了一个理解数学不同领域之间联系的桥梁。
此外,三角函数与我们的日常生活和工作有着紧密的联系,它可以帮助学生更好地解决实际问题。
从教学的角度看,三角函数是数学教学中的一块“试金石”,它可以检验学生的基础知识和理解能力。
同时,三角函数的学习也有助于培养学生的数学应用能力,为他们在未来的学习和职业生涯中打下坚实的基础。
此外,三角函数作为基本的初等函数,与函数、向量等许多其他重要的数学知识有着紧密的联系。
在物理、工程和其他科学领域中,三角函数的应用也非常广泛。
因此,对于中学生来说,掌握三角函数的概念、性质和应用是非常重要的。
总之,三角函数不仅在中学数学中占有重要地位,而且在实际生活和科学研究中也有着广泛的应用。
对于学生来说,学好三角函数不仅可以帮助他们更好地理解数学,还可以为他们的未来学习和职业生涯提供宝贵的工具。
一元基本初等函数一元基本初等函数是指由常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数以及其线性组合组成的函数族。
在高中数学课程中,我们将这一族函数作为基础知识,并围绕其展开一系列的学习。
一、常数函数常数函数,又称恒等函数,是最基本的一元函数之一。
它的函数表达式为:f(x) = c,其中c是一个常数。
常数函数的图像为一条水平直线,与x轴平行。
在计算中,常数函数经常被用作比较、判断以及对称等方面。
二、幂函数幂函数是指形如 f(x) = x^n 的函数,其中n是一个常数。
幂函数的图像形状随着n的取值不同而变化。
当n为正偶数时,幂函数的图像呈现出下凸的形状;当n为正奇数时,幂函数的图像呈现出上凸的形状;当n为负数时,幂函数的图像亦呈现出一个特殊的形态。
幂函数在计算机图形学、财务与经济学等领域有着广泛应用。
三、指数函数指数函数的一般形式为:f(x) = a^x,其中a大于0且不等于1。
指数函数的图像呈现出一个单调递增的形态,曲线在原点处经过(0,1)的点。
指数函数在生物学、物理学、金融学等领域应用极为广泛。
四、对数函数对数函数是指形如 f(x) = loga(x) 的函数,其中a是一个大于0且不等于1的常数。
对数函数一般使用换底公式将不同底数的对数互相换算。
对数函数的图像与指数函数的图像呈现出一种镜像关系。
对数函数在计算机科学、化学、微积分等领域有着广泛应用。
五、三角函数三角函数包括正弦函数、余弦函数、正切函数、余切函数等。
它们与三角形学的关系极为密切,被广泛应用于各种科学领域当中。
三角函数的图像呈现出周期性的波动形态,是其独特的特点之一。
六、反三角函数反三角函数是指对应三角函数的反函数,包括反正弦函数、反余弦函数、反正切函数、反余切函数等。
在计算机科学、工程学、物理学等领域都有广泛的应用。
综上所述,一元基本初等函数在数学领域中有着广泛的应用。
我们应当掌握其函数的基本特点,并在具体问题中恰当地运用各种函数进行相关计算。
基本初等函数初等函数初等函数是指可以用有限次加、减、乘、除、乘方、开方、指数、对数、函数互反和常数的四则运算来表示的函数。
它是高中数学中的一种函数类型,是数学研究和应用中最基本、最常见的一类函数。
最基本的初等函数包括:1.常数函数:y=C,其中C为任意常数。
常数函数在整个定义域上都保持不变。
2. 一次函数:y = mx + b,其中m和b为任意常数,m表示斜率,b 表示截距。
一次函数的图像为一条直线。
3.幂函数:y=x^r,其中r为任意的实数。
幂函数是由自变量的幂指数决定的。
4.指数函数:y=a^x,其中a为一个正常数且不等于1、指数函数的图像呈现指数增长或指数衰减的形式。
5. 对数函数:y = log_a(x),其中a为一个正数且不等于1、对数函数是指数函数的反函数,可以解决指数方程。
6. 三角函数:包括正弦函数y = sin(x),余弦函数y = cos(x),正切函数y = tan(x)等。
三角函数是周期性的函数。
除了以上基本初等函数外,复合函数也属于初等函数的范畴。
例如,将两个初等函数通过运算符号连接在一起形成的函数仍然属于初等函数。
例如加、减、乘、除、复合函数、互反函数等等。
初等函数在数学的研究和应用中起着非常重要的作用。
它们广泛应用于科学、工程、经济、物理、化学、生物学等领域中的数学模型建立和问题求解。
通过使用初等函数,我们可以更好地描述和分析变量之间的关系,从而更好地理解和预测实际问题。
初等函数的性质和特点也是数学学科中的重要内容之一、初等函数的图像、定义域、值域、对称性、奇偶性、单调性、极值等特征都可以通过数学工具和方法进行研究和分析。
总之,初等函数是数学中最基本和常见的一类函数。
它们通过有限次的四则运算、函数互反和常数的运算构成,在数学的研究和应用中起着重要的作用。
初等函数的性质和特点也是数学学科中的重要内容之一、通过学习初等函数,我们可以更好地理解和应用数学知识,解决实际问题。
浅谈高中数学必修一、二对高一新生的重要性高中数学必修一主要包括:集合不函数,基本初等函数中的指数函数、对数函数和幂函数,函数的应用三部分。
集合语言室现代数学的基本语言,使用集合语言,可以简洁、准确地表达数学的一些内容,高中数学课程只将集合作为一种语言来学习,学生将会使用最基本的集合语言表示有关的数学对象,发展运用数学语言进行交流的能力。
函数是描述客观世界变化规律的重要数学模型,高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合不对应的语言刻画函数,函数的思想方法将贯穿高中数学课程的始终,学生将学习指数函数、对数函数等具体的基本初等函数,结合实际问题,感受运用函数概念建立模型的过程和方法,体会函数在数学和其他学科中的重要性,初步运用函数思想理解和处理现实生活和社会中的简单问题。
学生还将学习利用函数的性质求方程的近似解,体会函数不方程的有机联系。
函数概念的教学要从实际背景和定义两个方面帮劣学生理解函数的本质。
从学生已掌握的的具体函数和函数的描述性定义入手,引导学生联系自己的生活经历和实际问题,尝试列丼各种各样的函数,构建函数的一般概念,再通过对具体函数的研究,加深对函数概念的理解。
像函数这样的核心概念需要多次接触、反复体会、螺旋上升,逐步加深理解,才能真正掌握,灵活应用。
高中数学必修二中,学生将学习立体几何初步、平面解析几何初步。
几何学是研究现实世界中物体的形状、大小不位置关系的数学学科。
他们可以采用直观感知、操作确认、思辨论证、度量计算等方法认识和探索几何图形及其性质。
三维空间是人类生存的现实空间,认识空间图形,培养和发展学生的空间想象能力、推理论证能力、运用图形语言进行交流的能力以及几何直观能力等。
在立体几何初步部分,学生将先从对空间几何体的整体观察入手,认识空间图形,再以长方体为载体,直观认识和理解空间点、线、面的位置关系;同时还将了解一些简单几何体的表面积和体积的计算方法。
解析几何是17世纪数学发展的重大成果之一,其本质是用代数方法研究图形的几何性质,体现了数形结合的重要数学思想。
高考数学中的初等代数近年来,高中数学教学中的初等代数已经成为高考数学中不可或缺的一部分。
初等代数是指基础的符号代数学习,也就是我们常常在高中数学课堂中所接触到的代数表达式、方程式、因式分解和多项式运算。
在高考数学中,初等代数占有相当重要的一席之地。
首先,初等代数在高考数学中所占比重很大,直接影响着高中数学学习的结果。
据统计,在高中数学课程中,初等代数的知识点占据了数学课程总知识点的50%左右,其中又以代数式的变形、方程的解法、函数的应用为主要考查内容。
在高考数学的命题中,初等代数也是经常出现的考点。
可以说,如果学生对初等代数的掌握不够扎实,就很难在高考数学中拿到高分。
因此,作为数学的基础学科,初等代数应该引起足够的重视。
其次,在高中数学教学实践中,初等代数也是学生们比较难以掌握和运用的一个学科。
由于初等代数既需要掌握具体的计算方法,又需要理解抽象的符号代数概念,因此初等代数的学习相对比较枯燥、抽象,容易让学生们产生怯步心理。
为了提高学生的学习兴趣和操作能力,教师应该注重创设有趣的教学环境和教学方式,让学生在轻松愉悦的氛围中加深对初等代数的认知,帮助学生们利用初等代数知识解决实际问题。
而在高考数学中,初等代数的学习成果也常常被应用到实际的科学技术领域中去。
初等代数的应用范围广泛,例如在工程和科学中,初等代数被用来解决实际问题和构建数学模型,如利用多项式公式进行信号处理和图像压缩,或者使用因式分解来求解方程和寻找因子。
对于有志于从事科学和工程专业的学生来说,掌握初等代数知识能够为他们未来的学习和工作打下坚实的数学基础。
总之,初等代数作为基础的符号代数学习至关重要,是数学学习中的重点之一。
学生们需要不断加深对初等代数的理解和掌握,将其应用到实际问题的解决中,同时加强创新与实践。
这样,才能在高考这个重要的关口中更好地发挥自己的能力,迎接未来的挑战和机遇。
中学数学课程与教学中的函数及其思想---史宁中教授访谈录20 世纪以来, 世界各国中学数学中关于代数的内容逐渐从以解方程为中心转到以研究函数为中心。
[1 ] 现在, 函数概念已经成为中学数学中最为重要的概念之一。
因此, 在中学数学课程改革中, 理解函数思想, 把握函数本质, 处理好函数的教学是很重要的。
针对上述问题, 我对史宁中教授进行了访谈, 下面是经过整理后的访谈记录。
一、函数及其思想问: 函数概念是中学数学中最重要的概念之一, 函数定义的形成经历了较长的演变过程,您可以谈谈函数定义的发展历史吗?▲史教授: 是的, 函数定义的形成确实经历了较长的时间。
即使在今天, 在我们数学教科书中, 函数的定义在初中、高中、大学还是有所不同的, 这也从一个侧面反映了函数定义的发展历史。
最初, 是德国数学家莱布尼茨(Leibniz)在他的一部手稿中, 用到了Function 一词。
是用来表示任何一个随着曲线上的点变动而变动的量, 例如, 切线、法线、次切线等的长度和纵坐标等, 那是在17 世纪(1673 年) 。
[2 ]到了18 世纪(1718 年) ,贝努利(Bernoulli)给出了函数的解析定义: 是由变量x 和常数组成的式子。
欧拉( Euler) 首先给出了函数的变量定义(1755 年) : “如果某变量以如下方式依赖于另一些变量, 即当后者变化时, 前者本身也发生变化, 则称前一个变量是后一些变量的函数。
”可以看到, 我国初中数学教科书中关于函数的定义就采用了这一说法。
后来, 黎曼(Riemann) 给出了函数的对应定义(1851 年) : “我们假定Z 是一个变量, 如果对它的每一个值, 都有未知量W 的一个值与之对应, 则称W 是Z 的函数。
”这可以被看作我国高中数学教科书中关于函数定义的雏形。
到了上个世纪(1939 年) , 布尔巴基学派认为, 函数的定义应当强调关系, 于是借用了笛卡儿积: 若X 、Y 是两个集合, 二者的笛卡儿积是指集合{ ( x , y | x ∈X , y ∈Y) } , 笛卡儿积中的子集F 被称为x 与y 之间的一种关系。
函数思想在高中数学解题中的应用函数是数学中非常重要的概念,它在高中数学中有着广泛的应用。
在解题过程中,函数思想能够帮助学生更好地理解问题,建立数学模型,解决实际问题,在数学学科中占据着重要的地位。
本文将从函数的概念、特点和应用等方面,探讨函数思想在高中数学解题中的应用。
一、函数的概念及特点函数是数学中的一个基本概念,它描述了两个变量之间的依赖关系。
通俗地说,函数就好比是一个“机器”,输入一个自变量,通过某种规则,输出一个因变量。
在数学上,函数一般用f(x)或者y来表示,其中x为自变量,y为因变量。
函数的概念在高中数学课程中首次出现,学生在初步学习了直线函数、二次函数等基本函数后,能够理解函数的意义和性质。
函数的概念是数学建模和解题的重要基础,它能够将一个实际问题转化为数学问题,从而进行求解。
函数的特点主要包括定义域、值域、单调性、奇偶性等,这些特点可以帮助我们更深入地理解函数。
定义域是指自变量的取值范围,值域是指因变量的取值范围,单调性是指函数的增减性质,奇偶性是指函数图象关于坐标轴的对称性。
这些特点的概念和性质在解题过程中起着至关重要的作用,能够帮助学生更好地理解和应用函数。
1. 建立数学模型函数的概念是数学建模过程中的关键,通过函数的建立,可以将实际问题转化为数学问题,从而进行求解。
在物理问题中,通过建立函数模型,可以描述物体的运动规律;在化学问题中,通过建立反应速率函数,可以描述化学反应的速率。
函数思想在高中数学解题中的应用主要体现在建立数学模型这一过程中。
一辆汽车以60公里/小时的速度行驶,求t小时后汽车行驶的总路程。
通过建立函数模型S(t)=60t,其中S(t)为t小时后汽车行驶的总路程,可以轻松求解题目。
2. 解决实际问题函数的概念能够帮助学生更好地解决实际问题,例如经济学、生态学、医学等领域的问题。
通过函数的建立和应用,可以分析和解决这些实际问题,为实际生活中的决策和问题提供数学支持。
谈谈对初等函数的理解
初等函数,又称初等数学函数,是指代数学中5条最基本的数学函数,即余弦、正弦、正切、平方根函数和指数函数。
这5条函数在工程学上有广泛的应用,尤其是在能源安全和全球变暖,各种燃料价格发展方向等研究领域极为重要。
余弦函数可以帮助人们计算曲线上某一点的高度,正弦函数可以帮助人们计算
曲线上某一点的宽度,正切函数可以帮助人们计算曲线上某一点的倾斜度;而平
方根函数可以帮助我们求解定义域和值域之间的关系,而指数函数可以帮助人们计算物体里面拥有特定能量的变化。
在能源安全方面,利用初等函数可以计算不同能源使用的结果,以及它们在节
约能源方面的贡献。
此外,在全球变暖的研究中,初等函数可以帮助人们计算不同温度对环境和生态的影响。
另外,初等函数还可以帮助人们计算各种燃料价格的发展趋势,从而帮助人们决定在实际情况下最有效的燃料使用方式。
总之,初等函数是数学学习以及社会经济研究不可或缺的重要因素,是一个广
泛应用的学科。
它在未来能源安全研究、全球变暖研究、以及各种燃料价格发展方向研究中起着重要作用,它可以为我们提供有价值的信息,帮助我们改善社会经济情况。
高考数学中的基本初等函数题型总结作为全国高中生的普及性质考试,高考中必定会考到数学这个科目,而其中初等函数部分则是数学中的基础知识。
初等函数常常出现在多项式函数、指数函数、对数函数、三角函数、反三角函数等高中知识点当中。
因此,对于考生来说,掌握初等函数的知识点,对高考数学考试及日后的数学学习都非常重要。
本文就高考数学中的基本初等函数题型进行总结。
1. 最值问题求函数的最值是很常见的一种初等函数题型。
以一些典型的例子为参考,可更好地掌握这类题型。
例1:已知$f(x)=x^2-2x+2$,求$f(x)$的最小值。
解:首先,把$f(x)$变形为完全平方的形式。
即$$f(x)=(x-1)^2+1$$显然,当$x=1$时,$(x-1)^2$取最小值$0$。
故$f(x)$在$x=1$时取得最小值$1$。
例2:已知$f(x)=\dfrac{1}{2}x^2-3x+5$,求$f(x)$的最大值。
解:同样把$f(x)$变形为完全平方的形式。
即$$f(x)=\dfrac{1}{2}(x-3)^2+\dfrac{1}{2}$$显然,当$x=3$时,$(x-3)^2$取最小值$0$。
故$f(x)$在$x=3$时取得最大值$\dfrac{1}{2}$。
2. 解方程解初等函数的方程是另一种常见的题型。
以下为几个典型的例子,例3:已知$y=2^x-x$,求$y=0$时的$x$的值。
解:根据方程可得$$2^x-x=0$$$$x=2^x$$把函数$y=2^x-x$作图,可以看出在$x=1$时交于$y=0$。
因此,方程的解为$x=1$。
例4:已知$y=\dfrac{1}{2}\log_2(x-1)+2$,求$y=1$时$x$的值。
解:根据方程可得$$\dfrac{1}{2}\log_2(x-1)+2=1$$$$\log_2(x-1)=2$$$$x-1=2^2=4$$因此,方程的解为$x=5$。
3. 函数图像解题函数图像是初等函数题目中重要的一部分。
路漫漫其修远兮,吾将上下而求索 - 百度文库 1 浅谈初等函数在高中数学中的重要性 赣榆智贤中学 刘国芳 内容摘要:中学代数里讨论的常值函数,幂函数,指数函数,对数函数,三角函数,
都是基本的初等函数,其中常值函数最为简单一般不做讨论其余四种函数在中学代数中占有重要的地。初等函数是中学代数的核心内容,也是学习高等函数的必要基础。 关键词:初等函数;幂函数;指数函数;对数函数;三角函数;定义
1引言 在近代社会里变化的量相互间依赖关系成为研究的重要方面,反映到数学里就产生了变量和函数的概念。 在科学史上,首先要研究变量间的相互依赖关系的就是伽利略,在他的名著《西门新科学》里几乎从头到尾渗透着函数的概念,在伽利略的著作中,还多处使用了比例的语言表达函数之间的关系,其后经过笛卡儿,格雷果里等人的工作变量概念逐渐形成,现在通用的函数概念一词由莱布尼兹首先使用,在函数概念发展史上,瑞士数学家欧拉做出了巨大贡献,在他的著作中,多次刻画了函数概念,今日通行的函数符号和函数分类也归类于欧拉,欧拉首先使用f(x)表示x函数,并使用了sin,cosxx和 tanx等作为角x的三角函数简化记号,他还用小写的拉丁字母,,abc表示三角形的边,用大写的,,ABC表示它们所对的角并引入弧度制和著名的欧拉公式 ,从而把指数函数和三角函数沟通起开,欧拉对不同类型的函数做精确的分类,他把函数分为有理函数和无理函数,有理函数又进一步分为有理整数函数和有理分数函数此外欧拉还给出了隐函数及函数的单值与多值概念。 初等函数是中学代数的核心内容,也是学习高等函数的必要基础,早在20世纪50年代,中学代数学就有一函数为纲领的提法,1978年以来,我国中学课本的内容大幅度更新,成为体现数学教材改革精神的重点课程之一。 中学代数里讨论的常值函数,幂函数,指数函数,对数函数,三角函数,都是基本的初等函数,其中常值函数最为简单一般不做讨论其余四种函数在中学代数中占有重要的地位,分析历年高考卷第一大题解答题中,必有一道是关于三角函数的题,另一道则是判断函数奇偶性和函数单调性或是求函数定义域和值域的题,而这两道题一般要占到20到30分左右,占卷面分的七分之一,由此可见探讨初等函数的教法势在必行。 路漫漫其修远兮,吾将上下而求索 - 百度文库 2 2.1指数函数教学探讨 指数函数是学生进入高中后遇到的第一个系统研究的函数,通过学习指数函数既可以对指数函数的概念等知识进一步的巩固和深化,又可以为今后进一步学习对数函数尤其利用互为反函数的图像间的关系来研究对数函数的性质打下坚实的图像和概念基础,所以学好指数函数很重要。 指数函数的知识与我们日常生产,生活和科学研究都有着紧密的联系,尤其体现细胞分裂、复制和计算方面,因此学习这方面的知识还有广泛的现实意义,本节课内容的特点之一是概念性强,特点二是凸显了数学图形在函数性质的重要作用,学习本节内容学生必须要掌握好指数函数概念、指数函数的性质和指数函数的图像。教师在授课过程中要向学生渗透数形结合的基本数学思想方法,培养学生观察、联想、类比、猜测、归纳的能力。 在教法设计上,第一、创新问题情境,通过课本上的引例指数函数调动学生的学习兴趣,激发学生探究心里,顺利引入课题。第二、强化指数函数的概念,引导学生结合指数的有关概念来归纳出指数函数的形式特点,请学生思考对底数a的范围是否需要限制,如果不限制会有什么问题出现,这样就避免学生对底数a的范围分类不清楚,也为研究指数函数的图像做了分类讨论的铺垫。第三、突出图像的作用,数学学习的过程中图像始终是我们需要借助的重要辅助手段,一位数学家曾经说过数离形时少直观,形离数时难入微。而研究指数函数的性质时更是直接有图像观察的出性质,因此图像发挥了重要的作用,第四,要注意数学与生活和实践的重要联系。数学本生源于生活,服务于实践。在课堂教学的引入、例题的讲解和课外知识的拓展部分,都介绍了与指数函数息息相关的生活问题,力图使学生了解数学的基础学科作用,培养学生的数学应用意识。 2.2对数函数教学探讨 对数函数是六类基本的初等函数之一,是函数部分的重点内容,具有广阔的用途是研究一些复杂函数的基础,对数函数也是经常用到的计算工具,因此学好对数函数对整个函数部分的学习有着重要的意义。在对数函数的学习中,学生必须要掌握好对数函数的概念,对数函数的性质,特别是对数函数的单调性,掌握比较同底数对数值和不同底数对数值大小的方发。在教学过程中先复习提问,首先回忆指数式与对数式的等价关系:当a>0且a不等于0时有ab=N等价于b=logab,利用等价关系把下列两个指数式化为对数式:(1)23=8化为对数式为3=log28 (2) 2xy化为对数式2logyx其中(2)题的解题步骤就是求2xy的反函数的路漫漫其修远兮,吾将上下而求索 - 百度文库 3 第一步,为求反函数搭好台阶,然后求指数函数2xy的反函数得到2logxyy。这样导入新课,即复习了旧知识,又为后面新知识的介绍铺好路,搭好桥。接着,推广到一般情况,求指数函数xya(a>o且a 1)的反函数,从而引入了对数函数的概念,对数函数与指数函数关系比较抽象如果一下提出来,学生很难理解,若从一个具体指数函数的反函数过渡到求任意指数函数的反函数则可以突破难点,使学生对知识循序渐进,由浅入深,指数函数和对数函数也在指数式与对数式中得到统一这样介绍对数函数的概念有利于新旧知识之间的内在联系, 收到水到渠成之效。 数学中的性质是由特殊到一般认识,对数函数的性质也是由特殊到一般去认识,所以应从例题出发,指导学生讨论,探索,例如讨论对数函数y=log2x y=log3x y=log1/2x的性质,并设置以下问题(1)x在什么范围内取值?(2)y在什么范围内取值?(3)当x逐渐增大时,y的值是怎样变化的?让学生参与知识的变化中,在对这三个对数函数的性质逐一探讨时,抽象的知识变得具体,形象生动,促进学生思维能力的发展和理解能力的提高。 分析了三个对数函数后,给出一个或一个以上的对数函数,如y=log1/3x logyx……让学生推测:该函数的性质与例题中的那个函数一样?这样设计有利于学生的类比猜想能力,也使学生对该知识点有更直观的认识,通过恰时对学生引导,让学生总结这些函数的共同点和不同点,从而体验到通过自己思考获取知识的快乐,也突破了本节的难点:对数函数的性质与底数a的关系。最后由教师过渡到一般情况,归纳对数函数的性质,便于学生记住该知识。对于比较两个同底数对数值大小关键是底数的范围,若对底数不加分析,只是一味的比较真数大小,往往易成错误,由对数函数的单调性可知:当a>1时真数越大函数值越大,当01时真数越大函数值越小。掌握好比较同底数值大小的方法,再深入挖掘,比较不同底数值的大小,可分为两种情况:一是底数不同,真数相同。如log0.50.3,log0.40.3引入学生利用换底公式间接的比较;二是底数不同,真数相同如log67,log77引导学生的类比指数函数中比较不同底数幂大小的方法,找中间变量,总结解题要点可以知识系统化遇到同类题型时缩短解题时间,同时也加深了学生对解题的理解程度,提高能力。在布置习题时要分难度层次,便于因材施教,可避免学生解题盲目性,使知识系统化,大大提高学生分析问题和解决问题的能力。 2.3幂函数教学探讨 路漫漫其修远兮,吾将上下而求索 - 百度文库 4 幂函数着部分的内容在大多数教师的教学实践中,都感到有一定的难度,幂函数y=xn由于n的取值不同,其定义域和图像都比较复杂,学生一般都抓不住规律,难以掌握。而幂函数是一个基本的函数对于一个刚刚跨入高中的学生来讲,理解他掌握它都非易事,为了更深刻,更全面的理解它。就需要一定的函数理论知识做基础,因此在讲函数概念之后紧接着重点讲函数的定义域,值域,单调性,奇偶性等有关性质,然后开始学幂函数,这样函数理论知识比较扎实,学习函数就容易多了 幂函数的定义域比较复杂,图像变化多,这是教学的两大难点,在教学中我们要有意识的把难点分散,各个击破,使学生容易掌握和接受,如在学习定义域时就布置学生讨论y=-xq/p和y=xq/p(p,q为整数, 1p qp 为即约分数)的定义域。经过练习和讲授一
般学生可以熟练掌握,在学习函数奇偶性时布置学生讨论y=x1/3 , y=x2/3, y=x1/2,y=x-3/2等幂函数的奇偶性,由于提前渗透分散起到水到渠成的效果,但学生学习
幂函数时,不但不感到生疏和困难,反而在轻松愉快中学会幂函数的有关知识。 2.4幂函数,指数函数和对数函数的教学探讨 幂函数,指数函数,对数函数的性质有许多相似之处,混在一起就不容易辨清性质,搞不清楚,就无法解决问题,我们对于这种函数的理解首先做出函数图像,在分析图像特征,最后寻找他们各自的基本性质,本来用函数用图像表达再找出特征,这种图文并茂的方法是我们数学研究中最得意的一招,这是能让学生学习抽象知识的好方法,但这三种函数一起学,由于性质相似而而分辨不清。我们可采用三种函数两两比较的方法,即幂函数与指数函数对比,指数函数与对数函数对比。找出它们的异同点,再把每一种函数的相同性质和不同性质归纳。在弄清函数的性质后,如何让学生记住又是一个极为重要的问题,这时我们可以向学生教口诀,,并在讲幂函数图像时,提出“一象限均有图,第四象限无图”,在讲授指数函数与对数函数的图像时,告诉学生“指居水平线上方,对在垂轴右侧”。利用口诀记住图像,就可以从图像推出性质,在讲解性质时也归纳了“幂零为界,指对一方,底均大于零”和“从左往右看图像,曲线升增降减”。在图像与性质这两方面介绍四句口诀。这样学生只要背熟着五句口诀,从字面上理解,就可以清楚三种函数图像的概念图像及性质。 幂函数与指数函数在形式上很相似,都是乘幂运算构成,在底数与指数上自变量与函数互换了位置而已,这种形式相似的两种函数对初接触的学生来说要分辨清楚不是一件容易的事课本关于幂函数和指数函数的定义有极为简单的描述,就像给出了模子,学生只需对照一下,符合形式便可确认,但在具体教学中可没那没简单,在刚学幂函数时学生在初中以学过