励磁系统与PSS讲解
- 格式:doc
- 大小:954.00 KB
- 文档页数:46
PSS——电力系统稳定装置电气2008-05-04 13:49:35 阅读898 评论0 字号:大中小订阅电力系统稳定器(简称PSS)是励磁系统的一个附加功能,用于提高电力系统阻尼,解决低频振荡问题,是提高电力系统动态稳定性的重要措施之一。
它抽取与此振荡有关的信号,如发电机有功功率、转速或频率,加以处理,产生的附加信号加到励磁调节器中,使发电机产生阻尼低频振荡的附加力矩。
PSS稳定装置的输入是发电机的有功信号,经过隔直环节和补偿环节,最后输出到励磁调节器,作为励磁调节器综合环节的一个负的输入。
在稳态运行时,由于隔直环节的作用,输出信号为零。
当系统受到扰动时,系统的低频振荡分量将使PSS产生输出信号,如果PSS相位补偿适当,将产生阻尼低频振荡的转矩,整个PSS装置的增益和相位决定了它对系统的阻尼效果。
有效平息系统的低频振荡,提高电力系统的稳定性。
PSS投入的一个条件是机组的输出有功,当有功大于一定的值时,PSS才起作用。
通过试验测量励磁系统滞后频率特性、PSS临界放大倍数等试验,确定机组PSS参数,并按调令投入PSS运行。
低频振荡分析发电机电磁力矩可分为同步力矩和阻尼力矩,同步力矩(PE)与Δδ同相位,阻尼力矩与Δω同相位。
如果同步力矩不足,将发生滑行失步;阻尼力矩不足,将发生振荡失步。
低频振荡是发生在弱联系的互联电网之间或发电机群与电网之间,或发电机群与发电机群之间的一种有功振荡,其振荡频率在0.2-2Hz之间,低频振荡发生的有四种可能的原因:1、系统弱阻尼时,在受到扰动后,其功率发生振荡且长时间才能平息。
2、系统负阻尼时,系统发生扰动而振荡或系统发生自激而引起自激振荡。
这种振荡,振荡幅度逐渐增大,直至达到某平衡点后,成为等幅振荡,长时间不能平息。
3、第三种是系统振荡模与某种功率波动的频率相同,引起特殊的强迫振荡,这种振荡随功率波动的原因消除而消除。
4、由发电机转速变化引起的电磁力矩变化和电气回路耦合产生的机电振荡,其频率约为0.2-2Hz。
水电厂PSS试验方案1 试验目的随着电力系统规模的不断扩大和快速励磁系统的广泛采用,系统的正阻尼变弱,致使系统的联络线可能出现功率低频振荡。
电力系统稳定器(PSS)就是专门用来增强系统正阻尼,抑制系统低频功率振荡的功能模块,在大型发电机的励磁系统上已得到了广泛的应用,成为现代励磁调节器不可缺少的功能模块之一。
本试验通过对发电机励磁调节器相频特性的测量,确认PSS整定参数,验证PSS对抑制低频振荡的作用,使PSS具备投运条件。
2 编制依据《同步发电机励磁系统技术技术条件》GB/T7409.3—1997;《电力系统稳定器试验整定导则》Q/GDW143-2006;南瑞电控励磁器相关技术资料。
3 试验时对机组运行工况的要求第一,进行试验时,要求被试机组能够分别在80%和100%额定有功负荷连续稳定运行,功率因数尽量接近1;第二,电厂非单机运行时,被试机组不供本机厂用电。
4 试验前应具备的条件第一,试验得到电力调度部门和有关方面批准;第二,励磁调节器厂家应提供AVR、PSS的数学模型,提供试验用的噪声信号引入接口,试验时励磁调节器制造厂的技术人员应到达现场,确认设备符合本试验要求,并协助试验人员进行试验;第三,试验机组和励磁系统处于完好状态,调节器除PSS外,所有附加限制和保护功能投入运行;第四,与试验机组有关的继电保护投入运行;第五,试验人员熟悉相关试验方法和仪器,检查试验仪器工作正常;第六,同厂同母线其他机组PSS退出运行,机组AGC、AVC退出运行。
5 试验接线将发电机定子三相电压信号、电流信号接入WFLC录波仪,记录发电机的电压、有功功率。
将频谱分析仪的白噪声信号接入励磁调节器的试验信号输入端子。
图一:频谱分析仪试验接线传递函数框图发电机组AVR传递函数发电机组PSS传递函数6 试验项目6.1 励磁系统无补偿滞后相频特性测量6.1.1 测量工况及励磁调节器运行方式要求测量分为两个工况,分别是机组带80%和100%额定有功负荷,功率因素接近1,PSS退出运行,励磁调节器投“远方”控制方式。
3 提高电力系统稳定性a 提高静态稳定性静态稳定是指电力系统遭受小扰动之后,不发生自发振荡和非周期失步,自动恢复到起始运行状态的能力。
电力系统静态稳定性高低,可以用输电线路的输送功率极限的大小来判断,这也是励磁装置常用的静态稳定性试验方法。
在单机-无穷大系统中,如果发电机没有励磁控制,则正常运行时,发电机的空载电势E0 保持不变,那么该系统的静态极限为Pmax,其功率特性曲线见图1-5 中的曲线1。
如果发电机具有常规励磁,比如直流励磁机或者交流励磁机带二极管整流的励磁系统,则可保持发电机的暂态电势Eq’不变,因此有Pmax’,其功率特性曲线见图1-5 中的曲线2。
如果发电机配置高放大倍数的快速励磁系统,比如采用运算放大器和可控硅整流器,并且励磁调节器带电力系统稳定器PSS 或者采用最优励磁控制,则可接近保持发电机端电压Ut 不变,因此有Pmax’’,其功率特性曲线见图1-5 中的曲线3。
粗约比较一下单机-无穷大系统静稳极限,Pmax :Pmax’:Pmax’’=1:2:3,可见励磁系统对于提高电力系统静态稳定性的作用非常明显。
特别是带PSS 或者采用最优控制的快速励磁系统对于电力系统的静态稳定性作用明显。
b 提高动态稳定性动态稳定是指电力系统遭受小扰动之后,在自动调节装置和附加控制的作用下,保持较长过程稳定运行的能力(通常指不发生周期性振荡失步)。
由于影响动态稳定性的主要因数是电力系统的阻尼特性,因而常规励磁系统对于电力系统的动态稳定性不起多大作用,但是,带PSS 的快速励磁系统能够阻尼系统的低频振荡,从而提高了电力系统动态稳定性。
C 提高暂态稳定性暂态稳定是指电力系统遭受大扰动后,各同步电机保持同步运行并过渡到新的或者恢复到原来状态运行的能力(通常指保持第一或第二个摇摆周期不失步)。
由于影响暂态稳定性的主要因数是系统中短路故障性质、主保护的动作情况、重合闸动作成功与否,因而调节励磁对暂态稳定的影响没有对静态稳定那么显著。
系统稳定器(PSS)原理及其试验方法[摘要]本文通过电力系统稳定器(PSS)在珠江电厂的应用详细介绍了PSS 的原理和试验方法。
【关键词】励磁;电力系统稳定器;PSS一、PSS的基本原理电力系统稳定器(PSS)是励磁系统的一种附加功能,它抽取与低频振荡有关的信号并对其加以处理,产生的附加信号叠加到励磁调节器中,使发电机产生阻尼低频振荡的附加转矩,用于提高电力系统的阻尼。
PSS一般是以励磁调节器电压控制环的附加控制的形式出现。
PSS借助于励磁调节器控制励磁的输出,来阻尼同步电机的功率振荡,输入变量可以是转速、频率或功率(或多个变量的综合)。
PSS输出的附加控制信号加到励磁系统上,经过励磁调节器滞后产生附加力矩。
该滞后特性称为励磁系统无补偿特性。
附加力矩方向与发电机Eq’一致,但是无法实际测量Eq’,而用测量发电机电压Vt代替。
试验时要求调整发电机无功在零附近,有功在满负荷附近。
根据测得的励磁系统无补偿特性,按照预先设计的PSS环节相位补偿特性,初选PSS参数。
目标是在低频振荡的频率范围内,PSS产生的附加力矩向量Te对应Δω(转速)轴在超前10°~滞后45°以内,并使本机振荡频率力矩向量对应Δω(转速)轴在0°~滞后30°以内。
PSS输入信号(转速ω,电气功率Pe或机械功率Pm)与Δω的相位关系如下:转速ω和频率f与Δω轴同相,电气功率Pe滞后Δω轴90°,机械功率Pm领先Δω轴90°。
根据不同的输入信号,PSS环节相位补偿特性的相位Фpss加上励磁系统无补偿特性的相位,可以获得所需的PSS附加力矩与Δω轴的关系,如图1所示。
珠江电厂四台机组使用励磁系统都是南瑞电气有限公司生产的SA VR-2000自并励静止励磁系统,其传递函数如图2所示,其值由调节器厂家给出。
其PSS 采用的模型如图3所示,PSS环节的各参数将在本次试验中整定。
PID模型中TR=0.02为发电机电压测量时间常数,参照厂家试验值给出;其余可整定参数见各调节器整定值。
1电力系统稳定器(PSS)的作用电力系统稳定器(简称PSS)是励磁系统的一个附加功能,用于提高电力系统阻尼,解决低频振荡问题,是提高电力系统动态稳定性的重要措施之一。
它抽取与低频振荡有关的信号,如发电机有功功率、转速或频率,加以处理,产生的附加信号加到励磁调节器中,使发电机产生阻尼低频振荡的附加力矩。
即在自动励磁调节器输入端引入附加反馈Δpe(Δf或Δω)以提高发电机对功率(或转速)中的低频振荡分量的阻尼力矩,迅速抑制低频振荡。
PSS设备简单,效果显著,已为国内、外广泛采用。
PSS控制结构如图1。
2十三陵蓄能电厂励磁系统简介十三陵蓄能电厂4台200 MW机组的励磁系统均为自并激励磁系统,励磁电源由机端供给,励磁变压器为3台干式变压器接成Y/Δ-5,经可控硅整流桥整流后供发电机励磁。
励磁调节器为数字式微机型励磁调节器,它是一个可自由编程的微处理机系统,该系统包括一个主处理器(MBR),3个子处理器(pr.A,B,C),另外还有数字输入、输出接口和模拟输入、输出接口,以及一个信号处理器SAB。
励磁系统的所有功能都是通过主处理器或子处理器上的程序(软件包)来实现的。
该调节器具有双自动电压调节通道和双励磁电流调节的手动调节通道。
其主要功能为将发电机电压调差、过流限制、低励限制、V/F限制、PSS等的输出信号相加后与设定电压比较,其差值经第一级电压放大,然后经PID串联校正电路。
对于快速励磁系统,当比例增益较大时一般不需要有微分单元以增加高频时的增益,因此自并励励磁系统通常只采用PI调节。
十三陵蓄能电厂励磁系统调节器设有微分单元,调试时将微分系数K D=0,即微分单元退出。
因此自动通道单元具有积分反馈的PI(D)调节特性,手动调节通道具有P(I)调节特性。
3十三陵蓄能电厂PSSPSS提供一个用于衰减转子振荡的附加信号。
这种转子振荡可能会在有不稳定条件线路和传输线很长时发生。
十三陵蓄能电厂PSS的功能是在励磁调节器子处理器C中来完成的。
技术讲座讲稿励磁系统与PSS2008年10月1. 前言根据我国国家标准GB/T 7409.1~7409.3-1997“同步电机励磁系统”的规定的定义,同步电机励磁系统是“提供电机磁场电流的装置,包括所有调节与控制元件,还有磁场放电或灭磁装置以及保护装置”。
励磁控制系统是包括控制对象的反馈控制系统。
励磁控制系统对电力系统的安全、稳定、经济运行都有重要的影响。
我国国家标准和行业标准都对励磁控制系统提出了具体的要求。
这里,就励磁系统分类、对励磁控制系统的要求、励磁控制系统与电力系统稳定的关系、电力系统稳定器等几个问题和大家一起进行讨论。
2. 励磁系统分类同步电机励磁系统的分类方法有多种。
主要的方法有两种,即按同步电机励磁电源的提供方式分类和同步电机励磁电压响应速度分类两种分类方法。
按同步电机励磁电源的提供方式不同,同步电机励磁系统可以分为直流励磁机励磁系统,交流励磁机励磁系统和静止励磁机励磁系统。
按同步电机励磁电压响应速度的不同,同步电机励磁系统可以分为常规励磁系统、快速励磁系统和高起始励磁系统。
2.1 直流励磁机励磁系统由直流发电机(直流励磁机)提供励磁电源的励磁系统叫直流励磁机励磁系统。
它主要由直流励磁机和励磁调节器组成。
早期的中小容量的同步电机的励磁调节器从发电机的PT(电压互感器)和CT(电流互感器)取得电源;较大容量的同步电机的励磁调节器的电源有时经励磁变压器取自发电机端时,此时,励磁变压器也是主要组成部分(图2-1)。
同步电机的励磁电源是直流励磁机的输出,励磁调节器根据发电机运行工况调节直流励磁机的输出,从而调节发电机的励磁,满足电力系统安全、稳定、经济运行的要求。
直流励磁机主要采用由原动机拖动与主发电机同轴的拖动方式,少数(主要是备用励磁机)为由异步电动机非同轴的拖动方式。
直流励磁机的励磁方式,主要有它励、自并励和自励加它励三种方式 。
它励方式的直流励磁机的励磁全部由励磁调节器提供;自并励方式的直流励磁机的励磁全部由直流励磁机本身提供,励磁调节的任务是通过调节与励磁绕组相串联的电阻的大小来实现的;自励加它励方式的直流励磁机的励磁,一部分由励磁调节器提供,一部分由直流励磁机本身提供。
励磁调节器提供的励磁安-匝与总励磁安-匝之比称为自励系数。
早期的直流励磁机还有采用副励磁机做它励电源的,现在已不再采用了。
由于直流励磁机是与主发电机同轴旋转,对于汽轮发电机来说,速度较高,受换向器(整流子)的限制,容量不能做得太大。
我国生产的、使用直流励磁机励磁系统的汽轮发电机的最大容量为125MW 。
对于水轮发电机来说,速度较低,直流励磁机的容量可能做得大一些,我国生产的、使用直流励磁机励磁系统的水轮发电机的最大容量达到300MW 。
随着电力电子技术的发展和在电力工业中的应用,直流励磁机励磁系统,我国新投产的100MW 及以上的发电机已不再使用直流励磁机励磁系统了。
2.2 交流励磁机励磁系统由交流发电机(交流励磁机)提供励磁电源的励磁系统叫交流励磁机励磁系统。
交流励磁机为50~200Hz 的三相交流发电机,交流励磁机的三相交流电压经三相全波桥式整流发电机 图2─1 直流励磁机系统原理图装置整流后变为直流电压,向同步发电机提供励磁。
交流励磁机的拖动方式为由原动机拖动与主发电机同轴的拖动方式。
交流励磁机的励磁方式绝大部分为它励方式,只有极少数采用复励(有串激绕组)方式。
根据整流装置采用的整流元件的不同,交流励磁机励磁系统可分为交流励磁机不可控整流器励磁系统和交流励磁机可控整流器励磁系统。
交流励磁机不可控整流器励磁系统交流励磁机不可控整流器励磁系统一般由交流励磁机、不可控整流装置、励磁调节器和交流副励磁机等组成(图2-2)。
同步发电机的励磁电源是交流励磁机的输出。
不可控整流装置将交流励磁机输出的三相交流电压转换成直流电压,励磁调节器根据发电机运行工况调节交流励磁机的励磁电流和输出电压,从而调节发电机的励磁,满足电力系统安全、稳定、经济运行的要求。
励磁调节器从同轴副励磁机取得电源。
副励磁机一般为350~500Hz的中频永磁交流发电机。
有些交流励磁机不可控整流器励磁系统的励磁调节器,不是从同轴副励磁机取得电源,而是通过励磁变压器从发电机机端取得电源,此时,励磁变压器也是主要组成部分(图2-2虚线所示)。
励磁调节器的电源由同轴副励磁机供给时简称为三机系统;励磁调节器的电源通过励磁变压器由发电机供给时简称为两机系统。
两机系统中励磁调节器的最大输出电压与发电机的机端电压的大小成正比。
图2─2 交流励磁机不可控整流器励磁系统原理图当不可控整流装置为静止整流装置时,称为交流励磁机不可控静止整流器励磁系统,一般简称为交流励磁机静止整流器励磁系统。
此时,交流励磁机的励磁绕组在转子上,与发电机转子及副励磁机转子同轴同速旋转。
交流励磁机的电枢、不可控整流装置和励磁调节器都是静止的。
交流励磁机静止整流器励磁系统中的交流励磁机和发电机都需要配滑环、炭刷。
又称为有刷励磁(系统)。
但是交流机本身没有换向问题,因此,其容量不受限制。
但是,由于旋转部件较多,励磁系统发生故障的可能性也较多。
同时,由于轴系长,轴承座较多。
容易引起机组振动超标,轴系稳定问题应引起注意。
当不可控整流装置采用旋转整流器时,称为交流励磁机不可控旋转整流器励磁系统,一般简称为交流励磁机旋转整流器励磁系统。
此时,交流励磁机的励磁绕组在定子上,电枢绕组在转子上。
励磁调节器是静止的,交流励磁机的励磁绕组也是静止的。
交流励磁机的电枢绕组、副励磁机转子、不可控整流装置与发电机转子同轴同速旋转。
交流励磁机和发电机都不需要配滑环、炭刷,因此,这种励磁系统又称为无刷励磁系统。
无刷励磁系统的主要特点是:交流励磁机和发电机都没有滑环、炭刷,励磁容量可以不受限制;没有滑环、炭刷,运行维护方便;没有滑环、炭刷,不会产生火花,可以使用于有易燃、易爆气体的场合;没有滑环、炭刷,不会产生炭粉和铜末,因而不会导致电机绕组的绝缘被污染而降低绝缘水平。
三机系统和两机系统都可以是无刷励磁系统。
交流励磁机不可控整流器励磁系统是目前我国电力系统中使用最多的励磁系统。
交流励磁机可控整流器励磁系统交流励磁机可控整流器励磁系统由三相可控整流桥、发电机的励磁调节器、交流励磁机及其自励恒压装置(系统)组成(图2-3)。
同步电机的励磁电源是交流励磁机的输出。
可控整流装置将交流励磁机输出的三相交流电压转换成直流电压,励磁调节器根据发电机运行工况调节可控整流器的导通角,调节可控整流装置的输出电压,从而调节发电机的励磁,满足电力系统安全、稳定、经济运行的要求。
这种励磁系统也称为它励可控硅励磁系统。
图2─3 交流励磁机可控整流器励磁系统原理图在我国使用的交流励磁机可控整流器励磁系统,绝大部分是随发电机一起从俄罗斯和捷克等国家进口的。
发电机容量从200MW~1000MW不等。
国内基本没有正式生产这种励磁系统。
2.3 静止励磁机励磁系统静止励磁机是指从一个或多个静止电源取得功率,使用静止整流器向发电机提供直流励磁电源的励磁机。
由静止励磁机向同步发电机提供励磁的励磁系统称为静止励磁机励磁系统。
静止励磁机励磁系统分为电势源静止励磁机励磁系统和复合源静止励磁机励磁系统。
电势源静止励磁机励磁系统又称为自并励静止励磁系统,有时也简称为机端变励磁系统或静止励磁系统。
同步电机的励磁电源取自同步电机本身的机端。
它主要由励磁变压器、自动励磁调节器、可控整流装置和起励装置组成(图2-4)。
励磁变压器从机端取得功率并将电压降低到所要求的数值上;可控整流装置将励磁变压器二次交流电压转变成直流电压;自动励磁调节器根据发电机运行工况调节可控整流器的导通角,调节可控整流装置的输出电压,从而调节发电机的励磁,满足电力系统安全、稳定、经济运行的要求;起励装置给同步电机一定数量(通常为同步电机空载额定励磁电流的10~30%)的初始励磁,以建立整个系统正常工作所需的最低机端电压,初始励磁一旦建立起来,起励装置就将自动退出工作。
从厂用电系统取得励磁电源的可控整流器励磁系统,当其电压基本稳定,与发电机端电压水平基本无关时,可以看作为它励可控硅励磁系统;当厂用电系统电压与发电机端电压水平密切相关时,看作为自并励静止励磁系统。
自并励静止励磁系统的主要优点是:无旋转部件,结构简单,轴系短,稳定性好;励磁变压器的二次电压和容量可以根据电力系统稳定的要求而单独设计。
响应速度快,调节性能好,有利于提高电力系统的静态稳定性和暂态稳定性。
自并励静止励磁系统的主要缺点是,它的电压调节通道容易产生负阻尼作用,导致电力系统低频振荡的发生,降低了电力系统的动态稳定性。
但是,通过引入附加励磁控制(即采用电力系统稳定器--PSS), 完全可以克服这一缺点。
电力系统稳定器的正阻尼作用完全可以超过电压调节通道的负阻尼作用,从而提高电力系统的动态稳定性。
这点,已经为国内外电力系统的实践所证明。
美国GE公司生产的称为GENERREX-PSS的励磁系统在我国也有应用。
其接线图如图8所示。
这是一个性能上介于自并励静止励磁系统和它励可控硅励磁系统之间的励磁系统。
发电机的励磁功率由定子绕组槽内的三根附加线棒(称为P线棒)提供的。
三根P线棒分别放置在定子上相互为120°空间几何角度的三个槽内,组成的线圈切割气隙磁通,产生基频电势。
基频电势被接到励磁变压器的一次侧。
励磁变压器的二次电压接到可控整流装置,整流后向发电机提高励磁。
复合源静止励磁机励磁系统又称为自复励静止励磁系统,它采用电压源整流变压器和电流源整流变压器两种整流变压器。
复合源静止励磁机励磁系统主要有三种形式整流器直流侧两个电源串联、电压相加;整流器交流侧两个电源并联、电流相加;整流器交流侧两个电源串联、电压相加。
国产水轮发电机上曾采用过整流器交流侧两个电源串联、电压相加的复合源静止励磁机励磁系统,进口水轮发电机上曾采用过整流器直流侧两个电源串联、电压相加的复合源静止励磁机励磁系统。
现在已经基本上不再采用复合源静止励磁机励磁系统了。
图2─4 自并励励磁系统原理图按同步电机励磁电压响应速度的不同,同步电机励磁系统可以分为常规励磁系统、快速励磁系统和高起始励磁系统。
常规励磁系统是指励磁机时间常数在0.5s左右及大于0.5s的励磁系统。
直流励磁机励磁系统,无特殊措施的交流励磁机不可控整流器励磁系统都属于常规励磁系统。
快速励磁系统是指励磁机时间常数小于0.05s的励磁系统。
交流励磁机可控整流器励磁系统,静止励磁机励磁系统都属于快速励磁系统。
高起始励磁系统是指发电机机端电压从100%下降到80%时,励磁系统达到顶值电压与额定负载时同步电机磁场电压之差的95%所需时间等于或小于0.1s的励磁系统。
这种励磁系统主要是指采用了特殊措施的交流励磁机不可控整流器励磁系统。