概率论与数理统计考试试卷(附答案)
- 格式:doc
- 大小:81.46 KB
- 文档页数:4
概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。
参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。
参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。
参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。
参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。
参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。
概率论与数理统计试题及答案概率论与数理统计是数学领域中的一个重要分支,它在科学研究、工程技术、经济管理等多个领域都有着广泛的应用。
以下是一套概率论与数理统计的试题及答案,供学习者参考。
一、选择题1. 假设随机变量X服从正态分布N(μ, σ²),下列哪个选项是正确的?A. X的均值是σB. X的中位数是μC. X的众数是σD. X的方差是μ答案:B2. 某事件的概率P(A)为0.3,其补事件的概率P(A')是多少?A. 0.7B. 1.0C. 0.3D. 不能确定答案:A二、填空题1. 假设随机变量X和Y的协方差是-2,X的方差是4,Y的方差是9,那么X和Y的相关系数ρ(X,Y)等于______。
答案:-1/32. 某随机试验中,事件A和事件B是互斥的,且P(A)=0.4,P(B)=0.3,那么P(A∪B)等于______。
答案:0.7三、简答题1. 什么是大数定律?请简述其主要内容。
答案:大数定律是概率论中的一个重要概念,它描述了随着试验次数的增加,随机变量的样本均值会越来越接近其期望值。
具体来说,如果随机变量X1, X2, ..., Xn是独立同分布的,那么随着n的增大,样本均值(ΣXi/n)趋于X的期望值E(X)。
2. 什么是中心极限定理?它在实际应用中有何意义?答案:中心极限定理是概率论中的另一个重要定理,它指出在一定条件下,大量相互独立的随机变量之和经过标准化后趋近于正态分布,无论这些随机变量本身是否服从正态分布。
这一定理在统计推断、质量控制、风险管理等领域有着重要的应用价值。
四、计算题1. 假设随机变量X服从参数为λ的泊松分布,求P(X=3)。
答案:P(X=3) = e^(-λ) * λ^3 / 3!2. 某工厂生产的零件长度服从均值为50,标准差为2的正态分布。
求长度在48到52之间的零件所占的比例。
答案:使用标准正态分布表或计算器,求Z分数为(48-50)/2和(52-50)/2的正态分布累积分布函数,然后求差值。
2023─2024学年第二学期《概率论与数理统计》课程考试试卷(A 卷)参考答案与评分标准一、填空题(每空3分,共30分)1.在显著性检验中,若要使犯两类错误的概率同时变小,则只有增加样本容量.2.设随机变量X 具有数学期望()E X μ=与方差2()D X σ=,则有切比雪夫不等式{}2P X μσ-≥≤14.3.设X 为连续型随机变量,a 为实常数,则概率{}P X a ==0.4.设X 的分布律为,{}1,2,k k P X x p k === ,2Y X =,若1nkk k xp ∞=∑绝对收敛(n为正整数),则()E Y =21kk k xp ∞=∑.5.某学生的书桌上放着7本书,其中有3本概率书,现随机取2本书,则取到的全是概率书的概率为17.6.设X 服从参数为λ的poisson 分布,则(2)E X =2λ.7.设(2,3)Y N ,则数学期望2()E Y =7.8.(,)X Y 为二维随机变量,概率密度为(,)f x y ,X 与Y 的协方差(,)Cov X Y 的积分表达式为(())(())(,)d d x E x y E y f x y x y +∞+∞-∞-∞--⎰⎰.9.设X 为总体N (3,4)中抽取的样本14,,X X 的均值,则{}15P X ≤≤=2(2)1Φ-.(计算结果用标准正态分布的分布函数()x Φ表示)10.随机变量2(0,)X N σ ,n X X X ,,,21 为总体X 的一个样本,221()(1)ni i Y k X χ==∑ ,则常数k =21n σ.A 卷第1页共4页二、概率论试题(45分)1、(8分)题略解:用A B C 、、,分别表示三人译出该份密码,所求概率为P A B C ()(2分)由概率公式P A B C P ABC P A P B P C ()=1-()=1-()()()(4分)1-1-1-p q r =1-()()()(2分)2、(8分)设随机变量()1,()2,()3,()4,0.5XY E X D X E Y D Y ρ=====,求数学期望()E X Y +与方差(23)D X Y -.解:(1)()E X Y +=E X E Y ()+()=1+3=4(3分)(2)(23)4()9()12ov(,)D X Y D X D Y C X Y -=+-(3分)8361244XY ρ=+--(2分)3、(8分)某种电器元件的寿命服从均值为100h 的指数分布,现随机地取16只,它们的寿命i T 相互独立,记161ii T T ==∑,用中心极限定理计算{1920}P T ≥的近似值(计算结果用标准正态分布的分布函数()x Φ表示).解:i i ET D T E T D T 2()=100,()=100,()=1600,()=160000(3分){1920}0.8}1P T P ≥=≈-Φ(0.8)(5分)(4分)4、(10分)设随机变量X 具有概率密度11()0x x f x ⎧-≤≤=⎨⎩,,其它,21Y X =+.(1)求Y 的概率密度()Y f y ;(2)求概率312P Y ⎧⎫-<<⎨⎩⎭.解:(1)12Y Y y F y y F y ≤>时()=0,时()=1(1分)A 卷第2页共4页212,{}{1}()d Y y F y P Y y P X y f x x<≤≤=+≤=()=(2分)02d 1x x y ==-(2分)概率密度函数2()=Y Y y f y F y ≤⎧'⎨⎩1,1<()=0,其它(2分)(2)3102Y YP Y F F ⎧⎫-<<=-=⎨⎬⎩⎭311()-(-1)=222.(3分)5、(11分)设随机变量(,)X Y 具有概率分布如下,且{}1103P X Y X +===.XY-101013p114q112(1)求常数,p q ;(2)求X 与Y 的协方差(,)Cov X Y ,并问X 与Y 是否独立?解:(1)1111134123p q p q ++++=+=,即(2分)由{}{}{}{}{}101011010033P X Y X P Y X pP X Y X P X P X p +====+========+,,(2分)可得16p q ==(1分)X 01Y -11P1212P7121614(2)EX 1()=2,E Y 1()=-3,E XY 1()=-6(3分),-Cov X Y E XY E X E Y ()=()()()=0(2分)由..ij i j P P P ≠可知X 与Y 不独立(1分)三、数理统计试题(25分)1、(8分)题略.A 卷第3页共4页证明:222(1)(0,1),(1)X n S N n χσ-- ,22(1)X n S σ-相互独立(4分)2(1)Xt n - ,即(1)X t n - (4分)2、(10分)题略解:似然函数2221()(,)2n i i x L μμσσ=⎧⎫-=-⎨⎬⎩⎭∑2221()ln ln(2)ln() 222ni i x n n L μπσσ=-=---∑(4分)由2222411()ln ln 0,022n ni i i i x x L L nμμμσσσσ==--∂∂===-+=∂∂∑∑可得221111ˆˆ,()n n i i i i x x n n μσμ====-∑∑为2,μσ的最大似然估计(2分)由221ˆˆ(),()n nE E μμσσ-==可知11ˆni i x n μ==∑为μ的无偏估计量,2211ˆ()ni i x n σμ==-∑为2σ的有偏估计量(4分)3、(7分)题略解:01: 4.55: 4.55H H μμ=≠(2分)检验统计量x z =,拒绝域0.025 1.96z z ≥=(2分)而0.185 1.960.036z ==>(1分)因而拒绝域0H ,即不认为总体的均值仍为4.55(2分)A 卷第4页共4页。
一. 填空题(每空题 2 分,共计 60 分)1、A、B是两个随机事件,已知p(A )0.4, P(B) 0.5,p( AB) 0.3 ,则p(A B)0.6 ,p(A - B)0.1,P( A B )= 0.4 ,p(A B)0.6 。
2、一个袋子中有大小相同的红球 6 只、黑球 4 只。
(1)从中不放回地任取 2 只,则第一次、第二次取红色球的概率为:1/3。
(2)若有放回地任取2只,则第一次、第二次取红色球的概率为:9/25。
(3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为:21/55。
3、设随机变量 X 服从 B(2,0.5 )的二项分布,则p X 1 0.75, Y 服从二项分布 B(98, 0.5), X 与 Y 相互独立 , 则 X+Y服从 B(100,0.5) ,E(X+Y)= 50 ,方差 D(X+Y)= 25 。
4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1 、0.15 .现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取一件。
(1)抽到次品的概率为:0.12 。
(2)若发现该件是次品,则该次品为甲厂生产的概率为:0.5 .5、设二维随机向量( X ,Y)的分布律如右,则 a 0.1, E( X ) 0.4 ,X 0 1X与 Y 的协方差为: - 0.2Y,-1 0.2 0.3Z X Y2的分布律为 : z 1 21 0.4 a概率0.6 0.46、若随机变量X ~ N(2,4)且(1) 0.8413 ,(2) 0.9772 ,则 P{ 2 X 4}0.815,Y 2X 1,则Y~N( 5,16)。
7、随机变量X、Y 的数学期望E(X)= -1,E(Y)=2,方差D(X)=1,D(Y)=2,且X、Y相互独立,则:E(2X Y)-4,D(2X Y)6。
8、设D(X)25,D(Y)1,Cov ( X ,Y ) 2 ,则 D( X Y)309、设X1,, X 26是总体 N (8,16) 的容量为26 的样本,X为样本均值,S2为样本方差。
概率论与数理统计考试题及答案一、单项选择题(每题3分,共30分)1. 随机变量X服从标准正态分布,P(X≤0)=______。
A. 0.5B. 0.3C. 0.7D. 0.8答案:A2. 已知随机变量X服从二项分布B(n, p),若n=10,p=0.5,则E(X)=______。
A. 2B. 5C. 10D. 15答案:B3. 设随机变量X服从泊松分布,其概率质量函数为P(X=k)=λ^k/e^λ*k!,其中λ>0,则E(X)=______。
A. λB. e^λC. kD. 1答案:A4. 若随机变量X与Y相互独立,则P(X>a, Y>b)=______。
A. P(X>a) + P(Y>b)B. P(X>a) * P(Y>b)C. P(X>a) - P(Y>b)D. P(X>a) / P(Y>b)答案:B5. 设随机变量X服从正态分布N(μ, σ^2),其中μ=3,σ^2=4,则P(X>3)=______。
A. 0.5B. 0.25C. 0.75D. 0.3答案:A6. 若随机变量X服从均匀分布U(a, b),则E(X)=______。
A. (a+b)/2B. a+bC. a-bD. b-a答案:A7. 设随机变量X服从指数分布,其概率密度函数为f(x)=λe^(-λx),其中x≥0,λ>0,则D(X)=______。
A. 1/λ^2B. 1/λC. λD. λ^2答案:A8. 若随机变量X与Y相互独立,且X~N(μ1, σ1^2),Y~N(μ2, σ2^2),则X+Y~______。
A. N(μ1+μ2, σ1^2+σ2^2)B. N(μ1-μ2, σ1^2-σ2^2)C. N(μ1+μ2, σ1^2-σ2^2)D. N(μ1-μ2, σ1^2+σ2^2)答案:A9. 设随机变量X服从二项分布B(n, p),则D(X)=np(1-p)。
概率论与数理统计试题库及答案(考试必做)概率论试题一、填空题1.设A、B、C是三个随机事件。
试用A、B、C分别表示事件1)A、B、C 至少有一个发生2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设A、B为随机事件,P (A)=0.5,P(B)=0.6,P(BA)=0.8。
则P(B A)=3.若事件A和事件B相互独立, P(A)= ,P(B)=0.3,P(A B)=0.7,则4. 将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词__的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量X分布律为P{X k} 5A(1/2)A=______________7. 已知随机变量X的密度为f(x)k(k 1,2, )则ax b,0 x 1,且P{x 1/2} 5/8,则0,其它a ________b ________28. 设X~N(2, ),且P{2 x 4} 0.3,则P{x 0} _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为中率为_________10.若随机变量在(1,6)上服从均匀分布,则方程x+ x+1=0有实根的概率是280,则该射手的命8111.设P{X 0,Y 0}34,P{X 0} P{Y 0} ,则P{max{X,Y} 0} 7712.用(X,Y)的联合分布函数F(x,y)表示P{a X b,Y c} 13.用(X,Y)的联合分布函数F(x,y)表示P{X a,Y b} 14.设平面区域D 由y = x , y = 0 和x = 2 所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x = 1 处的值为。
15.已知X~N( 2,0.4),则E(X 3)=16.设X~N(10,0.6),Y~N(1,2),且X与Y相互独立,则17.设X的概率密度为f(x)22D(3X Y)x2,则D(X)=18.设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,2),X3服从参数为=3的泊松分布,记Y=X1-2X2+3X3,则D(Y)= 219.设D(X) 25,D Y 36, xy 0.4,则D(X Y) 20.设X1,X2, ,Xn, 是独立同分布的随机变量序列,且均值为,方差为,那么当n充分大时,近似有X~或2~。
概率论与数理统计 试卷及其答案一、填空题(每空4分,共20分)1、设随机变量ξ的密度函数为2(0,1)()0ax x x φ⎧∈=⎨⎩其它,则常数a =3 。
2、设总体2(,)XN μσ,其中μ与2σ均未知,12,,,n X X X 是来自总体X 的一个样本,2σ的矩估计为211()i ni i X X n ==-∑ 。
3、已知随机变量X 的概率分布为{},1,2,3,4,5,15kP X k k ===则1()15P X E X ⎧⎫<=⎨⎬⎩⎭___ 0.4___。
4、设随机变量~(0,4)X U ,则(34)P X <<= 0.25 。
5、某厂产品中一等品的合格率为90%,二等品合格率80%,现将二者以1:2的比例混合,则混合后产品的合格率为 5/6 。
二、计算题(第1、2、3题每题8分,第4题16分,第5题16分,共56分)1、一批灯泡共20只,其中5只是次品,其余为正品。
做不放回抽取,每次取一只,求第三次才取到次品的概率。
解:设i A 表示第i 次取到次品,i=1,2,3,B 表示第三次才取到次品, 则123121312()()()()()1514535201918228P B P A A A P A P A A P A A A ===⨯⨯=2、设X 服从参数为λ的指数分布,其概率密度函数为0()00xe xf x x λλ-⎧≥=⎨<⎩,求λ的极大似然估计。
解:由题知似然函数为:11()(0)i niii x i nx ni i L eex λλλλλ==-=-=∑=∏=≥对数似然函数为:1ln ()ln i ni i L n x λλλ===-∑由1ln ()0i ni i d L n x d λλλ===-=∑,得:*11i nii nxxλ====∑ 因为ln ()L λ的二阶导数总是负值,故*1Xλ=3、设随机变量X 与Y 相互独立,概率密度分别为:,0()0,0x X e x f x x -⎧>=⎨≤⎩,1,01()0,Y y f y <<⎧=⎨⎩其他, 求随机变量Z X Y =+的概率密度解:()()()Z X Y f z f x f z x dx +∞-∞=-⎰1,01,10,0z x z x ze dy z e dy z z ---⎧<<⎪⎪=≥⎨⎪≤⎪⎩⎰⎰ 11,01,10,0z z z e z e e z z ---⎧-<<⎪=-≥⎨⎪≤⎩4、 设随机变量X 的密度函数为,01,()2,12,0,x x f x x x <≤⎧⎪=-<≤⎨⎪⎩其它.求(),()E X D X 。
概率论与数理统计试题及答案概率论与数理统计是应用广泛的数学学科,用于研究随机现象的规律与统计推断。
下面为您提供一系列概率论与数理统计试题及答案,希望能对您的学习和理解有所帮助。
题目一:某超市近一周每天销售的商品数量数据如下:23、45、17、34、26、37、19。
1. 请计算这组数据的平均值、中位数和众数。
2. 计算数据的方差和标准差。
答案一:1. 平均值 = (23 + 45 + 17 + 34 + 26 + 37 + 19) / 7 = 26中位数 = 排序后的中间值 = 26众数 = 无,因为没有重复的值2. 计算方差:方差 = [(23-26)² + (45-26)² + (17-26)² + (34-26)² + (26-26)² + (37-26)²+ (19-26)²] / 7= (9 + 361 + 81 + 64 + 0 + 121 + 49) / 7= 140 / 7= 20题目二:一辆汽车在高速公路上行驶,每小时的速度数据如下:100、90、110、80、120。
请计算这组数据的以下统计量:1. 平均速度2. 速度的中位数3. 速度的众数4. 方差和标准差答案二:1. 平均速度 = (100 + 90 + 110 + 80 + 120) / 5 = 1002. 排序后的速度数据为:80、90、100、110、120。
中位数 = 1003. 众数 = 无,因为没有重复的值4. 计算方差:方差 = [(100-100)² + (90-100)² + (110-100)² + (80-100)² + (120-100)²] / 5= (0 + 100 + 100 + 400 + 400) / 5= 200题目三:甲乙两枚硬币独立抛掷一次,甲的硬币正面向上的概率为0.4,乙的硬币正面向上的概率为0.6。
《概率论与数理统计》考试练习题及参考答案一、单选题1. 设X~N(2,9),Y~N(2,1),E(XY)=6,则D(X-Y)之值为A 、14B 、6C 、12D 、4答案:B2. 设X,Y的方差存在,且不等于0,则D(X+Y)=DX+DY是X,YA 、不相关的充分条件,但不是必要条件B 、独立的必要条件,但不是充分条件C 、不相关的必要条件,但不是充分条件D 、独立的充分必要条件答案:B3. 已知P(A)=0.3 ,P(B)=0.5 ,P(A∪B)=0.6,则P(AB)=A 、0.2B 、0.1C 、0.3D 、0.4答案:A4. 已知随机变量X服从二项分布,且EX=2.4,DX=1.44,则二项分布中的参数n,p的值分别为A 、n=4 ,p=0.6B 、n=6 ,p=0.4C 、n=8 ,p=0.3D 、n=24 ,p=0.1答案:B5. 若随机变量X与Y的方差D(X), D(Y)都大于零,且E(XY)=E(X)E(Y),则有A 、X与Y一定相互独立B 、X与Y一定不相关C 、D(XY)=D(X)D(Y)D 、D(X-Y)=D(X)-D(Y)答案:B6. 同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是A 、1/8B 、1/6C 、1/4D 、1/2答案:D7. 将长度为1的木棒随机地截成两段,则两段长度的相关系数为A 、1B 、1/2C 、2D 、-1答案:D8. 假设一批产品中一、二、三等品各占60% 、30% 、10%,今从中随机取一件产品,结果不是三等品,则它是二等品的概率为A 、1/3B 、1/2C 、2/3D 、1/4答案:A9. 袋中有50个乒乓球,其中20个黄球,30个白球,甲、乙两人依次各取一球,取后不放回,甲先取,则乙取得黄球的概率为A 、2/5B 、3/5C 、1/5D 、4/5答案:A10. 设随机变量X服从正态分布N(1 ,4) ,Y服从[0 ,4]上的均匀分布,则E(2X+Y )=A 、1B 、2C 、3D 、4答案:D11. 某电路由元件A 、B 、C串联而成,三个元件相互独立,已知各元件不正常的概率分别为:P(A)=0.1 ,P(B)=0.2 ,P(C)=0.3,求电路不正常的概率A 、0.496B 、0.7C 、0.25D 、0.8答案:A12. 一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1 ,2 ,3 ,4 ,5顺序的概率为A 、1/120B 、1/60C 、1/5D 、1/2答案:B13. 设随机变量X与Y独立同分布,记随机变量U=X+Y ,V=X-Y,且协方差Cov(U.V)存在,则U和V必然A 、不相关B 、相互独立C 、不独立D 、无法判断答案:A14. 设P(A)>0,P(B)>0,则下列各式中正确的是A 、P(A-B)=P(A)-P(B)B 、P(AB)=P(A)P(B)C 、P(A+B)=P(A)+P(B)D 、P(A+B)=P(A)+P(B)-P(AB)答案:D15. 随机变量X的所有可能取值为0和x ,且P{X=0}=0.3,E(X)=1,则x=A 、10/7B 、4/5C 、1D 、0答案:A16. 已知人的血型为O 、A 、B 、AB的概率分别是0.4;0.3;0.2;0.1。
概率论与数理统计期末考试试卷答案一、选择题(每题5分,共25分)1. 下列事件中,不可能事件是()A. 抛掷一枚硬币,正面朝上B. 抛掷一枚硬币,正面和反面同时朝上C. 抛掷一枚骰子,出现7点D. 抛掷一枚骰子,出现1点答案:C2. 设A、B为两个事件,若P(A-B)=0,则下列选项正确的是()A. P(A) = P(B)B. P(A) ≤ P(B)C. P(A) ≥ P(B)D. P(A) = 0答案:B3. 设随机变量X服从二项分布B(n, p),则下列结论正确的是()A. 当n增加时,X的期望值增加B. 当p增加时,X的期望值增加C. 当n增加时,X的方差增加D. 当p增加时,X的方差减少答案:B4. 设X~N(μ, σ^2),下列选项中错误的是()A. X的期望值E(X) = μB. X的方差D(X) = σ^2C. X的概率密度函数关于X = μ对称D. 当σ增大时,X的概率密度函数的峰值减小答案:D5. 在假设检验中,显著性水平α表示()A. 原假设为真的情况下,接受原假设的概率B. 原假设为假的情况下,接受原假设的概率C. 原假设为真的情况下,拒绝原假设的概率D. 原假设为假的情况下,拒绝原假设的概率答案:C二、填空题(每题5分,共25分)6. 设A、B为两个事件,P(A) = 0.5,P(B) = 0.6,P(A∩B) = 0.3,则P(A-B) = _______。
答案:0.27. 设随机变量X服从泊松分布,已知P(X=1) = 0.2,P(X=2) = 0.3,则λ = _______。
答案:1.58. 设随机变量X~N(μ, σ^2),若P(X<10) = 0.2,P(X<15) = 0.8,则μ = _______。
答案:12.59. 在假设检验中,若原假设H0为μ=10,备择假设H1为μ≠10,显著性水平α=0.05,则接受原假设的临界值是_______。
答案:9.5或10.510. 设X、Y为两个随机变量,若X与Y相互独立,则下列选项正确的是()A. E(XY) = E(X)E(Y)B. D(X+Y) = D(X) + D(Y)C. D(XY) = D(X)D(Y)D. 上述选项都正确答案:D三、解答题(每题25分,共100分)11. 设某班有50名学生,其中有20名男生,30名女生。
概率论与数理统计考试试卷(附答案)
一、选择题(共6小题,每小题5分,满分30分) 1. 事件表达式B A -的意思是 ( ) (A) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 (C) 事件B 发生但事件A 不发生
(D) 事件A 与事件B 至少有一件发生
2. 假设事件A 与事件B 互为对立,则事件A B ( ) (A) 是不可能事件 (B) 是可能事件 (C) 发生的概率为1
(D) 是必然事件
3. 已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) (A) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 (C) 自由度为1的F 分布
(D) 自由度为2的F 分布
4. 已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( )
(A) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3)
5. 样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) (A) X 1+X 2+X 3是μ的无偏估计
(B)
123
3
X X X ++是μ的无偏估计
(C) 22
X 是σ2的无偏估计
(D) 2
1233X X X ++⎛⎫ ⎪⎝⎭
是σ2的无偏估计
6. 随机变量X 服从在区间(2,5)上的均匀分布,则X 的方差D (X )的值为( ) (A) 0.25
(B) 3.5
(C) 0.75
(D) 0.5
二、填空题(共6小题,每小题5分,满分30分。
把答案填在题中横线上) 1. 已知P (A )=0.6, P (B |A )=0.3, 则P (AB )= __________
2. 三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为__________
3. 一个袋内有5个红球,3个白球,2个黑球,任取3个球恰为一红、一白、一黑的概率为_____
4. 已知连续型随机变量,
01,~()2,12,0,.x x X f x x x ≤≤⎧⎪
=-<≤⎨⎪⎩其它 则P {X ≤1.5}=_______.
5. 假设X ~B (5, 0.5)(二项分布), Y ~N (2, 36), 则E (2X +Y )=__________
6. 一种动物的体重X 是一随机变量,设E (X )=33, D (X )=4,10个这种动物的平均体重记作Y ,则D (Y )=________
_____________ _______
三、有两个口袋,甲袋中盛有两个白球,一个黑球,乙袋中盛有一个白球,两个黑球。
由甲袋任取一个球放入乙袋,再从乙袋中取出一个球,求取到白球的概率。
(10分)
四、已知随机变量X服从在区间(0,1)上的均匀分布,Y=2X +1,求Y的概率密度函数。
(10分)
五、已知二元离散型随机变量(X,Y)的联合概率分布如下表所示:
(1) 试求X和Y的边缘分布率
(2) 试求E(X),E(Y),D(X),D(Y),及X与Y的相关系数ρXY(满分10分)
六、设某种电子管的使用寿命服从正态分布。
从中随机抽取15个进行检验,算出平均使用寿命为1950小时,样本标准差s 为300小时,以95%的置信概率估计整批电子管平均使用寿命的置信区间。
(满分10分)
附:标准正态分布函数表22
()e
d u x
x u -
-∞
Φ=
t 分布表P {t (n )>t α(n )}=α
概率论与数理统计考试试卷答案
一、填空题(共6小题,每小题5分,满分30分) 1. D 2. A 3. B 4. C 5. B 6. C 二、填空题(共6小题,每小题5分,满分30分) 1.填0.18。
2.填0.784。
3.填0.25或1
4
4.填0.875
5.填7
6.填0.4 三、(10分)
解:设从甲袋取到白球的事件为A ,从乙袋取到白球的事件为B ,则根据全概率公式有
()()(|)()(|)
21115
0.417323412
P B P A P B A P A P B A =+=⨯+⨯== 四、(10分)
______ _______
解:已知X 的概率密度函数为1,01,
()0,.X x f x <<⎧=⎨⎩其它
Y 的分布函数F Y (y )为
11(){}{21}{}22Y X y y F y P Y y P X y P X F --⎛⎫
=≤=+≤=≤
= ⎪⎝⎭
因此Y 的概率密度函数为
1
,13,
11()()2
220,
.Y Y X y y f y F y f ⎧<<⎪-⎛⎫'===⎨ ⎪⎝⎭⎪
⎩其它 五、 (满分10分)
解:(1)将联合分布表每行相加得X 的边缘分布率如下表:
将联合分布表每列相加得Y 的边缘分布率如下表:
(2) E (X )=-1⨯0.6+2⨯0.4=0.2, E (X 2)=1⨯0.6+4⨯0.4=2.2, D (X )=E (X 2)-[E (X )]2=2.2-0.04=2.16
E (Y )=-1⨯0.3+1⨯0.3+2⨯0.4=0.8, E (Y 2)=1⨯0.3+1⨯0.3+4⨯0.4=2.2 D (Y )= E (Y 2)-[E (Y )]2=2.2-0.64=1.56
E (XY )=(-1)⨯(-1)⨯0.1+(-1)⨯1⨯0.2+(-1)⨯2⨯0.3+2⨯(-1)⨯0.2+2⨯1⨯0.1+2⨯2⨯0.1= =0.1-0.2-0.6-0.4+0.2+0.4=-0.5 cov(X ,Y )=E (XY )-E (X )E (Y )=-0.5-0.16=-0.66
0.66
0.36
1.836XY ρ=
==-=-
六、(满分10分)
解:已知样本均值1950x =, 样本标准差s =300, 自由度为15-1=14, 查t 分布表得t 0.025(14)=2.1448, 算出
0.025 2.1448300166.13.873t ⨯==, 因此平均使用寿命的置信区间
为166.1x ±,即(1784, 2116)。