数理统计试卷及答案
- 格式:docx
- 大小:20.10 KB
- 文档页数:4
参数估计一、 知识点1. 矩估计法;极大似然估计法2. 估计量的评判标准(会验证一个估计量的无偏性,比较两个无偏估计量的有效性)3. 区间估计的概念4. 会求一个正态总体期望μ和方差2σ的置信区间 二、习题解答1. 设总体X ~22()(),0p x a x x a a =-<<,求参数a 的矩估计。
解:22002()()()3a aa E X xp x dx ax x dx a ==-=⎰⎰令3aX =,⇒3a X =,由矩估计定义知a 的矩估计ˆ3aX =。
2. 设总体X ~()(1),01,ap x a x x =+<<求(1) 参数a 的矩估计,(2)参数a 的似然估计解:(1)112110001()()(1)(1)22a a x a E X xp x dx a x dx a a a +++==+=+=++⎰⎰ 令12a X a +=+,⇒211X aX -=-,由矩估计定义知a 的矩估计21ˆ1X a X-=-(2)似然函数()(;)(1)(1)()a n ai i i L a p x a a x a x ==+=+∏∏∏ln ()ln(1)ln i L a n a a x =++∑, 由ln ()ln 01i d L a nx da a =+=+∑⇒ 1ln i n a x =--∑,得a 的极大似然估计ˆ1ln ina x =--∑ 3. 总体X 服从区间[a,b]上的均匀分布,(1) 求参数a,b 的极大似然估(2) 设从总体取得样本1.4,2.5,1.6,1.8,2.2,1.8,2.0。
分别求a,b 的矩估计值和极大似然估值。
解:(1)总体X 的密度函数1,()0,a x b p x b a ⎧≤≤⎪=-⎨⎪⎩其他似然函数1,1,2,,()()(;,)0i ni a x b i n b a L a b p x a b ⎧≤≤=⎪-==⎨⎪⎩∏ ,其他显然, b a -越小,似然函数就越大,但由于,1,2,,i a x b i n ≤≤= ,所以能套住所有的i x 的最短区间(ˆa,ˆb )应为:{}1ˆmin i i na x ≤≤=,{}1ˆmax ii nbx ≤≤=(2)由课本例题知,a,b的矩估计为ˆˆa X b X ⎧=-⎪⎨=+⎪⎩,代入样本值得矩估计ˆa=1.31,ˆb =2.49;极大似然估ˆa=1.4,ˆb =2.5 5. 已知总体X 服从参数为θ的泊松分布, 其分布律为:0;,2,1,0,)(!1>===-θθθ k e k X P k k n X X X ,,,21 为取自总体X 的样本. 求 θ的最大似然估计量;解.L (θ;x 1,x 2,...,x n ) =∏==ni i x XP 1)(= =θθ-=∏e x i x ni i1!1=θθn n i i x e x ni i-=∏∑=1!1lnL =∑∑==--n i ni iin x x 11!ln ln θθ,令θd L d ln =01=-∑=n xni iθ,θˆ=X X n n i i =∑=11为θ的最大似然估计量.6.设总体X 的均值为μ,试证2ˆσ=211()n i i X n μ=-∑是总体方差2σ的无偏估计量。
一、填空题:(每题4分,共24分)1.已知事件A 与B 相互独立,()0.4P A =,()0.7P A B +=,则概率()P B A 为 。
2.某次考试中有4个单选选择题,每题有4个答案,某考生完全不懂,只能在4个选项中随机选择1个答案,则该考生至少能答对两题的概率为 , 3.若有 ξ~(0,1)N ,η=21ξ-,则η~N ( , )4.若随机变量X 服从参数为λ的泊松分布,且DX EX -=4,则参数λ=5.设连续型随机变量ξ的概率密度为2(1)01()0x x f x -<<⎧=⎨⎩其他,且2ηξ=,则η的概率密度为 。
6.设总体2~(,)X N μσ的分布,当μ已知,12,,n X X X 为来自总体的样本,则统计量∑=-ni i X 12)(σμ服从 分布。
二、选择题:(每小题4分,共20分)1. 设事件,,A B C 是三个事件,作为恒等式,正确的是( ) A.()ABC AB CB = B.A BC A B C =C.()A B A B -=D.()()()A B C AC BC =2.n 张奖券有m 张有奖的,k 个人购买,每人一张,其中至少有一人中奖的概率是( )。
A.11k m n mknC C C -- B. k n m C C. k n k mn C C --1 D. 1r nm k r nC C =∑3. 设EX μ=,2DX σ=,则由切比雪夫不等式知(4)P X μσ-≤≥( ) A.1416 B. 1516 C. 15 D. 16154. 如果随机向量),(ηξ的联合分布表为:则协方差),cov(ηξ=( )A.-0.2B. –0.1C.0D. 0.1 5. 设总体 ξ~2(,)N μσ ,(12,,n X X X )是 ξ 的简单随机样本,则为使1211ˆ()n i i i C XX θ-+==-∑为2σ的无偏估计,常数C 应为( )A.1n B. 11n - C. 12(1)n - D. 12n -三、计算题:待用数据(0.9750.9750.950.95(35) 2.0301,(36) 2.0281,(35) 1.6896,(36) 1.6883t t t t ====,8413.0)1(=Φ,9772.0)2(=Φ975.0)96.1(=Φ,95.0)645.1(=Φ)1.三个人同时射击树上的一只鸟,设他们各自射中的概率分别为0.5,0.6,0.7。
大学《概率论与数理统计》期末考试试卷含答案一、填空题(每空 3 分,共 30分)在显著性检验中,若要使犯两类错误的概率同时变小,则只有增加 样本容量 .设随机变量具有数学期望与方差,则有切比雪夫不等式 .设为连续型随机变量,为实常数,则概率= 0 . 设的分布律为,,若绝对收敛(为正整数),则=.某学生的书桌上放着7本书,其中有3本概率书,现随机取2本书,则取到的全是概率书的概率为. 设服从参数为的分布,则=. 设,则数学期望= 7 .为二维随机变量, 概率密度为, 与的协方差的积分表达式为 .设为总体中抽取的样本的均值,则= . (计算结果用标准正态分布的分布函数表X ()E X μ=2()D X σ={}2P X μσ-≥≤14X a {}P X a =X ,{}1,2,k k P X x p k ===2Y X =1n k k k x p ∞=∑n()E Y 21k k k x p ∞=∑17X λpoisson (2)E X 2λ(2,3)YN 2()E Y (,)X Y (,)f x y X Y (,)Cov X Y (())(())(,)d d x E x y E y f x y x y +∞+∞-∞-∞--⎰⎰X N (3,4)14,,X X {}15P X ≤≤2(2)1Φ-()x Φ示)10. 随机变量,为总体的一个样本,,则常数=.A 卷第1页共4页 概率论试题(45分) 1、(8分)题略解:用,分别表示三人译出该份密码,所求概率为 (2分)由概率公式 (4分)(2分) 2、(8分) 设随机变量,求数学期望与方差.解:(1) = (3分) (2) (3分) (2分)(8分) 某种电器元件的寿命服从均值为的指数分布,现随机地取16只,它们的寿命相互独立,记,用中心极限定理计算的近似值(计算结果用标准正态分布的分布函数表示).2(0,)XN σn X X X ,,,21 X221()(1)ni i Y k X χ==∑k 21n σA B C 、、P A B C ()P A B C P ABC P A P B P C ()=1-()=1-()()()1-1-1-p q r =1-()()()()1,()2,()3,()4,0.5XY E X D X E Y D Y ρ=====()E X Y +(23)D X Y -()E X Y +E X E Y ()+()=1+3=4(23)4()9()12ov(,)D X Y D X D Y C X Y -=+-8361244XYρ=+-=-100h i T 161ii T T ==∑{1920}P T ≥()x Φ解: (3分) (5分)(4分)(10分)设随机变量具有概率密度,.(1)求的概率密度; (2) 求概率.解: (1) (1分)A 卷第2页共4页(2分)(2分)概率密度函数 (2分)(2) . (3分) (11分) 设随机变量具有概率分布如下,且.i i ET D T E T D T 2()=100,()=100,()=1600,()=160000{1920}0.8}1P T P ≥=≥≈-Φ(0.8)X 11()0x x f x ⎧-≤≤=⎨⎩,,其它21Y X =+Y ()Y f y 312P Y ⎧⎫-<<⎨⎬⎩⎭12Y Y y F y y F y≤>时()=0,时()=1212,{}{1}()d Y y F yP Y y P X y f x x <≤≤=+≤=()=02d 1x y ==-2()=Y Y y f y F y≤⎧'⎨⎩1,1<()=0,其它3102Y YP Y F F ⎧⎫-<<=-=⎨⎬⎩⎭311()-(-1)=222(,)X Y {}110P X Y X +===(1)求常数; (2)求与的协方差,并问与是否独立?解: (1) (2分)由(2分) 可得 (1分)(2), , (3分) (2分) 由可知与不独立 (1分) 三、数理统计试题(25分)1、(8分) 题略. A 卷第3页共4页 证明:,相互独立(4分) ,(4分),p q X Y (,)Cov X Y X Y 1111134123p q p q ++++=+=,即{}{}{}{}{}101011010033P X Y X P Y X p P X Y X P X P X p +====+========+,,1p q ==EX 1()=2E Y 1()=-3E XY 1()=-6,-CovX Y E XY E X E Y ()=()()()=0..ij i j P P P ≠X Y 222(1)(0,1),(1)X n S N n χσ--22(1)X n S σ-2(1)X t n -(1)X t n -(10分) 题略解:似然函数 (4分)由 可得为的最大似然估计 (2分)由可知为的无偏估计量,为的有偏估计量 (4分) 、(7分) 题略 解: (2分)检验统计量,拒绝域 (2分)而 (1分)因而拒绝域,即不认为总体的均值仍为4.55 (2分)A 卷第4页共4页2221()(,)2n i i x L μμσσ=⎧⎫-=-⎨⎬⎩⎭∑2221()ln ln(2)ln() 222ni i x n n L μπσσ=-=---∑2222411()ln ln 0,022n ni i i i x x L L nμμμσσσσ==--∂∂===-+=∂∂∑∑221111ˆˆ,()n n i i i i x x n n μσμ====-∑∑2,μσ221ˆˆ(),()n nE E μμσσ-==11ˆn i i x n μ==∑μ2211ˆ()ni i x n σμ==-∑2σ01: 4.55: 4.55H H μμ=≠x z =0.025 1.96z z ≥=0.185 1.960.036z ==>0H。
高校统计学专业数理统计期末试卷及详解一、选择题1. 在统计学中,数据可分为以下哪两种类型?A.连续型和离散型B. 定量型和定性型C. 正态分布型和偏态分布型D. 样本数据和总体数据答案:B. 定量型和定性型解析:定量型数据是指可用数值表示且具有可比较性的数据,如身高、体重等;定性型数据则是以描述性质的方式呈现,如性别、颜色等。
2. 下列哪个统计指标用来度量数据的集中趋势?A. 标准差B. 方差C. 中位数D. 最大值答案:C. 中位数解析:中位数是将数据按升序排列后,位于中间位置的数值,它可以较好地度量数据的集中趋势。
3. 若两个事件A和B相互独立,则下列说法正确的是:A. P(A并B) = P(A) × P(B)B. P(A或B) = P(A) + P(B)C. P(A|B) = P(A)D. P(A且B) = P(A) + P(B)答案:A. P(A并B) = P(A) × P(B)解析:当事件A和B相互独立时,它们的联合概率等于各自概率的乘积。
4. 假设一组数据的标准差为0,则该组数据的变异程度是?A. 高B. 低C. 无法确定D. 不存在答案:B. 低解析:标准差反映了数据的变异程度,当标准差为0时,数据的变异程度为低。
5. 在一组数据中,75%的数据落在均值两侧的范围内,这个范围可以用以下哪个统计指标来度量?A. 标准差B. 方差C. 百分位数D. 偏度答案:A. 标准差解析:标准差描述了数据的离散程度,当数据的标准差较小时,就说明数据集中在均值附近,75%的数据落在均值两侧可以通过标准差来衡量。
二、填空题1. 在正态分布曲线上,μ代表_______,σ代表_______。
答案:μ代表均值,σ代表标准差。
2. 甲、乙两个班的考试成绩平均数分别为75和80,标准差分别为8和10。
如果将甲、乙两个班的成绩合并,合并后的成绩标准差为_____。
答案:合并后的成绩标准差无法确定。
数理统计考试试卷一、填空题(本题15分,每题3分)1、总体的容量分别为10,15的两独立样本均值差________;2、设为取自总体的一个样本,若已知,则=________;3、设总体,若和均未知,为样本容量,总体均值的置信水平为的置信区间为,则的值为________;4、设为取自总体的一个样本,对于给定的显著性水平,已知关于检验的拒绝域为2≤,则相应的备择假设为________;5、设总体,已知,在显著性水平0.05下,检验假设,,拒绝域是________。
1、;2、0.01;3、;4、;5、.二、选择题(本题15分,每题3分)1、设是取自总体的一个样本,是未知参数,以下函数是统计量的为()。
(A)(B) (C)(D)2、设为取自总体的样本,为样本均值,,则服从自由度为的分布的统计量为()。
(A)(B) (C)(D)3、设是来自总体的样本,存在, ,则( )。
(A)是的矩估计(B)是的极大似然估计(C)是的无偏估计和相合估计(D)作为的估计其优良性与分布有关4、设总体相互独立,样本容量分别为,样本方差分别为,在显著性水平下,检验的拒绝域为()。
(A) (B)(C)(D)5、设总体,已知,未知,是来自总体的样本观察值,已知的置信水平为0.95的置信区间为(4.71,5。
69),则取显著性水平时,检验假设的结果是()。
(A)不能确定(B)接受(C)拒绝(D)条件不足无法检验1、B;2、D;3、C;4、A;5、B。
三、(本题14分)设随机变量X的概率密度为:,其中未知参数,是来自的样本,求(1)的矩估计;(2)的极大似然估计。
解:(1) ,令,得为参数的矩估计量。
(2)似然函数为:,而是的单调减少函数,所以的极大似然估计量为.四、(本题14分)设总体,且是样本观察值,样本方差,(1)求的置信水平为0.95的置信区间;(2)已知,求的置信水平为0。
95的置信区间;(,)。
解:(1)的置信水平为0。
95的置信区间为,即为(0。
概率论与数理统计考试试卷(附答案)一、选择题(共6小题,每小题5分,满分30分) 1. 事件表达式B A -的意思是 ( ) (A) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 (C) 事件B 发生但事件A 不发生(D) 事件A 与事件B 至少有一件发生2. 假设事件A 与事件B 互为对立,则事件A B ( ) (A) 是不可能事件 (B) 是可能事件 (C) 发生的概率为1(D) 是必然事件3. 已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) (A) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 (C) 自由度为1的F 分布(D) 自由度为2的F 分布4. 已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( )(A) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3)5. 样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) (A) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计(C) 22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计6. 随机变量X 服从在区间(2,5)上的均匀分布,则X 的方差D (X )的值为( ) (A) 0.25(B) 3.5(C) 0.75(D) 0.5二、填空题(共6小题,每小题5分,满分30分。
把答案填在题中横线上) 1. 已知P (A )=0.6, P (B |A )=0.3, 则P (AB )= __________2. 三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为__________3. 一个袋内有5个红球,3个白球,2个黑球,任取3个球恰为一红、一白、一黑的概率为_____4. 已知连续型随机变量,01,~()2,12,0,.x x X f x x x ≤≤⎧⎪=-<≤⎨⎪⎩其它 则P {X ≤1.5}=_______.5. 假设X ~B (5, 0.5)(二项分布), Y ~N (2, 36), 则E (2X +Y )=__________6. 一种动物的体重X 是一随机变量,设E (X )=33, D (X )=4,10个这种动物的平均体重记作Y ,则D (Y )=_____________________ _______三、有两个口袋,甲袋中盛有两个白球,一个黑球,乙袋中盛有一个白球,两个黑球。
概率论与数理统计 试卷及其答案一、填空题(每空4分,共20分)1、设随机变量ξ的密度函数为2(0,1)()0ax x x φ⎧∈=⎨⎩其它,则常数a =3 。
2、设总体2(,)XN μσ,其中μ与2σ均未知,12,,,n X X X 是来自总体X 的一个样本,2σ的矩估计为211()i ni i X X n ==-∑ 。
3、已知随机变量X 的概率分布为{},1,2,3,4,5,15kP X k k ===则1()15P X E X ⎧⎫<=⎨⎬⎩⎭___ 0.4___。
4、设随机变量~(0,4)X U ,则(34)P X <<= 0.25 。
5、某厂产品中一等品的合格率为90%,二等品合格率80%,现将二者以1:2的比例混合,则混合后产品的合格率为 5/6 。
二、计算题(第1、2、3题每题8分,第4题16分,第5题16分,共56分)1、一批灯泡共20只,其中5只是次品,其余为正品。
做不放回抽取,每次取一只,求第三次才取到次品的概率。
解:设i A 表示第i 次取到次品,i=1,2,3,B 表示第三次才取到次品, 则123121312()()()()()1514535201918228P B P A A A P A P A A P A A A ===⨯⨯=2、设X 服从参数为λ的指数分布,其概率密度函数为0()00xe xf x x λλ-⎧≥=⎨<⎩,求λ的极大似然估计。
解:由题知似然函数为:11()(0)i niii x i nx ni i L eex λλλλλ==-=-=∑=∏=≥对数似然函数为:1ln ()ln i ni i L n x λλλ===-∑由1ln ()0i ni i d L n x d λλλ===-=∑,得:*11i nii nxxλ====∑ 因为ln ()L λ的二阶导数总是负值,故*1Xλ=3、设随机变量X 与Y 相互独立,概率密度分别为:,0()0,0x X e x f x x -⎧>=⎨≤⎩,1,01()0,Y y f y <<⎧=⎨⎩其他, 求随机变量Z X Y =+的概率密度解:()()()Z X Y f z f x f z x dx +∞-∞=-⎰1,01,10,0z x z x ze dy z e dy z z ---⎧<<⎪⎪=≥⎨⎪≤⎪⎩⎰⎰ 11,01,10,0z z z e z e e z z ---⎧-<<⎪=-≥⎨⎪≤⎩4、 设随机变量X 的密度函数为,01,()2,12,0,x x f x x x <≤⎧⎪=-<≤⎨⎪⎩其它.求(),()E X D X 。
《应用数理统计》试卷 第 1 页 共 4 页《应用数理统计》期末考试试卷一、单项选择题:(每小题2分,共20分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。
1、设随机事件A 与B 互不相容,且P(A)>0,P(B)>0,则( )A.P(A)=1-P (B )B.P(AB)=P(A)P(B)C.P(A ∪B)=1D.P(AB )=1 2、设A ,B 为随机事件,P(A)>0,P (A|B )=1,则必有( ) A.P(A ∪B)=P(A) B.A ⊂B C.P(A)=P(B) D.P(AB)=P(A)3、将两封信随机地投入四个邮筒中,则未向前面两个邮筒投信的概率为( )A.2422B .C C 2142 C .242!A D.24!!4、某人连续向一目标射击,每次命中目标的概率为34,他连续射击直到命中为止,则射击次数为3的概率是( ) A.()343B.41)43(2C. 43)41(2D.C 4221434()5、已知随机变量X 的概率密度为f X (x ),令Y=-2X ,则Y 的概率密度f Y (y)为( )A.2f X (-2y)B.f X ()-y2C.--122f y X () D.122f y X ()- 6、如果函数f(x)=x a x b x a x b,;,≤≤或0<>⎧⎨⎩是某连续随机变量X 的概率密度,则区间[a,b]可以是( )A.〔0,1〕B.〔0,2〕C.〔0,2〕D.〔1,2〕7、下列各函数中是随机变量分布函数的为( )A.F x xx 1211(),=+-∞<<+∞B..0,1;0,0)(2x x x x x F ≤C.F x e x x 3(),=-∞<<+∞-D.F x arctgx x 43412(),=+-∞<<+∞π8 则P{X=0}=A.112B.212 C. 412 D. 5129、已知随机变量X 和Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E(XY)=( ) A. 3 B. 6 C. 10 D. 12 10、设Ф(x)为标准正态分布函数,X i =10,,事件发生;事件不发生,A A ⎧⎨⎩ i=1,2,…,100,且P(A)=0.8,X 1,X 2,…,X 100相互独立。
一、单选题1.若随机变量X与Y满足D(X+Y)=D(X-Y),则A、X与Y相互独立B、X与Y不相关C、X与Y不独立D、X与Y不独立、不相关答案: B2.一个口袋中有2个白球和3个黑球,从中任取两个球,则这两个球恰有一个白球一个黑球的概率是A、0.5B、0.6C、0.7D、0.8答案: B3.设P(AB)=0,则有A、A和B互不相容B、A和B相互独立C、P(A)=0或P(B)=0D、P(A-B)=P(A)答案: D4.同时抛掷3枚硬币,则恰有2枚硬币正面向上的概率是A、1/8B、3/8C、1/4D、1/2答案: B5.三个箱子,第一个箱子中有4个黑球,1个白球;第二个箱子中有3个黑球,3个白球;第三个箱子中有3个黑球,5个白球. 现随机地取一个箱子,再从这个箱子中取出一个球,这个球为白球的概率为A、53/120B、5/6C、31/37D、1/4答案: A6.地铁列车的运行间隔时间为2分钟,某旅客可能在任意时刻进入月台,求他侯车时间X的方差为A、1/3B、1/2C、1/4D、1/5二、 判断题答案: A7.设X-B(n ,p ),则有A 、E (2x-1)=2npB 、D (2x-1)=4np (1-p )C 、E (2x+1)=4np+1D 、D (2x+1)=4np (1-p )+1答案: B8.设X~N (2,9),Y~N(2,1),E(XY)=6,则D(X-Y)之值为A 、14B 、6C 、12D 、4答案: B1.设A 、B 是Ω中的随机事件,必有P(A-B)=P(A)-P(B)A 、正确B 、错误答案: 正确2.A 、正确B 、错误答案: 错误3.设A 、B 是Ω中的随机事件,则A ∪B=A ∪AB ∪BA 、正确B 、错误答案: 错误4.A 、正确B 、错误答案: 正确5.A 、正确B 、错误答案: 正确6.假设检验基本思想的依据是小概率事件原理三、 名词解释四、 计算题A 、正确B 、错误答案: 正确7.A 、正确B 、错误答案: 错误8.若X 服从二项分布b(k;n,p),则EX=pA 、正确B 、错误答案: 错误9.A 、正确B 、错误答案: 正确10.A 、正确B 、错误答案: 正确1.取伪错误:答案: 原假设本来是错误的,但由于ɑ取值较小,反而接受了它,称取伪错误 2.中心极限定理:答案: 概率论中讨论随机变量序列部分和分布渐近于正态分布的一类定理1.答案:。
概率论与数理统计期末考试试卷答案一、选择题(每题5分,共25分)1. 下列事件中,不可能事件是()A. 抛掷一枚硬币,正面朝上B. 抛掷一枚硬币,正面和反面同时朝上C. 抛掷一枚骰子,出现7点D. 抛掷一枚骰子,出现1点答案:C2. 设A、B为两个事件,若P(A-B)=0,则下列选项正确的是()A. P(A) = P(B)B. P(A) ≤ P(B)C. P(A) ≥ P(B)D. P(A) = 0答案:B3. 设随机变量X服从二项分布B(n, p),则下列结论正确的是()A. 当n增加时,X的期望值增加B. 当p增加时,X的期望值增加C. 当n增加时,X的方差增加D. 当p增加时,X的方差减少答案:B4. 设X~N(μ, σ^2),下列选项中错误的是()A. X的期望值E(X) = μB. X的方差D(X) = σ^2C. X的概率密度函数关于X = μ对称D. 当σ增大时,X的概率密度函数的峰值减小答案:D5. 在假设检验中,显著性水平α表示()A. 原假设为真的情况下,接受原假设的概率B. 原假设为假的情况下,接受原假设的概率C. 原假设为真的情况下,拒绝原假设的概率D. 原假设为假的情况下,拒绝原假设的概率答案:C二、填空题(每题5分,共25分)6. 设A、B为两个事件,P(A) = 0.5,P(B) = 0.6,P(A∩B) = 0.3,则P(A-B) = _______。
答案:0.27. 设随机变量X服从泊松分布,已知P(X=1) = 0.2,P(X=2) = 0.3,则λ = _______。
答案:1.58. 设随机变量X~N(μ, σ^2),若P(X<10) = 0.2,P(X<15) = 0.8,则μ = _______。
答案:12.59. 在假设检验中,若原假设H0为μ=10,备择假设H1为μ≠10,显著性水平α=0.05,则接受原假设的临界值是_______。
答案:9.5或10.510. 设X、Y为两个随机变量,若X与Y相互独立,则下列选项正确的是()A. E(XY) = E(X)E(Y)B. D(X+Y) = D(X) + D(Y)C. D(XY) = D(X)D(Y)D. 上述选项都正确答案:D三、解答题(每题25分,共100分)11. 设某班有50名学生,其中有20名男生,30名女生。
概率论与数理统计
行统计分析。
试问,随机抽取的这 200名学生的身高以及数据200分别表示(b ). (A)总体,样本容量 (B)从总体中抽取的一个样本,样本容量 (C)个体,样本容量
(D) AB,C 都不正确
设随机变量X 服从正态分布,其概率密度函数为
5.设随机变量t: t(5),且気5 2(5) = 2.571,则下列等式中正确的是(a ).
(A) P(t 2.571) 0.05 (B) P(t 2.571) 0.05 (C) P(t 2.571)
0.05
(D) P(t 2.571)
0.05
二、填空题(共5小题,每小题3分,共15分).
课程名称:
以下为可能用到的数据或公式(请注意:计算结果按题目要求保留小数位数) t °.05 2(8) = 2.306, 2
0.95(8) = 2.733, t °
.05 2(9) = 2.262,t °.02 2(20)=2.528 , t 為(1) 2.706, 0.90(1) 0.016, 0.05 2(20) = 2.086, 2
・58, u
0.05 ~2- u
0.01
~2-
0.05(8) =15.507 , 1.96 , X Y
S w ,.-1/ n
------------------ 2 2
(n 1
1)3 g 1)S 2
n 1 n 2 2
r
(|O ij E ij | 0.5)2
i 1
E ij
1
.
2.
、单项选择题(共5小题,每小题3分,共15分).
将一枚均匀的硬币抛掷三次,恰有一次出现正面的概率为
1
1
3
(A) -
(B) -
(C)-
8
4
8
为了解某中学学生的身体状况,从该中学学生中随机抽取了
c).
(D) +
2
200名学生的身高进
3. 1
f (x)
----- e (X 2)2
-2-
),则 E(X 2)=( c ).
(A) 1
(B)4
(C) 5
(D) 8
4.已知随机变量X :
N(0,1) , Y :
2
(n),且X 与Y 相互独立,则黑:(b ).
(A)F(n,1) (B)F(1, n)
(C)t(n) (D)t(n 1)
1. 设P(A) 0.5, P(B) 0.3, P(AUB) 0.6,贝卩P(AB).
2. 两人约定在下午2点到3点的时间在某地会面,先到的人应等候另一人
15分钟才能离去,问他们两人能会面的概率是_______ .
3. 若相互独立的事件A与B都不发生的概率为4,且P(A) P(B),则P(A) _1/3,
9
4. 在有奖摸彩中,有200个奖品是10元的,20个奖品是30元的,5个奖品是
1000元的.假如发行了10000张彩票,并把它们卖出去.那么一张彩票的合理价格应该是元.
5. 对随机变量X与丫进行观测,获得了15对数据,并算得相关数据:
l xx 121,l xy 101,l yy 225,则样本相关系数「_101/165 __________ (保留二位
小数).
三、计算与应用题
1.设某批产品是由3个不同厂家生产的.其中一厂、二厂、三厂生产的产品
分别占总量的30%、35%、35%,各厂的产品的次品率分别为3%、3%、5%,现从中任取一件,
(1) 求取到的是次品的概率;
(2) 经检验发现取到的产品为次品,求该产品是三厂生产的概率.
2
2.设随机变量X的概率密度为f(x) C x ,: j 1,求常数C以及随机
0, 其它
变量X落在(0,1)内的概率.c=32 p=1/16
2
3. 检查某大学225名健康大学生的血清总蛋白含量(单位:g/dL),算得样本均数
为,样本标准差为.试求该大学的大学生的血清总蛋白含量的95%置
信区间(结果保留二位小数).
4. 为判定某新药对治疗病毒性流行感冒的疗效性,对
查,结果如下:
500名患者进行了调
频数E12,
服药药
未服合计
治愈170(168)
(%)
230400
未愈40 (E21)60
(58)
100
合计210290500
(1)求表格中理论
E21 ;e12=232 ,e21=42
试求:
(2)判断疗效与服药是否有关(结果保留三位小数)
5.正常人的脉搏平均为每分钟72次•某职业病院测得10例慢性四乙基铅中毒患者的脉搏(单位:
次/min)如下:
55 68 69 71 67 79 68 71 66 70
假定患者的脉搏次数近似服从正态分布,试问四乙基铅中毒患者和
正常人的脉搏
次数是否有显著性差异(0.01)
6. 某公司生产两种品牌的洗发水,现分别对这两种洗发水的聚氧乙烯
烷基硫酸钠含量做抽检,结果如下:
甲品牌:n1 = 10 x= s2=乙品牌:n2 =12 y = s;=若洗发水中的聚氧乙烯烷基硫酸钠含量服从正态分布,并且这两种品牌洗发水中的聚氧乙烯烷基硫酸钠含量具有方差齐性,试问这两种品牌洗发水中的聚氧乙烯烷基硫酸钠含量有无显著性差异
(0.05,结果保留三位小数)。