高二数学期末复习知识点归纳整理
- 格式:docx
- 大小:15.43 KB
- 文档页数:4
高二数学期末考知识点高二数学的期末考试,是对学生数学能力的综合考核,涵盖了各个知识点。
下面将介绍高二数学期末考的知识点,以供同学们复习参考。
1. 一元二次方程一元二次方程是高中数学的基础知识点之一。
考试中常见的问题包括求解一元二次方程、判断一元二次方程的解的性质以及应用题等。
在复习过程中,同学们需要重点掌握配方法、因式分解、求根公式等解方程的方法,并能熟练运用到具体问题中。
2. 三角函数三角函数也是高中数学的重要知识点之一。
考试中常见的问题包括三角函数的定义、性质、图像变换以及解三角函数方程等。
在复习过程中,同学们需要重点掌握正弦、余弦、正切等三角函数的定义和性质,并能运用到解题中。
3. 平面向量平面向量是高中数学的难点知识点之一。
考试中常见的问题包括向量的加减、数量积、向量的共线与垂直、平面向量的应用等。
在复习过程中,同学们需要掌握向量的基本运算法则,熟练应用向量求解几何问题。
4. 导数与微分导数与微分是高中数学的重要知识点之一,也是初步接触微积分的基础。
考试中常见的问题包括导数的定义与计算、函数的单调性、极值与最值、函数图像的形态等。
在复习过程中,同学们需要熟悉导数与微分的概念,灵活应用导数与微分解决实际问题。
5. 空间几何空间几何是高中数学的重要内容之一。
考试中常见的问题包括空间平面与直线的位置关系、空间向量的夹角与垂直、空间几何体的体积与表面积等。
在复习过程中,同学们需要熟练运用空间几何的基本性质,解决与实际问题相关的空间几何题目。
6. 概率论与数理统计概率论与数理统计是高中数学的一门较为复杂的知识点。
考试中常见的问题包括概率计算、随机变量的概率分布、均值与方差等。
在复习过程中,同学们需要掌握概率论与数理统计的基本概念及计算方法,并能应用到实际问题中。
以上就是高二数学期末考知识点的概述。
同学们在复习过程中要注重理解各个知识点的定义和性质,强化基础知识的掌握。
同时,要注重做题技巧的训练与应用,通过大量的练习提高解题水平。
高二数学知识点总结大全一、集合与函数1. 集合的概念和表示方法2. 集合的运算:交集、并集、差集、补集3. 集合的基本性质和运算规律4. 函数的概念和表示方法5. 函数的性质:定义域、值域、单调性、奇偶性6. 函数的图像、反函数和复合函数二、平面几何1. 直线与射线的性质与关系2. 角的概念、性质和分类:锐角、直角、钝角3. 举例说明平行线和垂直线的判定方法4. 三角形的分类:按角度分类、按边长分类5. 三角形的面积与周长的计算方法6. 三角形内角和、外角和的计算与性质7. 三角形相似性质与判定8. 三角形的中线、高线和垂心、重心的概念与性质三、数列与数列的极限1. 数列的概念与表示方法2. 等差数列与等比数列的性质3. 数列的通项公式与前n项和的公式4. 数列极限的定义与性质5. 数列极限的计算方法:夹逼定理、单调有界准则6. 数列极限存在的判定7. 数列极限与数列的收敛性和发散性的关系四、函数的导数与应用1. 函数的导数与导数的基本性质2. 基本初等函数的导数3. 导数的四则运算法则与复合函数的求导法则4. 高阶导数与隐函数求导5. 函数的单调性与极值点的判定6. 函数的凹凸性与拐点的判定7. 泰勒公式与函数图像的描绘8. 最值问题与最速下降问题的应用五、概率统计1. 随机事件与样本空间的概念2. 概率的定义、性质和计算方法3. 条件概率和乘法定理4. 全概率公式和贝叶斯定理5. 随机变量与概率密度函数的概念6. 二项分布、正态分布和泊松分布的性质与应用7. 抽样调查与统计推断的方法六、立体几何1. 空间几何体的基本概念与性质:点、线、面、体2. 空间几何体的投影、截面和旋转3. 圆柱体、圆锥体、棱锥体、棱柱体的特征与计算4. 球的性质与计算5. 空间向量的概念与基本运算法则6. 向量与几何体的应用:平面的方程、直线的方程七、三角函数1. 弧度与角度的转化关系2. 基本三角函数的定义与性质3. 三角函数图像的性质与变换4. 和差化积公式、倍角公式、半角公式的推导与应用5. 三角方程的解法与求解区间以上为高二数学知识点总结的大致内容,希望对你的学习有所帮助。
高二数学重点复习知识点归纳高二数学重点复习知识点归纳1(1)定义:对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f (x)(x∈D)的零点。
(2)函数的零点与相应方程的根、函数的图象与x轴交点间的关系:方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?函数y=f (x)有零点。
(3)函数零点的判定(零点存在性定理):如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)二二次函数y=ax2+bx+c(a>0)的图象与零点的关系三二分法对于在区间[a,b]上连续不断且f(a)·f(b)1、函数的零点不是点:函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴交点的横坐标,所以函数的零点是一个数,而不是一个点。
在写函数零点时,所写的一定是一个数字,而不是一个坐标。
2、对函数零点存在的判断中,必须强调:(1)、f(x)在[a,b]上连续;(2)、f(a)·f(b)(3)、在(a,b)内存在零点。
这是零点存在的一个充分条件,但不必要。
3、对于定义域内连续不断的函数,其相邻两个零点之间的所有函数值保持同号。
利用函数零点的存在性定理判断零点所在的区间时,首先看函数y=f(x)在区间[a,b]上的图象是否连续不断,再看是否有f(a)·f(b)四判断函数零点个数的常用方法1、解方程法:令f(x)=0,如果能求出解,则有几个解就有几个零点。
2、零点存在性定理法:利用定理不仅要判断函数在区间[a,b]上是连续不断的曲线,且f (a)·f(b)3、数形结合法:转化为两个函数的图象的交点个数问题。
先画出两个函数的图象,看其交点的个数,其中交点的个数,就是函数零点的个数。
已知函数有零点(方程有根)求参数取值常用的方法1、直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围。
山东高二数学期末考知识点一、函数与方程1. 定义函数:函数是一种对应关系,每个自变量对应唯一的因变量2. 函数的表示方法:显式函数、隐式函数、参数方程3. 函数的性质:奇偶性、单调性、周期性、奇函数与偶函数的性质4. 函数的运算:和、差、积、商、复合函数等5. 一次函数与二次函数:定义、性质、图像、根、性质等6. 指数和对数函数:定义、性质、图像、对数运算等7. 三角函数与反三角函数:定义、性质、图像、三角函数的基本关系式等8. 方程与不等式:一元一次方程、一元二次方程及复根情况、二次函数与一元二次方程的关系、绝对值方程、绝对值不等式等二、数列与数列极限1. 数列的定义:按照一定规则排列的一串数2. 数列的性质:通项公式、前n项和、等差数列与等比数列的性质等3. 数列极限的定义:当n趋于无穷大时,数列逐渐趋于某个确定的值4. 数列极限的计算方法:夹逼准则、单调有界准则、等差数列与等比数列的极限等三、平面向量与解析几何1. 平面向量的定义与性质:向量的表示方法、向量的模、零向量、向量的加法与减法、数量积与向量积等2. 平面向量的坐标表示:向量在直角坐标系中的表示方法、向量的投影等3. 平面解析几何:点、直线、圆的方程、两直线的位置关系、两圆的位置关系等四、三角函数与三角恒等式1. 三角函数的定义:正弦、余弦、正切等2. 三角函数的性质:周期性、奇偶性、函数值的范围等3. 三角恒等式的证明与应用:基本恒等式、倍角公式、半角公式等五、导数与微分1. 导数的定义与性质:导数的几何意义、导数的四则运算、高阶导数等2. 导函数与原函数的关系:微分的定义与计算、微分中值定理等3. 函数的极值与最值:最值问题的求解、函数图像的特点等4. 函数的单调性与凹凸性:导数与函数单调性的关系、导数与函数凹凸性的关系等六、概率与统计1. 概率的基本概念:样本空间、事件、概率等2. 事件的计算方法:加法原理、乘法原理、全概率公式、贝叶斯公式等3. 随机变量与概率分布:离散型随机变量、连续型随机变量、正态分布、二项分布等4. 统计与抽样调查:总体与样本、抽样方法、频数分布表、统计量等以上是山东高二数学期末考的知识点概览。
高二数学考点知识点总结复习一、代数1. 多项式- 多项式的定义和性质- 多项式的加法、减法和乘法运算- 多项式的因式分解及其应用- 多项式方程及其根的性质2. 分式- 分式的定义和性质- 分式的四则运算- 分式方程的解法3. 指数与对数- 指数的定义和性质- 指数函数及其性质- 对数的定义和性质- 对数函数和指数函数的互逆性质- 对数的换底公式- 指数方程和对数方程及其解法4. 不等式- 不等式的性质和解法- 一次不等式和二次不等式的解法- 不等式组及其解法二、函数与方程1. 函数的概念和性质- 函数的定义和基本性质- 函数的性质:奇偶性、周期性等- 函数的运算:和、差、积、商、复合等2. 一元二次函数- 一元二次函数的性质和图像- 一元二次函数的解法- 一元二次函数与方程的关系3. 三角函数- 三角函数的定义和性质- 三角函数的图像和周期性- 三角函数的基本关系式和恒等式- 三角函数的解析式和逆函数- 三角函数的应用:解三角形、求极限、求导等4. 指数函数与对数函数- 指数函数和对数函数的性质和图像- 指数函数和对数函数的解法- 指数函数和对数函数的应用:复利计算、增长/衰减问题等5. 指数方程和对数方程- 指数方程和对数方程的基本解法- 指数方程和对数方程的应用:解实际问题、建模等三、平面几何1. 直线与圆- 直线与直线之间的位置关系- 直线与平面的位置关系- 圆的定义和性质- 圆与直线的位置关系- 圆与圆的位置关系2. 三角形与四边形- 三角形的定义和性质- 三角形的分类和特殊性质- 三角形的元素几何关系(角平分线、中线、高线等)- 三角形的相似与全等- 四边形的定义和性质- 四边形的分类和特殊性质- 四边形的对角线、中线、高线等3. 圆锥曲线- 椭圆的定义和性质- 双曲线的定义和性质- 抛物线的定义和性质- 圆锥曲线的方程和性质四、立体几何1. 空间几何基本概念- 点、直线、平面、空间的特点和性质- 点、直线、平面的位置关系2. 空间几何图形- 空间直线和平面的投影- 空间几何图形的性质和计算3. 空间几何定理- 点、直线、面的位置关系定理- 空间几何图形的定理和推理4. 空间向量- 向量的定义、性质和运算- 空间向量的线性相关与线性无关- 点、直线、平面的向量表示和向量运算五、概率与统计1. 随机事件与概率- 随机事件的定义和性质- 概率的定义和性质- 概率的计算方法- 事件的独立性和互斥性2. 随机变量与概率分布- 随机变量的定义和性质- 离散型随机变量和连续型随机变量的概率分布- 期望、方差和相关系数的概念和计算3. 统计与抽样- 总体和样本的概念和性质- 抽样调查的方法和应用- 统计数据的处理和分析方法以上是高二数学的主要知识点总结,希望对你的复习有所帮助。
高二数学期末考知识点总结在高二数学期末考前夕,为了帮助同学们更好地复习和总结知识点,我将对本学期所学的数学知识点进行总结。
以下是我对本学期高二数学知识点的梳理和总结:一、函数与方程1. 一元函数的概念和性质:定义域、值域、奇偶性等;2. 二次函数:顶点坐标、轴对称、图像特征等;3. 指数函数与对数函数:定义、性质、图像、指数对数变换等;4. 三角函数:正弦函数、余弦函数、正切函数等的概念和性质;5. 方程的解法与不等式求解;二、几何与向量1. 平面向量的定义、性质与运算;2. 向量的数量积与向量积:定义、性质与应用;3. 直线与圆的方程及其性质;4. 三角形与四边形的性质与判定;5. 空间几何体的性质与计算;三、概率与统计1. 事件与概率:基本概念、概率运算与实际应用;2. 随机变量:离散型和连续型随机变量的概念与性质;3. 概率分布函数与密度函数:离散型分布与连续型分布的概念和应用;4. 统计量与统计分布:均值、方差、正态分布等的概念和计算方法;5. 数据处理与分析:频数表、频率分布直方图等的绘制与解读;四、解析几何1. 直线与平面的方程与性质;2. 点、直线、平面的位置关系与距离计算;3. 空间直角坐标系与坐标变换;4. 球面与球面上点、直线与平面的位置关系;5. 球面上的距离计算与解题方法;五、导数与微分1. 函数的极限与连续性:极限定义、无穷小与无穷大的性质;2. 导数的概念与计算方法;3. 高阶导数与导数的应用:中值定理、极值与拐点等;4. 特殊函数的导数:反函数、复合函数、隐函数等的求导法则;5. 微分的概念与应用:近似计算、微分方程与变化率;综上所述,高二数学是一门涵盖广泛的学科,其中包含了函数与方程、几何与向量、概率与统计、解析几何和导数与微分等多个模块,需要我们充分理解每个知识点的定义、性质和计算方法,并能够熟练地应用于实际问题的解决中。
希望同学们通过对本学期所学知识点的全面总结和复习,能够在数学期末考试中取得优异的成绩。
2024年高二数学知识点归纳总结高二数学是高中阶段的重要学科之一,它是高等数学学科的基础,掌握好高二数学知识点对于学习高中和大学阶段的数学都是非常重要的。
以下是2024年高二数学知识点的归纳总结:一、函数与方程1. 函数的概念与性质:函数的定义、定义域、值域、单调性、奇偶性、周期性等。
2. 二次函数与分式函数:二次函数的图像与性质、二次函数的最值、分式函数的定义域与值域、分式函数的化简等。
3. 指数与对数:指数函数、对数函数的性质与图像、指数方程与对数方程的解法等。
4. 三角函数:三角函数的性质和图像、三角函数的基本关系和标准函数、三角函数的解析式与性质等。
5. 方程与不等式:一元一次方程与不等式、一元二次方程与不等式、二元一次方程与二元一次不等式、绝对值方程与不等式、分式方程与不等式等的解法和性质。
二、空间解析几何1. 线段和角的坐标:线段的长度与中点坐标、角的余弦与正弦公式、角的平分线与垂直平分线等。
2. 直线与平面:直线的方程与性质、两平面的位置关系与夹角、直线与平面的位置关系与夹角等。
3. 空间中的点、线、面的方程:点到直线的距离、点到平面的距离、两平面的夹角等。
4. 空间中的距离与角度计算:两点间的距离、向量的模长和方向角、点到直线的距离、线段与平面的交点等。
5. 空间图形的方程与性质:球面的方程、圆锥的方程与性质、圆柱和圆台的方程与性质等。
三、数列与数学归纳法1. 数列的概念与性质:数列的定义、项、前n项和、通项公式、递推关系等。
2. 等差数列与等比数列:等差数列的求和公式、等差数列的前n项和、等差数列的性质与应用,等比数列的性质与应用等。
3. 极限与数列:数列极限的定义与性质、数列极限的等价关系、极限运算法则等。
4. 递归数列与函数极限:递归数列的概念与性质、数学归纳法的基本思想与应用、函数极限与递归数列的关系等。
5. 等差中项数列与等比中项数列:等差中项数列、等比中项数列的性质与应用等。
高二数学期末重点知识点一、函数与方程1. 函数的定义及性质函数是一种特殊的关系,可以将一个自变量的值映射到一个唯一的因变量的值。
函数的定义域、值域、单调性、奇偶性等是我们在分析函数特性时需要关注的方面。
2. 一次函数与二次函数一次函数的表达式为y = kx + b,其中k和b分别为常数,表示斜率和截距。
二次函数的表达式为y = ax^2 + bx + c,其中a、b和c为常数,a不为0。
这两种函数在图像特性上有很大的差别,需要通过求解方程、图像变换等方法进行分析。
3. 指数与对数函数指数函数的一般形式为y = a^x,其中a为底数,x为指数。
对数函数是指数函数的反函数,常见的有以10为底的对数函数y = log10x和以e为底的自然对数函数y = ln x。
指数与对数函数在科学计算、生物学、经济学等领域有广泛的应用。
4. 三角函数三角函数包括正弦函数、余弦函数和正切函数等。
它们在几何学、物理学、信号处理等领域中起着重要的作用。
掌握三角函数的定义、性质以及图像特征,能够帮助我们解决相关的问题。
二、平面几何1. 平面图形的性质熟悉各种平面图形的定义及其基本性质,如线段、射线、直线、角等。
此外,要了解平面图形之间的关系,如相似、共面、垂直等,以及相关的证明方法。
2. 三角形与四边形熟悉三角形的内角和、全等条件、相似条件等基本概念和定理。
掌握各种类型的三角形,如等腰三角形、直角三角形、等边三角形等的性质。
对于四边形,要掌握平行四边形、矩形、菱形、正方形等的特性。
3. 圆的性质与相关定理了解圆的性质,如半径、直径、弧长等。
同时要掌握圆的切线、弦、弧之间的关系以及圆与其他图形的关系。
三、立体几何1. 空间图形的表示方法了解空间图形的表示方法,如投影、剖面、透视等。
学会通过平面图形的特征来推断空间图形的性质。
2. 空间几何体熟悉三维图形,如球体、棱柱、棱锥、圆锥等的性质。
了解它们的表面积、体积计算方法,并能灵活运用。
高二数学知识点总结归纳【五篇】高二数学是整个高中数学学科体系的重要部分,其涵盖的知识点和内容比高一数学更加广泛和深入。
在高二数学学习中,有许多重要的知识点需要我们理解和掌握,这些知识点不仅关乎我们学习数学的基础,也是我们未来竞争中必不可少的组成部分。
在本文中,我们将为大家总结归纳五篇高二数学知识点,帮助大家更好地进行数学学习。
一、高二数学知识点总结之初等函数初等函数是高中数学中的重要分支,也是理科生考试中不可缺少的重要知识点。
其中,包括常见的多项式函数、指数函数、对数函数、三角函数等等。
其中,多项式函数和三角函数经常出现在各类赛事和奥赛中,并且重要性非常高。
例如,多项式函数有如下例子:1、$y = x^2 + x + 1$,它的图像一定是一个开口向上的抛物线,其中顶点的横坐标为$x = -\frac{1}{2}$ ,纵坐标为$y =\frac{3}{4}$。
2、$y = x^3 - 3x$,它的图像对称于原点,其中$x =\sqrt[3]{3}$,$x = -\sqrt[3]{3}$,$x = 0$是它的零点,且$x$轴为其渐近线。
3、$y = \frac{x + 2}{2x^2 + x - 3}$,它的最简式是$y =\frac{1}{2(x-1)} - \frac{1}{2(x+3)}$,它的函数图像有两个渐近线:$x = 1$和$x = -\frac{3}{2}$,且$y$轴为其对称轴。
二、高二数学知识点总结之平面几何平面几何是高中数学的另一个重要方向,它主要研究平面上的图形、尺寸、位置等特性,包括平面中的各种三角形、四边形、圆与圆、平行四边形、相似三角形、几何变换等内容。
在此,我们可以举例如下:1、三角形内角和定理:一个三角形内角的和等于$180°$。
2、欧拉线定理:对于任何三角形,它的欧拉线、垂心和重心共线,并且欧拉线的长度等于重心到垂心距离的$2$倍。
3、圆的欧拉定理:对于任何圆,它的欧拉定理都成立,即圆心、外心、内心和互补的费马点四点共线。
高二数学期末知识点高二年级数学重要知识点归纳1、科学记数法:把一个数字写成的形式的记数方法。
2、统计图:形象地表示收集到的数据的图。
3、扇形统计图:用圆和扇形来表示总体和部分的关系,扇形大小反映部分占总体的百分比的大小;在扇形统计图中,每个部分占总体的百分比等于该部分对应的扇形圆心角与360°的比。
4、条形统计图:清楚地表示出每个项目的具体数目。
5、折线统计图:清楚地反映事物的变化情况。
6、确定事件包括:肯定会发生的必然事件和一定不会发生的不可能事件。
7、不确定事件:可能发生也可能不发生的事件;不确定事件发生的可能性大小不同;不确定。
8、事件的概率:可用事件结果除以所以可能结果求得理论概率。
9、有效数字:对于一个近似数,从左边第一个不是0的数字起,到精确到的数位为止的数字。
10、游戏双方公平:双方获胜的可能性相同。
11、算数平均数:简称“平均数”,最常用,受极端值得影响较大;加权平均数12、中位数:数据按大小排列,处于中间位置的数,计算简单,受极端值得影响较小。
13、众数:一组数据中出现次数最多的数据,受极端值得影响较小,跟其他数据关系不大。
14、平均数、众数、中位数都是数据的代表,刻画了一组数据的“平均水平”。
15、普查:为了一定目的对考察对象进行全面调查;考察对象全体叫总体,每个考察对象叫个体。
16、抽样调查:从总体中抽取部分个体进行调查;从总体中抽出的一部分个体叫样本(有代表性)。
17、随机调查:按机会均等的原则进行调查,总体中每个个体被调查的概率相同。
18、频数:每次对象出现的次数。
19、频率:每次对象出现的次数与总次数的比值。
20、级差:一组数据中数据与最小数据的差,刻画数据的离散程度。
21、方差:各个数据与平均数之差的平方的平均数,刻画数据的离散程度。
21、标准方差:方差的算数平方根刻画数据的离散程度。
23、一组数据的级差、方差、标准方差越小,这组数据就越稳定。
24、利用树状图或表格方便求出某事件发生的概率。
高二数学期末复习知识点归纳整理
高二数学期末复习知识点1
导数:导数的意义-导数公式-导数应用(极值最值问题、曲线切线问题)
1、导数的定义:在点处的导数记作.
2.导数的几何物理意义:曲线在点处切线的斜率
①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。
V=s/(t)表示即时速度。
a=v/(t)表示加速度。
3.常见函数的导数公式:①;②;③;
⑤;⑥;⑦;⑧。
4.导数的四则运算法则:
5.导数的应用:
(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;
注意:如果已知为减函数求字母取值范围,那么不等式恒成立。
(2)求极值的步骤:
①求导数;
②求方程的根;
③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;
(3)求可导函数值与最小值的步骤:
ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。
高二数学期末复习知识点2
3.1直线的倾斜角和斜率
3.1倾斜角和斜率
1、直线的倾斜角的概念:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时,规定α=0°.
2、倾斜角α的取值范围:0°≤α<180°.
当直线l与x轴垂直时,α=90°.
3、直线的斜率:
一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k=tanα
⑴当直线l与x轴平行或重合时,α=0°,k=tan0°=0;
⑵当直线l与x轴垂直时,α=90°,k不存在.
由此可知,一条直线l的倾斜角α一定存在,但是斜率k不一定存在.
4、直线的斜率公式:
给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:
斜率公式:
3.1.2两条直线的平行与垂直
1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即
注意:上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2,那么一定有L1∥L2
2、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即
3.2.1直线的点斜式方程
1、直线的点斜式方程:直线经过点且斜率为
2、、直线的斜截式方程:已知直线的斜率为
3.2.2直线的两点式方程
1、直线的两点式方程:已知两点
2、直线的截距式方程:已知直线
3.2.3直线的一般式方程
1、直线的一般式方程:关于x、y的二元一次方程
(A,B不同时为0)
2、各种直线方程之间的互化。
3.3直线的交点坐标与距离公式
3.3.1两直线的交点坐标
1、给出例题:两直线交点坐标
L1:3x+4y-2=0
L1:2x+y+2=0
解:解方程组
得x=-2,y=2
所以L1与L2的交点坐标为M(-2,2)
3.3.2两点间距离
两点间的距离公式
3.3.3点到直线的距离公式
1.点到直线距离公式:
2、两平行线间的距离公式:
高二数学期末复习知识点3
1.数列的函数理解:
①数列是一种特殊的函数。
其特殊性主要表现在其定义域和值域上。
数列可以看作一个定义域为正整数集N_或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。
②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。
图像法;c.解析法。
其中解析法包括以通项公式给出数列和以递推公式给出数列。
③函数不一定有解析式,同样数列也并非都有通项公式。
2.通项公式:数列的第N项an与项的序数n之间的关系可以用一个公式
an=f(n)来表示,这个公式就叫做这个数列的通项公式(注:通项公式不)。
数列通项公式的特点:
(1)有些数列的通项公式可以有不同形式,即不。
(2)有些数列没有通项公式(如:素数由小到大排成一列2,3,5,7,11,...)。
3.递推公式:如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。
数列递推公式特点:
(1)有些数列的递推公式可以有不同形式,即不。
(2)有些数列没有递推公式。
有递推公式不一定有通项公式。
注:数列中的项必须是数,它可以是实数,也可以是复数。
高二数学期末复习知识点是什么。