教学目标
1.理解和掌握分式的乘除法运算法则,能进 行简单的分式乘除法运算.
2.掌握分式的乘方法则,会进行分式的乘方 运算.
预习诊断
计算: (1) 4x y
3y 2x 3
(2) ab 2c
3 2
5a2b 4cd
2
合作探究
探究一:分式的乘除法法则
b d bd (a 0,c 0);b d bc (a 0,c 0,d 0)
a b
a b
a b
a4 b 4;
猜想
a b
n
an bn
.
分式的乘方法则:
a 即:
例3
a n b
n
b n
(n是正整数,b≠0).
(1)(-
b 2a2
)3
;
y2 (2)( 6 x2
)2
y2 4x2
.
温馨提示:分式乘方时,要注意幂的符号.若分式
1.分式和整式有什么联系?(分式可怎样得到) 分式可看作两个整式的商.用A,B表示两 个整式,A÷B就可以表示为 A 的形式.
B
2.分式和整式有什么区别? B中有字母.
3.练习
下列式子是整式的有
,是分式的有
.
3 x- y
-3x
x
3
1
3
8
5+ y
x
x- y
0
4. 18是分数,它也是
A B
的形式,这说明分式与分数有什么
本节主要学习了分式的意义,分式有意义,无意义, 及分式的值为零的条件,并且用类比的方法学习了分式的 基本性质,重点是分式的值为零的条件,关键是分式的基 本性质的限制条件.