圆的标准方程例题及答案
- 格式:pdf
- 大小:154.89 KB
- 文档页数:2
高三数学圆的标准方程与一般方程试题答案及解析1.以点为圆心且与直线相切的圆的方程是()A.B.C.D.【答案】C【解析】由已知,,故选.【考点】1.圆的方程;2.直线与圆的位置关系;3.点到直线的距离.2.某圆的圆心在直线上,并且在两坐标轴上截得的弦长分别为4和8,则该圆的方程为()A.B.C.或D.或【答案】C【解析】由已知分析可设圆心为,半径为,则有或,解得,故选C.【考点】圆的标准方程以及弦长的基本知识.3.设点,若在圆上存在点N,使得,则的取值范围是( ) A.B.C.D.【答案】A【解析】过M作⊙O切线交⊙O于R,根据圆的切线性质,有∠OMR≥∠OMN=30°.反过来,如果∠OMR≥30°,则⊙O上存在一点N使得∠OMN=30°.∴若圆O上存在点N,使∠OMN=30°,则∠OMR≥30°.∵|OR|=1,∴|OM|>2时不成立,∴|OM|≤2,即=≤4,解得,≤≤,故选A. 考点:直线与圆的位置关系4.若圆C:关于直线对称,则由点向圆所作的切线长的最小值是()A.2B.4C.3D.6【答案】B【解析】由题知圆C的圆心C(-1,2),半径为,因为圆C关于直线对称,所以圆心C在直线上,所以,即,所以由点向圆所作的切线长为===,当时,切线长最小,最小值为4,故选B.【考点】圆的标准方程,圆的切线问题,二次函数最值5.已知M(-2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程为() A.x2+y2=2B.x2+y2=4C.x2+y2=2(x≠±2)D.x2+y2=4(x≠±2)【答案】D【解析】MN的中点为原点O,易知|OP|=|MN|=2,∴P的轨迹是以原点O为圆心,以r=2为半径的圆,除去与x轴的两个交点.6.已知圆C:x2+y2+mx-4=0上存在两点关于直线x-y+3=0对称,则实数m的值为() A.8B.-4C.6D.无法确定【答案】C【解析】圆上存在关于直线x-y+3=0对称的两点,则x-y+3=0过圆心(-,0),即-+3=0,∴m=6.7.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是()A.(x-2)2+(y-1)2=1B.(x-2)2+(y-3)2=1C.(x-3)2+(y-2)2=1D.(x-3)2+(y-1)2=1【答案】A【解析】设圆心坐标为(a,b),由题意知a>0,且b=1.又∵圆和直线4x-3y=0相切,∴=1,即|4a-3|=5,∵a>0,∴a=2.所以圆的方程为(x-2)2+(y-1)2=1.8.已知圆C的圆心在曲线y=上,圆C过坐标原点O,且与x轴、y轴交于A、B两点,则△OAB的面积是()A.2 B.3 C.4 D.8【答案】C【解析】设圆心C的坐标是(t,).∵圆C过坐标原点,∴|OC|2=t2+,设圆C的方程是(x-t)2+(y-)2=t2+.令x=0,得y1=0,y2=,故B点的坐标为(0,).令y=0,得x1=0,x2=2t,故A点的坐标为(2t,0),∴S△OAB=|OA|·|OB|=×||×|2t|=4,即△OAB的面积为4.故选C.9.若圆的半径为1,其圆心与点关于直线对称,则圆的标准方程为_______.【答案】【解析】因为圆心与点关于直线对称,所以圆心坐标为,所以圆的标准方程为:,故答案为【考点】圆的标准方程.10.已知直线与圆心为的圆相交于两点,且,则实数的值为_________.【答案】0或6【解析】圆的标准方程为:所以圆的圆心在,半径又直线与圆交于两点,且所以圆心到直线的距离所以,,整理得:解得:或所以答案应填:0或6.【考点】1、圆的标准方程;2、直线与圆的位置关系;3、点到直线的距离公式.11.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是()A.(x-2)2+(y-1)2=1B.(x-2)2+(y+1)2=1C.(x+2)2+(y-1)2=1D.(x-3)2+(y-1)2=1【答案】A【解析】设圆心为,半径为,则=1,解得,所以,解得,故圆心坐标为(2,1),所以该圆的标准方程是(x-2)2+(y-1)2=1,选A.12.若圆x2+y2-2kx+2y+2=0(k>0)与两坐标轴无公共点,那么实数k的取值范围为( ) A.-1<k<1B.1<k<C.1<k<2D.<k<2【答案】B【解析】圆的方程为(x-k)2+(y+1)2=k2-1,圆心坐标为(k,-1),半径r=,若圆与两坐标无公共点,即,解得1<k<.故选B.13.若圆的半径为1,圆心在第一象限,且与直线和轴相切,则该圆的标准方程是________.【答案】【解析】由于圆的半径为1且与轴相切,所以可以假设圆心.又圆与直线相切.所以可得.解得,由圆心在第一象限.所以.所以圆的方程为.【考点】1.直线与圆的位置关系.2.直线与圆相切的判定.3.圆的标准方程.14.方程x2+y2-6x=0表示的圆的圆心坐标是________;半径是__________.【答案】(3,0),3【解析】(x-3)2+y2=9,圆心坐标为(3,0),半径为3.15.方程x2+y2+4mx-2y+5m=0表示圆的充要条件是________.【答案】m<或m>1.【解析】由(4m)2+4-4×5m>0得m<或m>1.16.圆心在y轴上,半径为1,且过点(1,2)的圆的方程为______________.【答案】x2+(y-2)2=1【解析】设圆的方程为x2+(y-b)2=1,此圆过点(1,2),所以12+(2-b)2=1,解得b=2.故所求圆的方程为x2+(y-2)2=1.17.如图,已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长与|MQ|的比等于.求动点M的轨迹方程,并说明它表示什么.【答案】(x-4)2+y2=7.它表示圆,【解析】设直线MN切圆于N,则动点M组成的集合是P={M||MN|=|MQ|}.因为圆的半径|ON|=1,所以|MN|2=|MO|2-1.设点M的坐标为(x,y),则,整理得(x-4)2+y2=7.它表示圆,该圆圆心的坐标为(4,0),半径为.18. P(x,y)在圆C:(x-1)2+(y-1)2=1上移动,试求x2+y2的最小值.【答案】3-2【解析】由C(1,1)得OC=,则OPmin =-1,即()min=-1.所以x2+y2的最小值为(-1)2=3-2.19.已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y+3=0相切,则圆C的方程为()A.(x+1)2+y2=2B.(x-1)2+y2=2C.(x+1)2+y2=4D.(x-1)2+y2=4【答案】A【解析】直线x-y+1=0,令y=0得x=-1,所以直线x-y+1=0与x轴的交点为(-1,0),因为直线x+y+3=0与圆相切,所以圆心到直线的距离等于半径,即r==,所以圆C的方程为(x+1)2+y2=2.20.求圆心在抛物线x2=4y上,且与直线x+2y+1=0相切的面积最小的圆的方程.【答案】(x+1)2+=【解析】设圆心坐标为,半径为r.根据已知得r== (t2+2t+2)= [(t+1)2+1]≥,当t=-1时取等号,此时r最小为,圆心坐标为(-1,),故所求的圆的方程是(x+1)2+=.21.已知点A(-3,0),B(3,0),动点P满足|PA|=2|PB|.(1)若点P的轨迹为曲线C,求此曲线的方程;(2)若点Q在直线l1:x+y+3=0上,直线l2经过点Q且与曲线C只有一个公共点M,求|QM|的最小值.【答案】(1)(x-5)2+y2=16(2)4【解析】(1)设点P的坐标为(x,y),且|PA|=2|PB|,则=2,化简得曲线C:(x-5)2+y2=16.(2)曲线C是以点(5,0)为圆心,4为半径的圆,如图.是此圆的切线,连接CQ,由直线l2则|QM|=,时,|CQ|取最小值,|CQ|=,此时|QM|的最小值为=4.当CQ⊥l122.已知圆C经过A(5,1),B(1,3)两点,圆心在x轴上,则圆C的方程为________.【答案】(x-2)2+y2=10【解析】依题意设所求圆的方程为(x-a)2+y2=r2,把所给两点坐标代入方程,得解得所以所求圆的方程为(x-2)2+y2=10.23.已知半径为2,圆心在直线上的圆C.(Ⅰ)当圆C经过点A(2,2)且与轴相切时,求圆C的方程;(Ⅱ)已知E(1,1),F(1,-3),若圆C上存在点Q,使,求圆心的横坐标的取值范围.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)因为原心在直线上故可设原心为,则可根据圆心和圆上的点的距离为半径列出方程。
高中数学例题:圆的标准方程例1.求满足下列条件的各圆的方程:(1)圆心在原点,半径是3;(2)已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上;(3)经过点()5,1P ,圆心在点()8,3C -.【思路点拨】一般情况下,如果已知圆心或易于求出圆心,可用圆的标准方程来求解,用待定系数法,求出圆心坐标和半径.【答案】(1)229x y +=(2)22(2)10x y -+=(3)()()228325x y -++=【解析】(1)229x y +=(2)线段AB 的中垂线方程为240x y --=,与x 轴的交点(2,0)即为圆心C 的坐标,所以半径为||0CB = ,所以圆C 的方程为22(2)10x y -+=.(3)解法一:∵圆的半径||5r CP ===,圆心在点()8,3C -∴圆的方程是()()228325x y -++=解法二:∵圆心在点()8,3C -,故设圆的方程为()()22283x y r -++= 又∵点()5,1P 在圆上,∴()()2225813r -++=,∴225r =∴所求圆的方程是()()228325x y -++=.【总结升华】确定圆的方程的主要方法是待定系数法,即列出关于a 、b 、r 的方程组,求a 、b 、r 或直接求出圆心(a ,b )和半径r ,一般步骤为:(1)根据题意,设所求的圆的标准方程为(x ―a)2+(y ―b)2=r 2;(2)根据已知条件,建立关于a 、b 、r 的方程组;(3)解方程组,求出a 、b 、r 的值,并把它们代入所设的方程中去,就得到所求圆的方程.举一反三:【变式1】圆心是(4,―1),且过点(5,2)的圆的标准方程是( )A .(x ―4)2+(y+1)2=10B .(x+4)2+(y ―1)2=10C .(x ―4)2+(y+1)2=100 D.22(4)(1)x y -++=【答案】A例2.求圆心在直线2x ―y ―3=0上,且过点(5,2)和(3,―2)的圆的方程.【答案】(x ―2)2+(y ―1)2=10【解析】 解法一:设所求圆的圆心为(a ,b ),半径为r ,由题意得222222230(5)(2)(3)(2)a b a b r a b r --=⎧⎪-+-=⎨⎪-+--=⎩,解方程组得a=2,b=1,r =∴所求圆的方程为(x ―2)2+(y ―1)2=10.解法二:因点(5,2)和(3,―2)在圆上,故圆心在这两点所连线段的垂直平分线上,可求得垂直平分线的方程为x+2y ―4=0.又圆心在直线2x ―y ―3=0上,故圆心为两直线的交点.由230240x y x y --=⎧⎨+-=⎩求得两直线交点为(2,1),故所求圆的方程为(x ―2)2+(y ―1)2=10.【总结升华】求圆的标准方程的关键是求圆的坐标和圆的半径,这就需要充分挖掘题目中所给的几何条件,并充分利用平面几何中的有关知识求解,如“若圆经过某两点,则圆心必在这两点连线的中垂线上”等.举一反三:【变式1】(1)过点(2,3),(2,5)A B ---且圆心在直线230x y --=上;(2)与x 轴相切,圆心在直线30x y -=上,且被直线0x y -=截得的弦长为【答案】(1)22(1)(2)10x y +++=(2)22(1)(3)9x y -+-=或22(1)(3)9x y +++=【解析】(1)设圆的方程为:()222()x a y b r -+-=,则()()()()2222222325230a b r a b r a b ⎧-+--=⎪⎪--+--=⎨⎪--=⎪⎩,解得:21,2,10a b r =-=-=所求圆的方程为:22(1)(2)10x y +++=(2)设圆的方程为:()222()x a y b r -+-=,则()222230142r b a b a b r ⎧=⎪⎪-=⎨⎪-+=⎪⎩解得:2139a b r ⎧=⎪=⎨⎪=⎩或2139a b r ⎧=-⎪=-⎨⎪=⎩ 所求圆的方程为:22(1)(3)9x y -+-=或22(1)(3)9x y +++=.。
高二数学圆的标准方程与一般方程试题答案及解析1.已知圆C过点(1,0),且圆心在x轴的正半轴上,直线l:y=x﹣1被该圆所截得的弦长为,则圆C的标准方程为_________.【答案】【解析】设圆心为(a,0),半径为r,由弦长为可得,又圆心在x轴的正半轴上,所以a>1,由已知可知半径、半弦长、弦心距围成一等腰三角形,所以有,答案为.【考点】1.圆的标准方程;2.直线与圆的位置关系2.已知圆C过原点且与相切,且圆心C在直线上.(1)求圆的方程;(2)过点的直线l与圆C相交于A,B两点, 且, 求直线l的方程.【答案】(1) (2) x=2或4x-3y-2=0.【解析】(1)由题意圆心到直线的距离等于半径, 再利用点到直线的距离公式解出圆心坐标和半径即可.(2)由题知,圆心到直线l的距离为1.分类讨论:当l的斜率不存在时,l:x=2显然成立;若l的斜率存在时, 利用点到直线的距离公式,解得k ;综上,直线l的方程为x=2或4x-3y-2=0.(1)由题意设圆心 ,则C到直线的距离等于 ,, 解得, ∴其半径∴圆的方程为 (6分)(2)由题知,圆心C到直线l的距离. (8分)当l的斜率不存在时,l:x=2显然成立 (9分)若l的斜率存在时,设,由得,解得,∴. (11分)综上,直线l的方程为x=2或4x-3y-2=0. (12分)【考点】圆的方程;点到直线的距离公式.3.已知圆,圆内有定点,圆周上有两个动点,,使,则矩形的顶点的轨迹方程为.【答案】【解析】设A(),B(),Q(),又P(1,1),则,,=(),=().由PA⊥PB,得•=0,即(x1-1)(x2-1)+(y1-1)(y2-1)=0.整理得:x1x2+y1y2-(x1+x2)-(y1+y2)+2=0,即x1x2+y1y2=x+1+y+1-2=x+y①又∵点A、B在圆上,∴x12+y12=x22+y22=4②再由|AB|=|PQ|,得(x1−y1)2+(x2−y2)2=(x−1)2+(y−1)2,整理得:x12+y12+x22+y22−2(x1y1+x2y2)=(x−1)2+(y−1)2③把①②代入③得:x2+y2=6.∴矩形APBQ的顶点Q的轨迹方程为:x2+y2=6.故答案为:x2+y2=6..【考点】直线与圆.4.(1)求圆心在轴上,且与直线相切于点的圆的方程;(2)已知圆过点,且与圆关于直线对称,求圆的方程.【答案】(1)(2)【解析】(1)根据题意可设圆心,所以圆心和切点的连线与直线垂直,根据斜率相乘等于,可求出圆心坐标,圆心与切点间的距离为半径,即可求出圆的标准方程。
圆的标准方程与一般方程的转换1. 已知方程x²+y²+Dx+Ey+F=0是圆的一般方程,则其标准方程为__________。
答案:(x+)²+(y+)²=提示①:将原方程配方并整理x²+Dx+()²+y²+Ex+()²-()²-()²+F=0(x+)²+(y+)²-=0提示②:将常数项移至方程右边。
(x+)²+(y+)²=2. 将圆的方程(x-a)²+(x-b)²=r²化为一般方程的形式,结果为___________。
答案:x²+y²-2ax-2by+a²+b²-r²=0提示①:将原方程去掉括号并整理x²+y²-2ax-2by+a²+b²=r²提示②:将方程右边化为0x²+y²-2ax-2by+a²+b²-r²=03. 已知圆的一般方程为x²+y²+6x-8y=0,则其标准方程为___。
A、(x-3)²+(y-4)²=25B、(x-3)²+(y-4)²=5C、(x+3)²+(y-4)²=25D、(x-3)²+(y-4)²=5答案:C提示①:将原方程配方x²+6x+3²+y²-8y+4²-3²-4²=0(x+3)²+(y-4)²-25=0提示②:将常数项移至方程右边(x+3)²+(y-4)²=254. 方程2(x+5)²+2y²=3表示一个圆,则这个圆的一般方程为___。
高二数学圆的标准方程与一般方程试题答案及解析1.以为圆心且过原点的圆的方程为_____________.【答案】.【解析】由题意,得所求圆的半径,则所求圆的标准方程为.【考点】圆的标准方程.2.已知以点为圆心的圆与直线相切,过点的动直线与圆相交于两点.(1)求圆的方程;(2)当时,求直线的方程.【答案】(1);(2)或.【解析】(1)由直线与以为圆心的圆相切得到该圆的半径,然后根据圆心的坐标与半径即可写出圆的标准方程;(2)先由弦的长与圆的半径得到圆心到直线的距离,进而设出直线的方程(注意检验直线斜率不存在的情况),由点到直线的距离公式即可算出的取值,从而可写出直线的方程.试题解析:(1)由题意知到直线的距离为圆半径圆的方程为(2)设线段的中点为,连结,则由垂径定理可知,且,在中由勾股定理易知当动直线的斜率不存在时,直线的方程为时,显然满足题意;当动直线的斜率存在时,设动直线的方程为:由到动直线的距离为1得或为所求方程.【考点】1.圆的标准方程;2.点到直线的距离公式;3.直线与圆的位置关系.3.已知圆的圆心与点关于直线对称,直线与圆相交于两点,且,求圆的方程.【答案】.【解析】先设点,根据对称的特征,直线的斜率与直线的斜率互为负倒数,且线段的中点在直线上,列出方程组,求解可得圆心,接着计算圆心到直线的距离,最后由弦长、圆心到直线的距离及的平方关系:计算出半径,根据圆心的坐标与半径即可写出圆的标准方程.试题解析:设点关于直线的对称点为则由 4分故圆心到直线的距离 6分所以圆的半径的平方 8分故圆的方程为 10分.【考点】1.圆的标准方程;2.直线与圆的位置关系.4.圆心为,且经过点的圆的标准方程为.【答案】.【解析】由题得半径r=,根据圆的标准方程公式可得圆的标准方程为:.【考点】圆的标准方程.5.已知圆经过坐标原点和点,且圆心在轴上.(1)求圆的方程;(2)设直线经过点,且与圆相交所得弦长为,求直线的方程.【答案】(1);(2)或【解析】(1)本题求圆的方程,已知圆上两点即圆心的纵坐标,所以需要求出圆的半径和圆心的横坐标两个值即可确定圆的方程,通过列解方程即可求出相应的量,该题的半径的长刚好就是圆心的横坐标的值,这个条件要用上.(2)该小题是直线与圆的位置关系问题,特别要先判断直线的斜率不存在的时候的情况,通过画图可知符合条件,其次是斜率存在时,通过重点三角形(弦心距,半弦长,半径)的关系可以求出弦心距的长,从而再用圆心到直线的距离公式求出直线的斜率,又过已知点即可写出直线方程.试题解析:(1)设圆的圆心坐标为,依题意,有,即,解得,所以圆的方程为.(2)依题意,圆的圆心到直线的距离为,所以直线符合题意.另,设直线方程为,即,则,解得,所以直线的方程为,即.综上,直线的方程为或.【考点】1.直线与圆的关系.2.圆的标准方程.3.分类归纳思想.4.运算能力的锻炼.6.圆关于A(1,2)对称的圆的方程为【答案】【解析】圆关于点对称圆,先找圆心关于点的对称点,半径不变,可以得到对称圆的方程【考点】圆关于点对称7.已知圆过直线和圆的交点,且原点在圆上.则圆的方程为.【答案】【解析】根据题意可设圆的方程为:,因为原点在圆上,故.所以所求圆的方程为.【考点】直线与圆的位置关系,圆的标准方程.8.已知圆:+=1,圆与圆关于直线对称,则圆的方程为()A.+=1B.+=1C.+=1D.+=1【解析】由两圆关于直线对称可知两圆心与关于直线对称,且半径相等,因(-1,1)关于直线的对称点(2,-2),故圆:+=1,选B.【考点】圆的标准方程.9.已知圆方程为.(1)求圆心轨迹的参数方程C;(2)点是(1)中曲线C上的动点,求的取值范围.【答案】(1)(2)-≤2x+y≤。
高一数学圆的标准方程与一般方程试题答案及解析1.圆心为点,且经过原点的圆的方程为【答案】【解析】由于圆过原点,,所以圆的标准方程.【考点】圆的标准方程2.圆的圆心和半径分别()A.B.C.D.【答案】A【解析】将圆配方得:,故知圆心为(2,-1),半径为,所以选A【考点】圆的一般方程.3.圆的面积为;【答案】【解析】写成标准方程,所以,那么圆的面积公式等于.【考点】圆的标准方程与圆的一般方程4.圆的方程过点和原点,则圆的方程为;【答案】【解析】设圆的一般方程为,将三点代入得:,解得,所以圆的方程为.【考点】求圆的方程5.已知,则以线段为直径的圆的方程为;【答案】【解析】,,圆心为中点,圆心,所以圆的方程为.【考点】求圆的标准方程6.已知圆方程.(1)若圆与直线相交于M,N两点,且(为坐标原点)求的值;(2)在(1)的条件下,求以为直径的圆的方程.【答案】(1);(2).【解析】首先确定方程表示圆时应满足的条件;设,,利用韦达定理,建设立关于的方程,解方程可得的值.在(1)的条件下,以为直径的圆过原点,利用韦达定理求出的中点,从而也就易于求出半径,得到圆的方程.试题解析:解:(1)由得:2分于是由题意把代入得 3分, 4分∵得出: 5分∴∴ 8分(2)设圆心为.9分半径 12分圆的方程 13分【考点】1、圆的方程;2、直线与圆的位置关系;3、韦达定理的应用;4、向量垂直的条件.7.已知,则以为直径的圆的方程是( )A.B.C.D.【答案】A【解析】圆心为AB的中点,为。
直径为,半径为,所以所求的圆的方程是。
故选A。
【考点】圆的标准方程点评:要得到圆的标准方程,需求出圆的圆心和半径。
8.当为任意实数时,直线恒过定点,则以为圆心,半径为的圆是()A.B.C.D.【答案】C【解析】变形为,令得,定点,所以圆的方程为【考点】直线方程过定点及圆的方程点评:带参数的直线方程一定过定点,求定点时将含有参数的整理到一起,不带参数的整理到一起,化为的形式可求得定点9.求经过三点A,B(), C(0,6)的圆的方程,并指出这个圆的半径和圆心坐标.【答案】,圆心坐标是.【解析】解:设所求圆的方程为 2分点A,B(), C(0,6)的坐标满足上述方程,分别代入方程,可得 6分解得: 8分于是得所求圆的方程为: 10分圆的半径圆心坐标是. 12分【考点】圆的一般方程点评:此题考查了圆的一般方程,求圆方程的方法为待定系数法,此方法是先设出圆的一般方程,然后把已知的点代入到所设的方程中确定出圆方程中字母的值,从而确定出圆的方程10.已知圆过点 A(1, 1)和B (2, -2),且圆心在直线x - y +1=0上,求圆的方程____.【答案】【解析】根据圆的几何性质可知圆心是AB的垂直平分线与直线x-y+1=0的交点.因为AB的垂直平分线方程为,即.由得,所以圆心坐标为(-3,-2),半径为5,所以所求圆的方程为.11.若方程表示的曲线为圆,则的取值范围是()A..B..C.D.【答案】B【解析】解:因为表示圆,则说明,解得,选B12.( 本小题满分14)已知点A(-4,-5),B(6,-1),求以线段AB为直径的圆的方程。
高三数学圆的标准方程与一般方程试题答案及解析1.若圆C:关于直线对称,则由点向圆所作的切线长的最小值是()A.2B.4C.3D.6【答案】B【解析】由题知圆C的圆心C(-1,2),半径为,因为圆C关于直线对称,所以圆心C在直线上,所以,即,所以由点向圆所作的切线长为===,当时,切线长最小,最小值为4,故选B.【考点】圆的标准方程,圆的切线问题,二次函数最值2.已知M(-2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程为() A.x2+y2=2B.x2+y2=4C.x2+y2=2(x≠±2)D.x2+y2=4(x≠±2)【答案】D【解析】MN的中点为原点O,易知|OP|=|MN|=2,∴P的轨迹是以原点O为圆心,以r=2为半径的圆,除去与x轴的两个交点.3.设圆的方程是x2+y2+2ax+2y+(a-1)2=0,若0<a<1,则原点与圆的位置关系是() A.原点在圆上B.原点在圆外C.原点在圆内D.不确定【答案】B【解析】将原点代入x2+y2+2ax+2y+(a-1)2=(a-1)2>0,所以原点在圆外.4.已知圆C:x2+y2+mx-4=0上存在两点关于直线x-y+3=0对称,则实数m的值为() A.8B.-4C.6D.无法确定【答案】C【解析】圆上存在关于直线x-y+3=0对称的两点,则x-y+3=0过圆心(-,0),即-+3=0,∴m=6.5.已知圆C的圆心在曲线y=上,圆C过坐标原点O,且与x轴、y轴交于A、B两点,则△OAB的面积是()A.2 B.3 C.4 D.8【答案】C【解析】设圆心C的坐标是(t,).∵圆C过坐标原点,∴|OC|2=t2+,设圆C的方程是(x-t)2+(y-)2=t2+.令x=0,得y1=0,y2=,故B点的坐标为(0,).令y=0,得x1=0,x2=2t,故A点的坐标为(2t,0),∴S△OAB=|OA|·|OB|=×||×|2t|=4,即△OAB的面积为4.故选C.6.已知圆C经过P(4,-2),Q(-1,3)两点,且在y轴上截得的线段长为4,半径小于5.(1)求直线PQ与圆C的方程;(2)若直线l∥PQ,且l与圆C交于点A,B,且以线段AB为直径的圆经过坐标原点,求直线l的方程.【答案】(1)(x-1)2+y2=13. (2)y=-x+4或y=-x-3【解析】(1)直线PQ的方程为:x+y-2=0,设圆心C(a,b),半径为r,由于线段PQ的垂直平分线的方程是y-=x-,即y=x-1,所以b=a-1.①又由在y轴上截得的线段长为4,知(a+1)2+(b-3)2=12+a2.②由①②得:a=1,b=0或a=5,b=4.当a=1,b=0时,r2=13满足题意,当a=5,b=4时,r2=37不满足题意,故圆C的方程为(x-1)2+y2=13.(2)设直线l的方程为y=-x+m,A(x1,m-x1),B(x2,m-x2),由题意可知OA⊥OB,即·=0,x 1x2+(m-x1)(m-x2)=0整理得m2-m(x1+x2)+2x1x2=0,将y=-x+m代入(x-1)2+y2=13,可得2x2-2(m+1)x+m2-12=0.∴x1+x2=1+m,x1x2=,即m2-m·(1+m)+m2-12=0,Δ=-4(m2-2m-25)>0,∴m=4或m=-3,满足Δ>0,∴y=-x+4或y=-x-3.7.已知点,圆:,过点的动直线与圆交于两点,线段的中点为,为坐标原点.(1)求的轨迹方程;(2)当时,求的方程及的面积【答案】(1);(2)的方程为; 的面积为.【解析】(1)先由圆的一般方程与标准方程的转化可将圆C的方程可化为,所以圆心为,半径为4,根据求曲线方程的方法可设,由向量的知识和几何关系:,运用向量数量积运算可得方程:;(2)由第(1)中所求可知M 的轨迹是以点为圆心,为半径的圆,加之题中条件,故O在线段PM的垂直平分线上,又P在圆N上,从而,不难得出的方程为;结合面积公式可求又的面积为.试题解析:(1)圆C的方程可化为,所以圆心为,半径为4,设,则,,由题设知,故,即.由于点P在圆C的内部,所以M的轨迹方程是.(2)由(1)可知M的轨迹是以点为圆心,为半径的圆.由于,故O在线段PM的垂直平分线上,又P在圆N上,从而.因为ON的斜率为3,所以的斜率为,故的方程为.又,O到的距离为,,所以的面积为.【考点】1.曲线方程的求法;2.圆的方程与几何性质;3.直线与圆的位置关系8.曲线f(x)=xlnx在点P(1,0)处的切线l与坐标轴围成的三角形的外接圆方程是( )A.(x+)2+(y-)2=B.(x+1)2+(y-1)2=C.(x-)2+(y+)2=D.(x-1)2+(y+1)2=【答案】C【解析】曲线f(x)=xlnx在点P(1,0)处的切线l方程为x-y-1=0,与坐标轴围成的三角形的外接圆圆心为(,-),半径为,所以方程为(x-)2+(y+)2=,选C.9.已知圆C1:(x+1)2+(y-1)2=1,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程为()A.(x-1)2+(y+1)2=1 B.(x+2)2+(y-2)2=1 C.(x+1)2+(y-1)2=1 D.(x-2)2+(y+2)2=1【答案】D【解析】圆C1:(x+1)2+(y-1)2=1的圆心为(-1,1).圆C2的圆心设为(a,b),C1与C2关于直线x-y-1=0对称,∴解得圆C2的半径为1,∴圆C2的方程为(x-2)2+(y+2)2=1,选D10.若圆的半径为1,圆心在第一象限,且与直线和轴相切,则该圆的标准方程是________.【答案】【解析】由于圆的半径为1且与轴相切,所以可以假设圆心.又圆与直线相切.所以可得.解得,由圆心在第一象限.所以.所以圆的方程为.【考点】1.直线与圆的位置关系.2.直线与圆相切的判定.3.圆的标准方程.11.求半径为4,与圆x2+y2-4x-2y-4=0相切,且和直线y=0相切的圆的方程.【答案】(x-2-2)2+(y+4)2=42或(x-2+2)2+(y+4)2=42【解析】由题意,设所求圆的方程为圆C:(x-a)2+(y-b)2=r2.圆C与直线y=0相切,且半径为4,则圆心C的坐标为C1(a,4)或C2(a,-4).又已知圆x2+y2-4x-2y-4=0的圆心A的坐标为(2,1),半径为3.若两圆相切,则|CA|=4+3=7或|CA|=4①当C1(a,4)时,有(a-2)2+(4-1)2=72或(a-2)2+(4-1)2=12(无解),故可得a=2±2.∴所求圆方程为(x-2-2)2+(y-4)2=42或(x-2+2)2+(y-4)2=42.②当C2(a,-4)时,(a-2)2+(-4-1)2=72或(a-2)2+(-4-1)2=12(无解),故a=2±2.∴所求圆的方程为(x-2-2)2+(y+4)2=42或(x-2+2)2+(y+4)2=42.12.方程x2+y2-6x=0表示的圆的圆心坐标是________;半径是__________.【答案】(3,0),3【解析】(x-3)2+y2=9,圆心坐标为(3,0),半径为3.13.已知圆C关于y轴对称,经过点(1,0)且被x轴分成两段弧长之比为1∶2,则圆C的方程为________.【答案】x2+【解析】由题可知圆心在y轴上,且被x轴所分劣弧所对圆心角为,设圆心(0,b),半径为r,则rsin=1,rcos=|b|,解得r=,|b|=,即b=±.故圆的方程为x2+.14.已知M(-2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程为()A.x2+y2=2B.x2+y2=4C.x2+y2=2(x≠±2)D.x2+y2=4(x≠±2)【答案】D【解析】设P(x,y),则|PM|2+|PN|2=|MN|2,所以x2+y2=4(x≠±2).【误区警示】本题易误选B.错误的根本原因是忽视了曲线与方程的关系,从而导致漏掉了x≠±2. 15.设定点M(-3,4),动点N在圆x2+y2=4上运动,以OM,ON为邻边作平行四边形MONP,则点P的轨迹方程为.【答案】(x+3)2+(y-4)2=4,但应除去两点(-,)和(-,)【解析】设P(x,y),圆上的动点N(x0,y),则线段OP的中点坐标为(,),线段MN的中点坐标为(,),又因为平行四边形的对角线互相平分,所以有可得又因为N(x0,y)在圆上,所以N点坐标应满足圆的方程.即有(x+3)2+(y-4)2=4,但应除去两点(-,)和(-,).16.圆心在y轴上,半径为1,且过点(1,2)的圆的方程为()A.x2+(y-2)2=1B.x2+(y+2)2=1C.(x-1)2+(y-3)2=1D.x2+(y-3)2=1【答案】A【解析】设圆心坐标为(0,b),则由题意知=1,解得b=2,故圆的方程为x2+(y-2)2=1.17.当a为任意实数时,直线(a-1)x-y+a+1=0恒过定点C,则以C为圆心,为半径的圆的方程为()A.x2+y2-2x+4y=0B.x2+y2+2x+4y=0C.x2+y2+2x-4y=0D.x2+y2-2x-4y=0【解析】由(a-1)x-y+a+1=0得(x+1)a-(x+y-1)=0,∴该直线恒过点(-1,2),∴所求圆的方程为(x+1)2+(y-2)2=5.即x2+y2+2x-4y=0.18.设圆C同时满足三个条件:①过原点;②圆心在直线y=x上;③截y轴所得的弦长为4,则圆C的方程是.【答案】(x+2)2+(y+2)2=8或(x-2)2+(y-2)2=8【解析】由题意可设圆心A(a,a),如图,则22+a2=2a2,解得a=±2,r2=2a2=8.所以圆C的方程是(x+2)2+(y+2)2=8或(x-2)2+(y-2)2=8.19.已知点P(a,b)关于直线l的对称点为P′(b+1,a-1),则圆C:x2+y2-6x-2y=0关于直线l对称的圆C′的方程为________.【答案】(x-2)2+(y-2)2=10【解析】由圆C:x2+y2-6x-2y=0得,圆心坐标为(3,1),半径r=,所以对称圆C′的圆心为(1+1,3-1)即(2,2),所以(x-2)2+(y-2)2=10.20.过点A(1,-1),B(-1,1),且圆心在直线x+y-2=0上的圆的方程是 ().A.(x-3)2+(y+1)2=4B.(x+3)2+(y-1)2=4C.(x-1)2+(y-1)2=4D.(x+1)2+(y+1)2=4【答案】C【解析】设圆心C的坐标为(a,b),半径为r.∵圆心C在直线x+y-2=0上,∴b=2-a.∵|CA|2=|CB|2,∴(a-1)2+(2-a+1)2=(a+1)2+(2-a-1)2,∴a=1,b=1,∴r=2,∴圆的方程为(x-1)2+(y-1)2=4.21.在平面直角坐标系中,若圆上存在,两点关于点成中心对称,则直线的方程为 .【答案】【解析】由题意得圆心与点连线垂直于,所以而直线过点,所以直线的方程为【考点】点斜式,圆的几何性质.22.能够把圆:的周长和面积同时分为相等的两部分的函数称为圆的“和谐函数”,下列函数不是圆的“和谐函数”的是()A.B.C.D.【答案】D【解析】只有D答案是偶函数,这个圆的圆心是,则奇函数会是该圆的“和谐函数”.【考点】1.对称性;2.奇偶性.23.已知向量a,b,c满足,,则的最小值为()A.B.C.D.【答案】A【解析】,则,以为原点,为轴建系,则,,即,,设,,,∵,∴,∴,圆心,,,即圆外点与圆上任一点的距离的最小值问题,∴.【考点】1.夹角公式;2.圆的标准方程;3.两点间距离公式.24.已知圆的方程为,点是坐标原点.直线与圆交于两点.(1)求的取值范围;(2)设是线段上的点,且.请将表示为的函数.【答案】(1); (2) ().【解析】(1)根据题意要使直线和圆有两个交点,可转化为直线和圆的方程联立方程,即消去,可得关于的一元二次方程,通过可得方程有两解,即直线和圆有两个交点; (2)由题中条件,即先要求出,进而得出,结合(1)中所求的一元二次方程运用韦达定理即可求出与的关系式,最后由点在直线上,即可将转化为,这样即可得出,注意要由(1)中所求,得到的范围.试题解析:(1)将代入得则,(*) 由得. 所以的取值范围是(2)因为M、N在直线l上,可设点M、N的坐标分别为,,则,,又,由得,,所以由(*)知,, 所以,因为点Q在直线l上,所以,代入可得,由及得,即.依题意,点Q在圆C内,则,所以,于是, n与m的函数关系为 ()【考点】1.直线和圆的位置关系;2.韦达定理的运用;3.点与圆的位置关系25.设椭圆的离心率为,右焦点为,方程的两个实根分别为和,则点()A.必在圆内B.必在圆上C.必在圆外D.以上三种情形都有可能【答案】A【解析】,则,则,由的两根为,则有,,而,∴在圆内.【考点】1.韦达定理;2.利用圆方程判断点与圆的位置关系.26.机器人“海宝”在某圆形区域表演“按指令行走”.如图所示,“海宝”从圆心出发,先沿北偏西方向行走13米至点处,再沿正南方向行走14米至点处,最后沿正东方向行走至点处,点、都在圆上.则在以圆心为坐标原点,正东方向为轴正方向,正北方向为轴正方向的直角坐标系中圆的方程为 .【答案】【解析】如图所示:设OA与正北方向的夹角为θ,则由题意可得sinθ=,OA=13,∴cos∠AOD=sinθ=,OD=OA•cos∠AOD=13×=12,AD=OA•sin∠AOD=13×=5,∴BD=14-AD=9,∴OB2=OD2+BD2=144+81=225,故圆O的方程为 x2+y2=225,即为所求。
高一数学圆的标准方程与一般方程试题答案及解析1.对于a∈R,直线(a-1)x-y+a+1=0恒过定点C,则以C为圆心,以为半径的圆的方程为()A.x2+y2-2x+4y=0B.x2+y2+2x+4y=0C.x2+y2+2x-4y=0D.x2+y2-2x-4y=0【答案】C【解析】将直线整理为,联立,可得直线恒过定点P(-1,2)因此以P为圆心,为半径的圆的方程是化成一般式可得x2+y2+2x-4y=0故选:C【考点】圆的方程2.已知圆C的方程(1)若点在圆C的内部,求m的取值范围;(2)若当时①设为圆C上的一个动点,求的最值;.②问是否存在斜率是1的直线l,使l被圆C截得的弦AB,以AB为直径的圆经过原点,若存在,写出直线l的方程;若不存在,说明理由.【答案】(1)m>-5 (2)①4 ②存在直线l,其方程为y=x-4或y=x+1【解析】(1)根据圆C的标准方程可得m>-5.再根据点A(m,-2)在圆C的内部,可得,由此求得m的范围.(2)①表示圆C上的点P(x,y)到点H(4,2)的距离的平方,求得|HC|=5,故的最大值为HC加上半径后的平方,的最小值为HC减去半径后的平方.②假设存在直线l满足题设条件,设l的方程为y=x+m,则AB中点N是两直线x-y+m=0与y+2=-(x-1)的交点,即N(−),以AB为直径的圆经过原点,求得|AN|=,|ON|=,由|AN|=|ON|,解得m的值,可得结论.试题解析:(1),∴m>-5.(2)①当m=4时,圆C的方程即,而表示圆C上的点P (x,y)到点H(4,2)的距离的平方,由于|HC|==5,故的最大值为(5+3)2=64,的最小值为(5-3)2=4.②法一:假设存在直线l满足题设条件,设l的方程为y=x+m,圆C化为,圆心C (1,-2),则AB中点N是两直线x-y+m=0与y+2=-(x-1)的交点即N,以AB为直径的圆经过原点,∴|AN|=|ON|,又CN⊥AB,|CN|=,∴|AN|=.又|ON|=由|AN|=|ON|,解得m=-4或m=1.∴存在直线l,其方程为y=x-4或y=x+1.法二:假设存在直线l,设其方程为:由得:①设A(),B()则:∴又∵OA⊥OB∴∴解得b=1或把b=1和分别代入①式,验证判别式均大于0,故存在b=1或∴存在满足条件的直线方程是:【考点】直线与圆的位置关系;点与圆的位置关系.3.已知曲线C:(1)当为何值时,曲线C表示圆;(2)在(1)的条件下,若曲线C与直线交于M、N两点,且,求的值.(3)在(1)的条件下,设直线与圆交于,两点,是否存在实数,使得以为直径的圆过原点,若存在,求出实数的值;若不存在,请说明理由.【答案】(1) (2)(3)存在,【解析】(1)根据圆的一般式可知, ,可得范围;(2)将(1)中圆变形为标准方程,可知存在于半径中,所以根据圆中,先求出圆心到直线的距离,即可求半径得.(3)假设存在,则有,设出两点坐标,可得.根据直线与圆的位置关系是相交,所以联立后首先根据初步判断的范围,而后利用根与系数的关系用表示出,将其带入解之,如有解且在的范围内,则存在,否则不存在.(1)由,得.(2),即,所以圆心,半径,圆心到直线的距离.又,在圆中,即,.(3)假设存在实数使得以为直径的圆过原点,则,所以.设,则有,即.由得,,即,又由(1)知,故根据根与系数的关系知:,故存在实数使得以为直径的圆过原点,【考点】圆的一般方程的判断,直线与圆的位置关系的应用, 的使用.4.求圆心在直线上,与轴相切,且被直线截得的弦长为的圆的方程.【答案】或【解析】设圆心,由题意可得半径,求出圆心到直线的距离d,再利用垂径定理,解得的值,从而得到圆心坐标和半径,由此求出圆的方程.试题解析:解:设所求圆的圆心为,半径为,依题意得:且,(2分)圆心到直线的距离,(4分)由“,,半弦长”构成直角三角形,得,(6分)解得:,(7分)当时,圆心为,半径为,所求圆的方程为;当时,圆心为,半径为,所求圆的方程为;(11分)综上所述,所求圆的方程为或.(12分)【考点】求圆的方程5.已知圆经过点和,且圆心在直线上.(1)求圆的方程;(2)若点为圆上任意一点,求点到直线的距离的最大值和最小值.【答案】(1);(2).【解析】(1)求圆的方程只要找出圆心和半径即可,本题圆心为线段AB的中垂线和已知直线x-y=0的交点,求出圆心后再求出半径即可;(2)圆上点P到直线的距离最大值为圆心到直线距离加半径.试题解析:(1) 的中点坐标为,∴圆心在直线上, 1分又知圆心在直线上,∴圆心坐标是,圆心半径是, 4分∴圆方程是; 7分(2)设圆心到直线的距离,∴直线与圆相离, 9分∴点到直线的距离的最大值是, 12分最小值是. 15分【考点】圆的方程,圆的性质,点到直线距离.6.已知半径为3的圆与轴相切,圆心在直线上,则此圆的方程为 .【答案】或【解析】依题意设圆心为,因为圆与轴相切,所以,所以。
第二章直线和圆的方程2.4圆的方程2.4.1圆的标准方程例1求圆心为(2,3)A -,半径为5的圆的标准方程,并判断点1(5,7)M -,2(2,1)M --是否在这个圆上.分析:根据点的坐标与圆的方程的关系,只要判断一个点的坐标是否满足圆的方程,就可以得到这个点是否在图上.解:圆心为(2,3)A -,半径为5的圆的标准方程是22(2)(3)25x y -++=把点1(5,7)M -的坐标代入方程22(2)(3)25x y -++=的左边,得22(52)(73)25-+-+=,左右两边相等,点1M 的坐标满足圆的方程,所以点1M 在这个圆上.把点2(2,1)M --的坐标代入方程22(2)(3)25x y -++=的左边,得22(22)(13)20--+-+=,左右两边不相等,点2M 的坐标不满足圆的方程,所以点2M 不在这个圆上(图2.4-2).图2.4-2例2ABC 的三个顶点分别是(5,1)A ,(7,3)B -,(2,8)C -,求ABC 的外接圆的标准方程.分析:不在同一条直线上的三个点可以确定一个圆,三角形有唯一的外接圆.显然已知的三个点不在同一条直线上.只要确定了a ,b ,r ,圆的标准方程就确定了.解:设所求的方程是222()()x a y b r -+-=.①因为(5,1)A ,(7,3)B -,(2,8)C -三点都在圆上,所以它们的坐标都满足方程①.于是222222222(5)(1),(7)(3),(2)(8),a b r a b r a b r ⎧-+-=⎪-+--=⎨⎪-+--=⎩即22222222210226,14658,41668,a b a b r a b a b r a b a b r ⎧+--+=⎪+-++=⎨⎪+-++=⎩观察上面的式子,我们发现,三式两两相减,可以消去2a ,2b ,2r ,得到关于a ,b 的二元一次方程组28,1.a b a b -=⎧⎨+=-⎩解此方程组,得2,3.a b =⎧⎨=-⎩代入222(5)(1)a b r -+-=,得225r =.所以,ABC 的外接圆的标准方程是22(2)(3)25x y -++=.例3已知圆心为C 的圆经过(1,1)A ,(2,2)B -两点,且圆心C 在直线:10l x y -+=,求此圆的标准方程.分析:设圆心C 的坐标为(,)a b .由已知条件可知,||||CA CB =,且10a b -+=.由此可求出圆心坐标和半径.另外,因为线段AB 是圆的一条弦,根据平面几何知识,AB 的中点与圆心C 的连线垂直于AB ,由此可得到另一种解法.解法1:设圆心C 的坐标为(,)a b .因为圆心C 在直线:10l x y -+=上,所以10a b -+=.①因为A ,B 是圆上两点,所以||||CA CB ==,即330a b --=②由①②可得3a =-,2b =-.所以圆心C 的坐标是(3,2)--.圆的半径||5r AC ===.所以,所求圆的标准方程是22(3)(2)25x y +++=.解法2:如图2.4-3,设线段AB 的中点为D .由A ,B 两点的坐标为(1,1),(22)-,可得点D 的坐标为31,22⎛⎫- ⎪⎝⎭,直线AB 的斜率为21321AB k --==--.因此,线段AB 的垂直平分线l '的方程是113232y x ⎛⎫+=- ⎪⎝⎭,即330x y --=.由垂径定理可知,圆心C 也在线段AB 的垂直平分线上,所以它的坐标是方程组330,10x y x y --=⎧⎨-+=⎩的解.解这个方程组,得3,2.x y =-⎧⎨=-⎩所以圆心C 的坐标是(3,2)--.圆的半径||5r AC ===.所以,所求圆的标准方程是22(3)(2)25x y +++=.图2.4-3练习1.写出下列圆的标准方程.(1)圆心为()3,4C -,半径是;(2)圆心为()8,3C -,且经过点()5,1M --.【答案】(1)(x +3)2+(y ﹣4)2=5.(2)(x +8)2+(y ﹣3)2=25.【解析】【分析】(1)根据圆心和半径,直接写出圆的标准方程.(2)先求出圆的半径,可得圆的标准方程.【详解】解:(1)∵圆心在C (﹣3,4)x +3)2+(y ﹣4)2=5.(2)∵圆心在C (﹣8,3),且经过点M (﹣5,﹣1),故半径为MC ==5,故圆的标准方程为(x +8)2+(y ﹣3)2=25.2.已知圆的标准方程是()()223216x y -++=,借助计算工具计算,判断下列各点在圆上、圆外,还是在圆内.(1)()14.30, 5.72M -;(2)()25.70,1.08M ;(3)()33,6M -.【答案】(1)1M 在圆内;(2)2M 在圆外;(3)3M 在圆上.【解析】【分析】分别将三个点代入方程,和等号右边比较即可判断.【详解】(1)22(4.303)(5.722)15.528416-+-+=< ,1M ∴在圆内;(2)22(5.703)(1.082)16.776416-++=> ,2M ∴在圆外;(3)22(33)(62)16-+-+= ,3M ∴在圆上.3.已知()14,9P ,()26,3P 两点,求以12PP 为直径的圆的方程,并判断点()6,9M ,()3,3N ,()5,3Q 与圆的位置关系.【答案】点M 在圆上,点N 在圆外,点Q 在圆内【解析】【分析】先求出圆心和半径,得到圆方程,再计算点到圆心的距离,与半径作比较得到答案.【详解】由线段的中点坐标公式,求得圆心()5,6C .直径12PP ==.故所求圆的方程为()()225610x y -+-=.CM r == ,∴点M在圆上;CN r => ,∴点N 在圆外;3CQ r =< ,∴点Q 在圆内.综上:点M 在圆上,点N 在圆外,点Q 在圆内【点睛】本题考查了点和圆的位置关系,属于基础题型.4.已知AOB 的三个顶点分别是点()4,0A ,()0,0O ,()0,3B ,求AOB 的外接圆的标准方程.【答案】()22325224x y ⎛⎫-+-= ⎪⎝⎭【解析】【分析】由题意可确定圆的直径为AB ,根据中点坐标公式求出圆心坐标,结合两点距离公式求出半径即可.【详解】由题意知,AB 为圆的直径,设圆心为()C a b ,,则AB 中点即为3(2)2C ,,所以半径为52OC =,故外接圆的标准方程为:22325(2)()24x y -+-=.2.4.2圆的一般方程例4求过三点(0,0)O ,1(1,1)M ,2(4,2)M 的圆的方程,并求这个圆的圆心坐标和半径.分析:将点O ,1M ,2M 的坐标分别代入圆的一般方程,可得一个三元一次方程组,解方程组即可求出圆的方程.解:设圆的方程是220x y Dx Ey F ++++=.①因为O ,1M ,2M 三点都在圆上,所以它们的坐标都是方程①的解.把它们的坐标依次代入方程①,得到关于D ,E ,F 的一个三元一次方程组0,20,42200.F D E F D E F =⎧⎪+++=⎨⎪+++=⎩解这个方程组,得8,6,0.D E F =-⎧⎪=⎨⎪=⎩所以,所求圆的方程是22860x y x y +-+=.由前面的讨论可知,所求圆的圆心坐标是(4,3)-,半径5r ==.例5已知线段AB 的端点B 的坐标是(4,3),端点A 在圆22(1)4x y ++=上运动,求线段AB 的中点M 的轨迹方程.分析:如图2.4-4,点A 运动引起点M 运动,而点A 在已知圆上运动,点A 的坐标满足方程22(1)4x y ++=.建立点M 与点A 坐标之间的关系,就可以利用点A 的坐标所满足的关系式得到点M 的坐标满足的关系式,求出点M的轨迹方程.图2.4-4解:设点M 的坐标是(),x y ,点A 的坐标是()00,x y ,由于点B 的坐标是(4,3),且M 是线段AB 的中点,所以042x x +=,032y y +=.于是有024x x =-,023y y =-.①因为点A 在圆22(1)4x y ++=上运动,所以点A 的坐标满足圆的方程,即()220014x y ++=.②把①代入②,得22(241)(23)4x y -++-=,整理,得2233122x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭这就是点M 的轨迹方程,它表示以33,22⎛⎫ ⎪⎝⎭为圆心,半径为1的圆.练习5.求下列各圆的圆心坐标和半径.(1)2260x y x +-=;(2)2220x y by ++=;(3)222230x y ax a +--+=.【答案】(1)圆心为(30),,半径为3;(2)圆心为(0)b -,,半径为b ;(3)圆心为()a ,半径为a .【解析】【分析】结合配方法将圆的一般方程化为标准方程,再求出圆心和半径即可.【详解】(1)方程222260(3)9x y x x y +-=⇒-+=,所以圆心为(30),,半径为3;(2方程2222220()x y by x y b b ++=⇒++=,所以圆心为(0)b -,,半径为b ;(3)方程222222230()()x y ax a x a y a +--+=⇒-+-=,所以圆心为()a ,半径为a ;6.判断下列方程分别表示什么图形,并说明理由.(1)220x y +=;(2)222460x y x y +-+-=;(3)22220x y ax b ++-=.【答案】答案见解析【解析】【分析】(1)由方程可得0,0x y ==;(2)化简可得()()221211x y -++=可判断;(3)化简可得()2222x a y a b ++=+,分0a b ==和0a ≠或0b ≠时讨论可得.【详解】(1) 220x y +=,0,0x y ∴==,故220x y +=表示点()0,0;(2)222460x y x y +-+-=可化为()()221211x y -++=,所以方程222460x y x y +-+-=表示以()1,2-为半径的圆;(3)22220x y ax b ++-=可化为()2222x a y a b ++=+,当0a b ==时,方程22220x y ax b ++-=表示点()0,0,当0a ≠或0b ≠时,方程22220x y ax b ++-=表示以(),0a -为半径的圆.7.如图,在四边形ABCD 中,6AB =,3CD =,且//AB CD ,AD BC =,AB 与CD 间的距离为3.求等腰梯形ABCD 的外接圆的方程,并求这个圆的圆心坐标和半径.【答案】圆心坐标为30,8⎛⎫ ⎪⎝⎭,半径长为8.【解析】【分析】设所求圆的方程为220x y Dx Ey F ++++=,将A,B,C 三点坐标代入求解即可.【详解】由题意可知A (-3,0),B (3,0),C 3,32⎛⎫ ⎪⎝⎭设所求圆的方程为220x y Dx Ey F ++++=,则9309309393042D F D F D E F ⎧⎪-+=⎪++=⎨⎪⎪++++=⎩.解得0349D E F =⎧⎪⎪=-⎨⎪=-⎪⎩,故所求圆的方程为223904x y y +--=,其圆心坐标为30,8⎛⎫ ⎪⎝⎭,3658=.习题2.4复习巩固8.求下列各圆的圆心坐标和半径,并画出它们的图形.(1)22250x y x +--=;(2)222440x y x y ++--=;(3)2220x y ax ++=;(4)222220x y by b +--=.【答案】(1)圆心(10),,半径r =,图见解析;(2)圆心(12)-,,半径3r =,图见解析;(3)圆心(0)a -,,半径r a =,图见解析;(4)圆心(0)b ,,半径r =,图见解析;【解析】【分析】结合配方法将圆的一般方程化为标准方程,再求出圆心和半径,进而画出图形即可.【详解】(1)方程2222250(1)6x y x x y +--=⇒-+=,所以圆心为(10),,如图;(2方程22222440(1)(2)9x y x y x y ++--=⇒++-=,所以圆心为(12)-,,半径为3,如图;(3)方程2222220()x y ax x a y a ++=⇒++=,0a ≠所以圆心为(0)a -,,半径为a ;不妨设=2a ,如图;(4)方程222222220()3x y by b x y b b +--=⇒+-=,0b ≠所以圆心为(0)b ,;不妨设=1b ,如图;9.求下列各圆的方程,并面出图形.(1)圆心为点()8,3C -,且过点()5,1A ;(2)过()1,5A -,()5,5B ,()6,2C -三点.【答案】(1)22(8)(3)25x y -++=(图见解析)(2)2242200x y x y +---=(图见解析)【解析】【分析】(1)求出半径,利用圆的标准方程写出即可.(2)设出圆的一般方程,将三点代入解出即可.【详解】(1)由题意知半径5r ==,所以圆的方程为:22(8)(3)25x y -++=.(2)设圆的一般方程为:220x y Dx Ey F ++++=.将()1,5A -,()5,5B ,()6,2C -代入得:1+255042525550236462020D E F D D E F E D E F F -++==-⎧⎧⎪⎪++++=⇒=-⎨⎨⎪⎪++-+==-⎩⎩所以圆的方程为:2242200x y x y +---=.10.已知圆C 经过原点和点()2,1A ,并且圆心在直线:210l x y --=上,求圆C 的标准方程.【答案】22612951020x y ⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭【解析】【分析】设圆C 的标准方程为()()222x a y b r -+-=,根据题意得到不等式组,解之即可求出结果.【详解】设圆C 的标准方程为()()222x a y b r -+-=,由题意可得()()()()2222220021210a b r a b r a b ⎧-+-=⎪⎪-+-=⎨⎪--=⎪⎩,解得2651102920a b r ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,因此22612951020x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭.11.圆C 的圆心在x 轴上,并且过()1,1A -和()1,3B 两点,求圆C 的方程.【答案】()22210x y -+=【解析】【分析】由题意,设圆心坐标和半径表示圆的标准方程,结合待定系数法即可.【详解】设圆C 的圆心坐标为()C a ,0,半径为r ,则圆C 的标准方程为:222()x a y r -+=,有{222222(1)1(1)3a r a r --+=-+=,解得2210a r ==,,所以圆C 的标准方程为:22(2)10x y -+=综合运用12.已知圆的一条直径的端点分别是A (x 1,y 1),B (x 2,y 2).求证:此圆的方程是(x –x 1)(x –x 2)+(y –y 1)(y –y 2)=0.【答案】证明见解析【解析】【分析】由题意求得圆心和半径,可得圆的标准方程,化简即可.【详解】∵圆的一条直径的端点分别是A (x 1,y 1),B (x 2,y 2),∴圆心为C (122x x +,122y y +),半径为2AB =∴此圆的方程是2122x x x +⎛⎫- ⎪⎝⎭+()()22212121224x x y y y y y -+-+⎛⎫-= ⎪⎝⎭,即x 2–(x 1+x 2)x +()2124x x ++y 2–(y 1+y 2)y +()()()22212121244y y x x y y +-+-=,即x 2–(x 1+x 2)x +x 1•x 2+y 2–(y 1+y 2)y +y 1•y 2=0,即(x –x 1)(x –x 2)+(y –y 1)(y –y 2)=0.【点睛】本题主要考查圆的标准方程的特征,属于基础题.13.平面直角坐标系中有()0,1A ,()2,1B ,()3,4C ,()1,2D -四点,这四点是否在同一个圆上?为什么?【答案】四点在同一个圆上(证明见解析)【解析】【分析】以、、A B C 三点,求出圆的方程,再将点D 代入即可得出答案.【详解】设过、、A B C 三点的圆的一般方程为220x y Dx Ey F ++++=.将、、A B C 三点代入得:1+02412069163405E F D D E F E D E F F +==-⎧⎧⎪⎪++++=⇒=-⎨⎨⎪⎪++++==⎩⎩.所以圆的一般方程为222650x y x y +--+=.将点()1,2D -代入得:22(1)22(1)6250-+-⨯--⨯+=,满足方程.所以四点在同一个圆上.14.已知等腰三角形ABC 的一个顶点为()4,2A ,底边的一个端点为()3,5B ,求底边的另一个端点C 的轨迹方程,并说明它是什么图形.【答案】22(4)(2)10x y -+-=(去掉(3,5),(5,-1)两点);表示是以()4,2为圆心,半径,且去掉(3,5),(5,-1)两点的圆【解析】【分析】根据等腰三角形和已知顶点A (4,2),一个端点B (3,5),利用腰相等且能构成三角形即可求端点C 的轨迹方程;【详解】由题意知:设另一个端点(,)C x y,腰长为r ==,∴C 的轨迹方程:22(4)(2)10x y -+-=,又由A 、B 、C 构成三角形,即三点不可共线,∴需要去掉重合点(3,5),反向共线点(5,-1),即表示是以()4,2为圆心,以半径,且去掉(3,5),(5,-1)两点的圆.15.长为2a 的线段AB 的两个端点A 和B 分别在x 轴和y 轴上滑动,求线段AB 的中点的轨迹方程,并说明轨迹的形状.【答案】轨迹方程为:x 2+y 2=a 2(a >0).表示圆心在原点半径为a 的圆.【解析】【分析】设AB 的中点坐标为(x ,y ),当A 、B 均不与原点重合时,由直角三角形虚部的中线等于斜边的一半可得AB 中点轨迹,验证A 、B 有一点与原点重合时成立得答案.【详解】解:设线段AB 的中点P (x ,y ),若A 、B 不与原点重合时,则△AOB 是直角三角形,且∠O 为直角,则OP 12=AB ,而AB =2a ,∴OP =a ,即P 的轨迹是以原点为圆心,以a 为半径的圆,方程为x 2+y 2=a 2(a >0);若A 、B 有一个是原点,同样满足x 2+y 2=a 2(a >0).故线段AB 的中点的轨迹方程为:x 2+y 2=a 2(a >0).表示圆心在原点半径为a 的圆.拓广探索16.已知动点M 与两个定点()0,0O ,()3,0A 的距离的比为12,求动点M 的轨迹方程,并说明轨迹的形状.【答案】22(1)4x y ++=,以(1,0)-为圆心2为半径的圆【解析】【分析】设出点M ,根据题意列出等式,化简即为答案.【详解】设点(,)M x y .则12MO MA==,化简得:2222230(1)4x y x x y ++-=⇒++=为以(1,0)-为圆心2为半径的圆.17.在半面直角坐标系中,如果点P 的坐标(),x y 满足cos sin x a r y b r θθ=+⎧⎨=+⎩,其中θ为参数.证明:点P 的轨迹是圆心为(),a b ,半径为r 的圆.【答案】证明见解析.【解析】【分析】将参数方程化为普通方程可证得结果.【详解】由cos sin x a r y b r θθ=+⎧⎨=+⎩可得cos sin x ary b r θθ-⎧=⎪⎪⎨-⎪=⎪⎩,又因为22cos sin 1θθ+=,所以221x a y b r r --⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,即222()()x a y b r -+-=,所以点P 的轨迹是圆心为(,)a b ,半径为r 的圆.。