《统计学》(贾俊平第七版)课后题及答案-统计学 贾俊平第七版
- 格式:doc
- 大小:98.82 KB
- 文档页数:11
第三章节:数据的图表展示 (1)欧阳引擎(2021.01.01)第四章节:数据的概括性度量 (15)第六章节:统计量及其抽样分布 (26)第七章节:参数估计 (28)第八章节:假设检验 (38)第九章节:列联分析 (41)第十章节:方差分析 (43)3.1 为评价家电行业售后服务的质量,随机抽取了由100个家庭构成的一个样本。
服务质量的等级分别表示为:A.好;B.较好;C一般;D.较差;E.差。
调查结果如下:B EC C AD C B A ED A C B C DE C E EA DBC C A ED C BB ACDE A B D D C C B C E D B C C B C D A C B C D E C E B B E C C A D C B A E B A C E E A B D D C A D B C C A E D C B CBCEDBCCBC要求:(1)指出上面的数据属于什么类型。
顺序数据(2)用Excel 制作一张频数分布表。
用数据分析——直方图制作:(3)绘制一张条形图,反映评价等级的分布。
用数据分析——直方图制作:(4)绘制评价等级的帕累托图。
逆序排序后,制作累计频数分布表:接收 频数 频率(%) 累计频率(%) C 32 32 32 B 21 21 53 D 17 17 70 E 16 16 86 A 14 14 1003.2 某行业管理局所属40个企业2002年的产品销售收入数据如下:152124 129 116 100 103 92 95 127 104 105 119 114 115 87 103 118 142 135 125 117 108 105 110 107 137 120 136 117 108 9788123115119138112146113126要求:(1)根据上面的数据进行适当的分组,编制频数分布表,并计接收频率E 16 D 17 C 32 B 21 A14算出累积频数和累积频率。
统计学基础(贾俊平)课后简答题第一章1.什么是统计学?统计方法可以分为哪两大类?统计学是收集、处理、分析、解释数据并从数据中得出结论的科学。
统计方法可以分为描述统计和分类统计。
2、统计数据可分为哪几种类型?不同类型的数据各有什么特点?按照所采用的计量尺度不同,分为分类数据、顺序数据和数值型数据;按照统计数据的收集方法,分为观测的数据和实验的数据;按照被描述的对象与时间的关系,分为截面数据和时间序列数据。
按计量尺度分时:分类数据中各类别之间是平等的并列关系,各类别之间的顺序是可以任意改变的;顺序数据的类别之间是可以比较顺序的;数值型数据其结果表现为具体的数值。
按收集方法分时:观测数据是在没有对事物进行人为控制的条件下等到的;实验数据的在实验中控制实验对象而收集到的数据。
按被描述的对象与时间关系分时:截面数据所描述的是现象在某一时刻的变化情况;时间序列数据所描述的是现象随时间而变化的情况。
3.举例说明总体、样本、参数、统计量、变量这几个概念。
总体是包含所研究的全部个体(数据)的集合样本是从总体中抽取的一部分元素的集合参数是用来描述总体特征的概括性数字度量统计量是用来描述样本特征的概括性数字度量变量是说明现象某种特征的概念。
对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
4.什么是有限总体和无限总体?举例说明。
根据总体所包含的单位数目是否可数可以分为有限总体和无限总体。
总体的范围能够明确确定,而且元素的数目是有限可数的。
比如,由若干个企业构成的总体就是有限总体,一批待检验的灯泡也是有限总体。
无限总体是指总体所包括的元素是无限的,不可数的。
例如,在科学试验中,每一个试验数据可以看作是一个总体的一个元素,而试验可以无限地进行下去,因此由试验数据构成的总体就是一个无限总体。
第6章 统计量及其抽样分布一、思考题1.什么是统计量?为什么要引进统计量?统计量中为什么不含任何未知参数? 答:(1)设是从总体中抽取的容量为的一个样本,如果由此样本构造一个函数,不依赖于任何未知参数,则称函数是一个统计量。
(2)在实际应用中,当从某总体中抽取一个样本后,并不能直接应用它去对总体的有关性质和特征进行推断,这是因为样本虽然是从总体中获取的代表,含有总体性质的信息,但仍较分散。
为了使统计推断成为可能,首先必须把分散在样本中关心的信息集中起来,针对不同的研究目的,构造不同的样本函数。
(3)统计量是样本的一个函数。
由样本构造具体的统计量,实际上是对样本所含的总体信息按某种要求进行加工处理,把分散在样本中的信息集中到统计量的取值上,不同的统计推断问题要求构造不同的统计量,所以统计量不包含未知参数。
2.判断下列样本函数哪些是统计量?哪些不是统计量?12n X X X ,,…,X n 12()n T X X X ,,…,12()n T X X X ,,…,1121021210310410()/10min()T X X X T X X X T X T X μμσ=+++==-=-…,,…,()/答:统计量中不能含有未知参数,故、是统计量,、不是统计量。
3.什么是次序统计量?答:设是从总体中抽取的一个样本,称为第个次序统计量,它是样本满足如下条件的函数:每当样本得到一组观测值…,时,其由小到大的排序中,第个值就作为次序统计量的观测值,而称为次序统计量,其中和分别为最小和最大次序统计量。
4.什么是充分统计量?答:在统计学中,假如一个统计量能把含在样本中有关总体的信息一点都不损失地提取出来,那对保证后边的统计推断质量具有重要意义。
统计量加工过程中一点信息都不损失的统计量通常称为充分统计量。
5.什么是自由度?答:统计学上的自由度是指当以样本的统计量来估计总体的参数时,样本中独立或能自由变化的变量的个数。
第四章统计数据的概括性度量4. 1 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下: 2 4 7 10 10 10 12 12 14 15要求:(1) 计算汽车销售量的众数、中位数和平均数。
(2) 根据定义公式计算四分位数。
(3) 计算销售量的标准差。
(4) 说明汽车销售量分布的特征。
解:汽车销售数量StatisticsNValid 10Missing0 Mean9.60Median10.00Mode10Std. Deviation4.169 Percentiles25 6.255010.007512.504. 2随机抽取25个网络用户,得到他们的年龄数据如下:单位:周岁19 15 29 25 24 23 21 38 22 18 30 20 19 19 16 23 27 22 34 24 41 20 31 17 23要求;(1) 计算众数、中位数:排序形成单变量分值的频数分布和累计频数分布:LI2.557.5 10汽车销售数量12.5 15Mean =9.6Std. Dev. =4.169N =10Histogram32网络用尸的年龄FrequencyPercent Cumulative FrequencyCumulative PercentValid15 14.0 14.016 1 4.0 2 8.0 17 1 4.0 3 12.0 18 1 4.0 4 16.0 19 3 12.0 7 28.0 20 2 8.0 9 36.0 21 1 4.0 10 40.0 22 2 8.0 12 48.0 233 12.0 15 60.0 24 2 8.0 17 68.0 25 1 4.0 18 72.0 27 1 4.0 19 76.0 29 1 4.0 20 80.0 30 1 4.0 21 84.0 31 1 4.0 22 88.0 34 1 4.0 23 92.0 38 1 4.0 24 96.0 41 1 4.0 25100.0Total25100.0从频数看出,众数 Mo 有两个:19、23;从累计频数看,中位数 Me=23。
第4章数据的概括性度量一、单项选择题1.一组数据的峰度系数为3.5,则该数据的统计分布应具有的特征是()。
[中央财经大学2018研]A.扁平分布B.尖峰分布C.左偏分布D.右偏分布【答案】B【解析】峰度系数用来度量数据在中心的聚集程度。
在正态分布情况下,峰度系数值是3。
大于3的峰度系数说明观察量更集中,有比正态分布更短的尾部;小于3的峰度系数说明观测量不那么集中,有比正态分布更长的尾部,类似于矩形的均匀分布。
2.某企业男性职工占80%,月平均工资为450元,女性职工占20%,月平均工资为400元,该企业全部职工的平均工资为()。
[中央财经大学2015研] A.425元B.430元C.435元D.440元【答案】D【解析】企业全部职工的平均工资=男性职工比例×男性月平均工资+女性职工比例×女性月平均工资=80%×450+20%×400=440(元)。
3.15位同学的某门课程考试成绩中,70分出现3次,80分出现4次,85分出现6次,90分出现2次,则他们成绩的众数为()。
[华中农业大学2015研] A.80B.85C.81.3D.90【答案】B【解析】众数是一组数据中出现次数最多的变量值。
题中,85分出现次数最多,故成绩的众数为85分。
4.一组样本的变异系数(CV)等于10,样本均值为5,则样本方差为()。
[厦门大学2014研]A.2B.4C.0.5D.2500【答案】D【解析】变异系数是一组数据的标准差与其相应的平均数之比,因而样本标准差=样本均值×变异系数=5×10=50,样本方差=50×50=2500。
5.现抽取了10个同学,每个同学的月生活费数据排序后为:660,750,780,850,960,1080,1250,1500,1630,2000。
则中位数的位置为()。
[重庆大学2013研]A.5.5B.5C.4D.6【答案】A【解析】中位数是将样本排序后处于中间位置的数据,总共有10个样本,因此中位数的位次=(1+10)/2=5.5。
第13章时间序列分析和预测13.1 复习笔记一、时间序列及其分解1.时间序列(1)概念:时间序列是同一现象在不同时间上的相继观察值排列而成的序列,也称动态数列或时间数列。
(2)时间序列的两要素任何一个时间序列都具有两个基本要素:一是统计指标所属的时间,也称为时间变量;二是统计指标在特定时间的具体指标值。
(3)研究时间序列的目的①在编制时间序列的基础上,可以计算平均发展水平,进行动态水平分析;②可以计算各种速度指标,进行速度分析;③利用相关的数学模型,对现象的变动进行趋势分析。
2.时间序列的类型(1)平稳序列它是基本上不存在趋势的序列。
这类序列中的各观察值基本上都在某个固定的水平上波动,虽然在不同的时间段波动的程度不同,但并不存在某种规律,其波动可以看成是随机的。
(2)非平稳序列它是包含趋势、季节性或周期性的序列,它可能只含有其中的一种成分,也可能含有几种成分,因此非平稳序列可以分为有趋势的序列、有趋势和季节性的序列、几种成分混合而成的复合型序列。
3.时间序列的4种成分(1)趋势(T)也称长期趋势,它是时间序列在长时期内呈现出来的某种持续上升或持续下降的变动。
时间序列中的趋势可以是线性的,也可以是非线性的。
(2)季节性(S)也称季节变动,它是时间序列在一年内重复出现的周期性波动。
季节性中的“季节”一词是广义的,它不仅仅是指一年中的四季,其实是指任何一种周期性的变化。
(3)周期性(C)也称循环波动,它是时间序列中呈现出来的围绕长期趋势的一种波浪形或振荡式变动。
(4)随机性(I)也称不规则波动,它是时间序列中除去趋势、周期性和季节性之后的偶然性波动。
4.时间序列的分解模型将时间序列分解成长期趋势、季节变动、周期变动和随机变动四个因素后,可以认为时间序列Y t是这四个因素的函数,即Y t=f(T t,S t,C t,I t),其中较常用的是加法模型和乘法模型,其表现形式为:加法模型:Y t=T t+S t+C t+I t乘法模型:Y t=T t×S t×C t×I t注意:时间序列组合模型中包含了四种因素,这是时间序列的完备模式,但是并不是在每个时间序列中这四种因素都同时存在。
第11章一元线性回归一、思考题1.解释相关关系的含义,说明相关关系的特点。
答:变量之间存在的不确定的数量关系,称为相关关系。
相关关系的特点:一个变量的取值不能由另一个变量唯一确定,当变量x取某个值时,变量y的取值可能有几个。
对这种关系不确定的变量是不能用函数关系进行描述的。
2.相关分析主要解决哪些问题?答:相关分析就是对两个变量之间线性关系的描述与度量,它要解决的问题包括:(1)变量之间是否存在关系;(2)如果存在关系,它们之间是什么样的关系;(3)变量之间的关系强度如何;(4)样本所反映的变量之间的关系能否代表总体变量之间的关系。
3.相关分析中有哪些基本假定?答:在进行相关分析时,对总体主要有以下两个假定:(1)两个变量之间是线性关系;(2)两个变量都是随机变量。
4.简述相关系数的性质。
答:相关系数是根据样本数据计算的度量两个变量之间线性关系强度的统计量。
若相关系数是根据总体全部数据计算的,称为总体相关系数,记为ρ;若是根据样本数据计算的,则称为样本相关系数,记为r 。
相关系数的性质:(1)r 的取值范围在-1~+1之间,即-1≤r ≤1。
若0<r ≤1,表明x 与y 之间存在正线性相关关系;若-1≤r <0,表明x 与y 之间存在负线性相关关系;若r =+1,表明x 与y 之间为完全正线性相关关系;若r =-1,表明x 与y 之间为完全负线性相关关系。
可见当|r |=1时,y 的取值完全依赖于x ,二者之间即为函数关系;当r =0时,说明y 的取值与x 无关,即二者之间不存在线性相关关系。
(2)r 具有对称性。
x 与y 之间的相关系数xy r 和y 与x 之间的相关系数yx r 相等,即xy r =yx r 。
(3)r 数值大小与x 和y 的原点及尺度无关。
改变x 和y 的数据原点及计量尺度,并不改变r 数值大小。
(4)r 仅仅是x 与y 之间线性关系的一个度量,它不能用于描述非线性关系。
统计学贾俊平课后习题答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】附录:教材各章习题答案第1章统计与统计数据1.1(1)数值型数据;(2)分类数据;(3)数值型数据;(4)顺序数据;(5)分类数据。
1.2(1)总体是“该城市所有的职工家庭”,样本是“抽取的2000个职工家庭”;(2)城市所有职工家庭的年人均收入,抽取的“2000个家庭计算出的年人均收入。
1.3(1)所有IT从业者;(2)数值型变量;(3)分类变量;(4)观察数据。
1.4(1)总体是“所有的网上购物者”;(2)分类变量;(3)所有的网上购物者的月平均花费;(4)统计量;(5)推断统计方法。
1.5(略)。
1.6(略)。
第2章数据的图表展示2.1(1)属于顺序数据。
(2)频数分布表如下(4)帕累托图(略)。
2.2(1)频数分布表如下2.3频数分布表如下2.5(1)排序略。
(2)频数分布表如下2.6(3)食品重量的分布基本上是对称的。
2.72.8(1)属于数值型数据。
2.9(1)直方图(略)。
(2)自学考试人员年龄的分布为右偏。
2.10A 班分散,且平均成绩较A 班低。
2.11 (略)。
2.12 (略)。
2.13 (略)。
2.14 (略)。
2.15 箱线图如下:(特征请读者自己分析) 第3章 数据的概括性度量3.1(1)100=M ;10=e M ;6.9=x 。
(2)5.5=L Q ;12=U Q 。
(3)2.4=s 。
(4)左偏分布。
3.2(1)190=M ;23=e M 。
(2)5.5=L Q ;12=U Q 。
(3)24=x ;65.6=s 。
(4)08.1=SK ;77.0=K 。
(5)略。
3.3 (1)略。
(2)7=x ;71.0=s 。
(3)102.01=v ;274.02=v 。
(4)选方法一,因为离散程度小。
3.4 (1)x =(万元);M e= 。
第一章导论1.什么是统计学?统计学是搜集、处理、分析、解释数据并从中得出结论的科学。
2.解释描述统计与推断统计。
描述统计研究的是数据搜集、处理、汇总、图表描述、概括与分析等统计方法。
推断统计研究的是如何利用样本数据来推断总体特征的统计方法。
3.统计数据可分为哪几种类型?不同类型的数据各有什么特点?按照计量尺度可分为分类数据、顺序数据和数值型数据;按照数据的搜集方法,可以分为观测数据和试验数据;按照被描述的现象与实践的关系,可以分为截面数据和时间序列数据。
4.解释分类数据、顺序数据和数值型数据的含义。
分类数据是只能归于某一类别的非数字型数据;顺序数据是只能归于某一有序类别的非数字型数据;数值型数据是按照数字尺度测量的观测值,其结果表现为具体的数值。
5.举例说明总体、样本、参数、统计量、变量这几个概念。
总体是包含所研究的全部个体的集合,样本是从总体中抽取的一部分元素的集合,参数是用来描述总体特征的概括性数字度量,统计量是用来描述样本特征的概括性数字度量,变量是用来说明现象某种特征的概念。
6.变量可分为哪几类?变量可分为分类变量、顺序变量和数值型变量。
分类变量是说明书屋类别的一个名称,其取值为分类数据;顺序变量是说明十五有序类别的一个名称,其取值是顺序数据;数值型变量是说明事物数字特征的一个名称,其取值是数值型数据。
7.举例说明离散型变量和连续型变量。
离散型变量是只能去可数值的变量,它只能取有限个值,而且其取值都以整位数断开,如“产品数量”;连续性变量是可以在一个或多个区间中取任何值的变量,它的取值是连续不断的,不能一一列举,如“温度”等。
第二章数据的搜集1.什么是二手资料?使用二手资料需要注意些什么?与研究内容有关、由别人调查和试验而来、已经存在并会被我们所利用的资料为二手资料。
使用时要评估资料的原始搜集人、搜集目的、搜集途径、搜集时间且使用时要注明数据来源。
2.比较概率抽样和非概率抽样的特点。
举例说明什么情况下适合采用概率抽样,什么情况下适合采用非概率抽样。
概率抽样:指遵循随机原则进行的抽样,总体中每一个单位都有一定的机会被选入样本。
当用样本对总体进行估计时,要考虑每个单位样本被抽中的概率。
技术含量和成本都比较高。
如果调查目的在于掌握和研究对象总体的数量特征,得到总体参数的置信区间,就使用概率抽样。
非概率抽样:指抽取样本时不是依据随机原则,而是根据研究目的对数据的要求,采用某种方式从总体中抽取部分单位对其进行实施调查。
操作简单、时效快、成本低。
而且对于抽样中的统计学专业技术要求不是很高。
它适合探索性的研究,调查结果用于发现问题,为更深入的数量分析提供准备。
3.调查中搜集数据的方法主要有自填式、面访式、电话式。
除此之外,还有哪些搜集数据的方法?试验式和观察式。
4.自填式、面访式、电话式调查各有什么利弊?自填式优点:调查组织者管理容易;成本低,可进行大规模调查;减少被调查者回答敏感问题的压力。
缺点:返回率低;调查内容有限;调查周期长;在数据搜集过程中遇见问题不能及时调整。
面访式优点:回答率高;数据质量高;在调查过程中遇见问题可以及时调整。
缺点:成本比较高;搜集数据的方式对调查过程的质量控制有一定难度;对于敏感问题,被访者会有压力。
电话式优点:对调查员比较安全;对访问过程的控制比较容易。
缺点:实施地区有限;调查时间不能过长;使用的问卷要简单;被访者不愿回答时,不易劝服。
5.你认为应当如何控制调查中的回答误差?对于理解误差,我会学习一些心理学知识;对于记忆误差,我会尽量去缩短所涉及的时间范围;对于有意识误差,要做好被调查者的心理工作,要遵守职业道德,为被调查者保密,尽量在问卷中不涉及敏感问题。
6.怎样减少无回答?请通过一个例子说明你所考虑到的减少无回答的具体措施。
对于随机误差,要提高样本容量;对于系统误差,只有做好准备工作并做好补救措施。
第三章数据的图表展示1.数据的预处理包括哪些内容?数据审核(对于原始数据:完整性和准确性;对于二手数据:实用性和实效性)、数据筛选和数据排序。
2.分类数据和顺序数据的整理和图示方法各有哪些?分类数据:制作频数分布表,用比例、百分比和比率等进行描述性分析,可用条形图、帕累托图、饼图和环形图进行图示分析。
顺序数据:制作频数分布表,用比例、百分比、比率、累计频数和累计频率等进行描述性分析,可用条形图、帕累托图、饼图、累计评书分布图和环形图进行分析。
3.数值型数据的分组方法有哪些?简述组距分组的步骤。
分组方法:单变量值分组和组距分组,组距分组又分为等距分组和异距分组。
分组步骤:①确定组数②确定组距③根据分组整理成频数分布表。
4.直方图与条形图有何区别?条形图使用的长度表示各类别频数的多少,其宽度固定;直方图用面积表示各组频数,矩形的高度表示魅族的频数或频率,宽度表示组距。
直方图各矩形连续排列,条形图分开排列。
直方图主要展示数值型数据。
5.绘制线图应注意哪些问题?时间在横轴,观测值在纵轴。
一般是长宽比例 10:7 的长方形,纵轴下端一般从 0 开始,数据与 0 距离过大的话用折断符号折断。
6.饼图和环形图有什么不同?饼图只能显示一个样本或总体各部分所占比例,环形图可以同时绘制多个样本或总体的数据系列。
7.茎叶图与直方图相比有什么优点?他们的应用场合是什么?茎叶图既能给出数据的分布情况,又能给出每个原始数据,即保留了原始数据的信息。
茎叶图通常适用于小批量数据,直方图适用于大批量数据。
8.鉴别图表优劣的准则有哪些?显示数据;有助于洞察问题的本质;使复杂的观点得到简明、确切、高效的阐述;快速高效地给读者提供大量的信息;多维的;表述数据的真实情况。
9.制作统计表时应注意哪几个问题?合理安排统计表结构;表头一般包括表号、总标题和表中数据的单位等内容;在使用统计表时,必要时可在下方加注释注明数据来源。
第四章数据的概括性度量1.一组数据的分布特征可以从哪几个方面进行测度?可以从数据分布的集中趋势、离散程度和分布的偏态与峰态三个方面进行测量。
集中其实反映了各数据向其中心支靠拢或聚集的程度;离散程度反映了各数据原理其中心值的趋势;偏态与峰态反映了数据分布的图像形状。
2.简述众数、中位数和平均数的特点和应用场合。
众数是一组数据分布的峰值,不受极端值的影响,缺点是具有不唯一性。
众数只有在数据量较多时才有意义。
主要适合作为分类数据的集中趋势测度值。
中位数是一组数据中间位置上的代表值,不受极端值影响,当数据分布的偏斜较大时,可以使用中位数。
主要适合作为顺序数据的集中趋势测度值。
平均是是针对数值型数据计算的,而且利用了全部数据信息。
当数据呈对称分布或接近对称分布时,三个代表值相等或接近相等,这时应选平均数作为集中趋势的代表值。
但平均数的主要缺点是易受极端值的影响;对于偏态分布的数据,平均数的代表性较差。
3.简述异众比率、四分位差、方差或标准差的应用场合。
异众比率主要用于测量分类数据的离散程度;四分位差主要用于测量顺序数据的离散程度;方差或标准差主要用于测量数值型数据的离散程度。
4.标准分数有哪些用途?标准分数给出了一组数据中各数值的相对位置。
在对多个具有不同量纲的变量进行处理时,常需要对各变量进行标准化处理。
它还可以用来判断一组数据是否有离群数据。
5.为什么要计算离散系数?方差和标准差是反映数据离散程度的绝对值,一方面其数值大小受原变量值本身水平高低的影响;另一方面,他们与原变量的计量单位相同,采用不同计量单位的变量值,其离散程度的测度值也就不同。
6.测度数据分布形状的统计量有哪些?对于分布形状的测度有偏态和峰态。
测度偏态的统计量是偏态系数;测度峰态的统计量是峰态系数。
i =1i 第五章 概率与概率分布1. 频率与概率有什么关系?在相同条件下随机试验n 次,某事件出现m 次,则比值m称为该事件发生的频率。
随 n 着n 的增大,该频率围绕某一常数p 波动,且波动幅度逐渐减小,趋于稳定,这个频率的稳定值即为该事件的概率。
第六章 统计量及其抽样分布1. 什么是统计量?为什么要引进统计量?统计量中为什么不含任何未知参数? 统计量:设X 1, X 2,···, X n 是从总体X 总抽取的容量为n 的一个样本,如果由此样本构造一个函数T (X 1, X 2,···, X n ),不依赖于任何未知参数,则称函数T (X 1, X 2,···, X n )是一个统计量。
由样本构造具体的统计量,实际上是对样本信息进行加工并集中到统计量的取值上, 便于通过统计量推断总体参数。
由于样本已经抽出,故统计量总是知道的,因此统计量不含有任何未知参数。
2. 简述χ2分布、t 分布、F 分布及正态分布之间的关系。
正态分布:Z = X−μ~N (0,1),则X ~N (μ, σ2)σ χ2分布:设随机变量X 1, X 2,···, X n 相互独立,且X i (i = 1,2,···, n )服从标准正态分布N (0,1),则他们的平方和∑n X 2服从自由度为n 的χ2分布。
t 分布:设随机变量X ~N (0,1),Y ~χ2(n ),且X 与Y 独立,则t = X √Y /n其分布称为t 分 布。
F 分布:设随机变量Y 与Z 相互独立,且Y 与Z 分别服从自由度为m 和n 的χ2分布,则 X = Y /m= nY ~F (m , n )Z /n mZ 3. 什么是抽样分布?在总体X 的分布类型已知时,若对任一自然数n ,都能导出统计量T = T (X 1, X 2,···, X n ) 的分布的数学表达式,这种分布称为精确的抽样分布。
4. 简述中心极限定理的意义。
中心极限定理:设从均值为μ,方差为σ2的一个文艺总体中抽取容量为n 的样本,当 n 充分大时,样本均值的抽样分布近似服从均值为μ,方差为σ2/n 的正态分布。
意义:是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从正态分布的条件。
第七章 参数估计1. 解释估计量和估计值。
估计量:用于估计总体参数的随机变量。
估计值:估计参数时计算出来的统计量的具体值。
2.简述评价估计量好坏的标准。
无偏性:估计量抽验分布的数学期望等于被估计的总体参数。
有效性:对同一总体参数的连个无偏点估计量,有更小标准差的估计量更有效。
一致性:随着样本容量的增大,估计量的值越来越接近被估计的总体参数。
3.怎样理解置信区间?由样本统计量所构造的总体参数的估计区间。
4.解释95的置信区间。
用某种方法构造的所有区间中有 95%的区间包含总体参数的真值。
5.zσαnzα/2是标准正态分布上侧面积为α/2的z值,公式是统计总体均值时的边际误差。