二次函数练习
- 格式:doc
- 大小:82.50 KB
- 文档页数:2
求二次函数的解析式 专题练习题姓名: 班级:1.如图,在平面直角坐标系xOy 中,正方形OABC 的边长为2,点A ,C 分别在y 轴的负半轴和x 轴的正半轴上,抛物线y =ax 2+bx +c 经过点A ,B 和D(4,-),求抛物线的解析式.232.如图,二次函数y =ax 2+bx +c 的图象与x 轴交于A ,B 两点,其中点A(-1,0),点C(0,5),D(1,8)都在抛物线上,M 为抛物线的顶点.(1)求抛物线的函数解析式;(2)求直线CM 的解析式;(3)求△MCB 的面积.3.已知一个二次函数,当x =1时,y 有最大值8,其图象的形状、开口方向与抛物线y =-2x 2相同,则这个二次函数的解析式是( )A .y =-2x 2-x +3B .y =-2x 2+4C .y =-2x 2+4x +8D .y =-2x 2+4x +64.已知某二次函数的最大值为2,图象的顶点在直线y =x +1上,并且图象经过点(2,1),求二次函数的解析式. 5.已知二次函数y =ax 2+bx +c 的x 与y 的部分对应值如下表:x … -4 -3 -2 -10 …y …-5 0 3 4 3 …(1)求此二次函数的解析式;(2)画出此函数图象;(3)结合函数图象,当-4<x≤1时,写出y的取值范围.6.已知一个二次函数的图象经过点A(-1,0),B(3,0)和C(0,-3)三点;(1)求此二次函数的解析式;(2)对于实数m,点M(m,-5)是否在这个二次函数的图象上?说明理由.7.已知抛物线在x轴上截得的线段长是4,对称轴是x=-1,且过点(-2,-6),求该抛物线的解析式.8.已知y=x2+bx+c的图象向右平移2个单位长度,再向下平移3个单位长度,得到的图象对应的函数解析式为y=x2-2x-3.(1)b=____,c=____;(2)求原函数图象的顶点坐标;(3)求两个图象顶点之间的距离.9.如图,已知抛物线y=-x2+bx+c的对称轴为直线x=1,且与x轴的一个交点为(3,0),那么它对应的函数解析式.10.如图,抛物线与x 轴交于A ,B 两点,与y 轴交于C 点,点A 的坐标为(2,0),点C 的坐标为(0,3),它的对称轴是直线x =-.12(1)求抛物线的解析式;(2)M 是线段AB 上的任意一点,当△MBC 为等腰三角形时,求M 点的坐标.答案:1. 解:y =x 2-x -216132. 解:(1)y =-x 2+4x +5(2)y =-x 2+4x +5=-(x -2)2+9,则M 点坐标为(2,9),可求直线MC 的解析式为y =2x +5(3)把y =0代入y =2x +5得2x +5=0,解得x =-,则E 点坐标为(-,0),5252把y =0代入y =-x 2+4x +5得-x 2+4x +5=0,解得x 1=-1,x 2=5,则B 点坐标为(5,0),所以S △MCB =S △MBE -S △CBE =××9-××5=1512152121523. D4. 解:∵函数的最大值是2,则此函数顶点的纵坐标是2,又顶点在y =x +1上,那么顶点的横坐标是1,设此函数的解析式是y =a(x -1)2+2,再把(2,1)代入函数中可得a(2-1)2+2=1,解得a =-1,故函数解析式是y =-(x -1)2+2,即y =-x 2+2x +15. 解:(1)由表知,抛物线的顶点坐标为(-1,4),设y =a(x +1)2+4,把(0,3)代入得a(0+1)2+4=3,解得a =-1,∴抛物线的解析式为y =-(x +1)2+4,即y =-x 2-2x +3 (2)图象略(3)-5<y≤46. 解:(1)设二次函数的解析式为y =a(x +1)(x -3),由于抛物线的图象经过C(0,-3),则有-3=a(0+1)(0-3),解得a =1,∴二次函数的解析式为y =(x +1)(x -3),即y =x 2-2x -3(2)由(1)可知y =x 2-2x -3=(x -1)2-4,则y 的最小值为-4>-5,因此无论m 取何值,点M 都不在这个二次函数的图象上7. 解:∵抛物线的对称轴为x =-1,在x 轴上截得的线段长为4,∴抛物线与x 轴的交点坐标为(-3,0),(1,0),设抛物线解析式为y =a(x +3)(x -1),把(-2,-6)代入得a ·(-2+3)·(-2-1)=-6,解得a =2,所以抛物线解析式为y =2(x +3)(x -1),即y =2x 2+4x -68. (1) 2 0(2)(-1,-1) (3)=22+32139. y =-x 2+2x +310. 解:(1)y =-x 2-x +31212(2)由y =0得-(x +)2+=0,解得x 1=2,x 2=-3,1212258∴B(-3,0).①当CM =BM 时,∵BO=CO =3,即△BOC 是等腰直角三角形,∴当M 点在原点O 时,△MBC 是等腰三角形,∴M 点坐标为(0,0);②当BC=BM时,在Rt△BOC中,BO=CO=3,由勾股定理得OC2+OB2222BC=3,∴BM=3,∴M点坐标(3-3,0).2综上所述,M点坐标为(3-3,0)或(0,0)。
《二次函数》同步综合练习卷一.选择题1.下列函数中属于二次函数的是()A.y=x(x+1)B.x2y=1C.y=2x2﹣2(x2+1)D.y=2.若b>0时,二次函数y=ax2+bx+a2﹣1的图象如下列四图之一所示,根据图象分析,则a的值等于()A.﹣1 B.1 C.D.3.设函数y=kx2+(3k+2)x+1,对于任意负实数k,当x<m时,y随x的增大而增大,则m的最大整数值为()A.2 B.﹣2 C.﹣1 D.04.若二次函数y=x2﹣6x+c的图象过A(﹣1,a),B(2,b),C(5,c),则下列正确的是()A.a>b>c B.a>c>b C.b>a>c D.c>a>b5.已知抛物线c:y=x2+2x﹣3,将抛物线c平移得到抛物线c′,如果两条抛物线,关于直线x=1对称,那么下列说法正确的是()A.将抛物线c沿x轴向右平移个单位得到抛物线c′B.将抛物线c沿x轴向右平移4个单位得到抛物线c′C.将抛物线c沿x轴向右平移个单位得到抛物线c′D.将抛物线c沿x轴向右平移6个单位得到抛物线c′6.当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.﹣1 B.2 C.0或2 D.﹣1或27.已知二次函数y=ax2+bx+c(a≠0)的图象经过点A(1,0),B(0,﹣3),且对称轴为x=2,则这条抛物线的顶点坐标为()A.(2,3)B.(2,1)C.(﹣2,1)D.(2,﹣1)8.用配方法将y=x2﹣6x+11化成y=a(x﹣h)2+k的形式为()A.y=(x+3)2+2 B.y=(x﹣3)2﹣2 C.y=(x﹣6)2﹣2 D.y=(x﹣3)2+29.已知抛物线y=ax2+bx+c上部分点的横坐标x与纵坐标y的对应值如表:有以下几个结论:①抛物线y=ax2+bx+c的开口向下;②抛物线y=ax2+bx+c的对称轴为直线x=﹣1;③方程ax2+bx+c=0的根为0和2;④当y>0时,x的取值范围是x<0或x>2;其中正确的是()A.①④B.②④C.②③D.③④10.如表是一组二次函数y=x2+x﹣1的自变量x与函数值y的对应值.由上表可知,方程x2+x﹣1=0的一个近似解是()A.0.4 B.0.5 C.0.6 D.0.811.如图是抛物线y=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,4),与x轴的一个交点是B (3,0),下列结论:①abc>0;②2a+b=0;③方程ax2+bx+c=4有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣2.0);⑤x(ax+b)≤a+b,其中正确结论的个数是()A.4个B.3个C.2个D.1个12.如图,半圆O的直径AB=4,与半圆O内切的动圆O1与AB切于点M,设⊙O1的半径为y,AM=x,则y关于x 的函数关系式是()A.y=﹣x2+x B.y=﹣x2+x C.y=﹣x2﹣x D.y=x2﹣x13.跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m二.填空题14.有下列函数:①y=1﹣x2;②y=;③y=x(x﹣3);④y=ax2+bx+c;⑤y=2x+1.其中,是二次函数的有(填序号)15.二次函数y1=mx2、y2=nx2的图象如图所示,则m n(填“>”或“<”).16.若抛物线y=ax2﹣x+c与y=2(x﹣3)2+1对称轴相同,且两抛物线的顶点相距3个单位长度,则c的值为.17.已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论正确的有.①abc>0②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3③2a+b=0④当x>0时,y随x的增大而减小18.已知点(﹣1,m)、(2,n)在二次函数y=ax2﹣2ax﹣1的图象上,如果m>n,那么a0(用“>”或“<”连接).19.将抛物线y=﹣3x2向左平移一个单位后,得到的抛物线解析式是.20.函数y=﹣(x﹣1)2﹣7的最大值为.21.有一个二次函数的图象,甲、乙、丙三位同学分别说出了它的特点:甲:对称轴是直线x=2;乙:与x轴两个交点的横坐标都是整数;丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形的面积为3.请你写出满足上述全部特点的一个二次函数解析式.22.将二次函数y=x2+6x+5化为y=a(x﹣h)2+k的形式为.23.已知抛物线y=ax2+bx+c的图象与x轴交于点A(m﹣4,0)和B(m,0),与直线y=﹣x+p相交于点A和C (2m﹣4,m﹣6),抛物线y=ax2+bx+c与y轴交于点D,点P在抛物线的对称轴上,连PA,PD,当PA+PD的长最短时,点P的坐标为.24.试写出一个二次函数关系式,使它对应的一元二次方程的一个根为0,另一个根在1到2之间:.25.如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的说法有.(请填写正确说法的番号)26.某快递公司十月份快递件数是10万件,如果该公司第四季度每个月快递件数的增长率都为x(x>0),十二月份的快递件数为y万件,那么y关于x的函数解析式是.27.有一座抛物线形拱桥,正常水位时桥下水面宽度为20米,拱顶距离水面4米.设正常水位时桥下的水深为2米,为保证过往船只顺利航行,桥下水面的宽度不得小于18米,则水深超过米时就会影响过往船只在桥下的顺利航行.28.如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE ﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ 的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段),则下列结论:①AD=BE=5;②当0<t≤5时,y=t2;③cos∠ABE=;④当t=秒时,△ABE∽△QBP;⑤当△BPQ的面积为4cm2时,时间t的值是或;其中正确的结论是.参考答案一.选择题1.解:A、y=x2+x,是二次函数;B、y=,不是二次函数;C、y=﹣2,不是二次函数;D、不是整式,不是二次函数;故选:A.2.解:因为前两个图象的对称轴是y轴,所以﹣=0,又因为a≠0,所以b=0,与b>0矛盾;第三个图的对称轴﹣<0,a>0,则b>0,正确;第三个图的对称轴﹣<0,a<0,则b<0,故与b>0矛盾.由于第三个图过原点,所以将(0,0)代入解析式,得:a2﹣1=0,解得a=±1,由于开口向上,a=1.故选:B.3.解:∵对于任意负实数k,当x<m时,y随x的增大而增大,∵k为负数,即k<0,∴函数y=kx2+(3k+2)x+1表示的是开口向下的二次函数,∴在对称轴的左侧,y随x的增大而增大,∵对于任意负实数k,当x<m时,y随x的增大而增大,∴x=﹣=﹣∴m≤﹣=.∵k<0,∴﹣>0∴,∵m≤对一切k<0均成立,∴m≤,∴m的最大整数值是m=﹣2.故选:B.4.解:∵二次函数y=x2﹣6x+c,∴该二次函数的抛物线开口向上,且对称轴为:x=3.∵点A(﹣1,a),B(2,b),C(5,c)都在二次函数y=x2﹣6x+c的图象上,而三点横坐标离对称轴x=3的距离按由远到近为:(﹣1,a)、(5,c)、(2,b),∴a>c>b,故选:B.5.解:∵抛物线C:y=x2+2x﹣3=(x+1)2﹣4,∴抛物线对称轴为x=﹣1.∴抛物线与y轴的交点为A(0,﹣3).则与A点以对称轴对称的点是B(2,﹣3).若将抛物线C平移到C′,并且C,C′关于直线x=1对称,就是要将B点平移后以对称轴x=1与A点对称.则B点平移后坐标应为(4,﹣3)..因此将抛物线C向右平移4个单位.故选:B.6.解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,故选:D.7.解:根据题意得:,解得:a=﹣1,b=4,c=﹣3,∴抛物线解析式为y=﹣x2+4x﹣3=﹣(x﹣2)2+1,则抛物线顶点坐标为(2,1).故选:B.8.解:y=x2﹣6x+11,=x2﹣6x+9+2,=(x﹣3)2+2.故选:D.9.解:设抛物线的解析式为y=ax2+bx+c,将(﹣1,3)、(0,0)、(3,3)代入得:,解得:,∴抛物线的解析式为y=x2﹣2x=x(x﹣2)=(x﹣1)2﹣1,由a=1>0知抛物线的开口向上,故①错误;抛物线的对称轴为直线x=1,故②错误;当y=0时,x(x﹣2)=0,解得x=0或x=2,∴方程ax2+bx+c=0的根为0和2,故③正确;当y>0时,x(x﹣2)>0,解得x<0或x>2,故④正确;故选:D.10.解:观察表格得:方程x2+x﹣1=0的一个近似根为0.6,故选:C.11.解:由图象可知,抛物线开口向下,则a<0,c>0∵抛物线的顶点坐标是A(1,4)∴抛物线对称轴为直线x=﹣∴b=﹣2a∴b>0,则①错误,②正确;方程ax2+bx+c=4方程的解,可以看做直线y=4与抛物线y=ax2+bx+c的交点的横坐标.由图象可知,直线y=4经过抛物线顶点,则直线y=4与抛物线有且只有一个交点.则方程ax2+bx+c=4有两个相等的实数根,③正确;由抛物线对称性,抛物线与x轴的另一个交点是(﹣1.0)则④错误;不等式x(ax+b)≤a+b可以化为ax2+bx+c≤a+b+c∵抛物线顶点为(1,4)∴当x=1时,y最大=a+b+c∴ax2+bx+c≤a+b+c故⑤正确故选:B.12.解:连接O1M,OO1,可得到直角三角形OO1M,依题意可知⊙O的半径为2,则OO1=2﹣y,OM=2﹣x,O1M=y.在Rt△OO1M中,由勾股定理得(2﹣y)2﹣(2﹣x)2=y2,解得y=﹣x2+x.故选:A.13.解:根据题意知,抛物线y=ax2+bx+c(a≠0)经过点(0,54.0)、(40,46.2)、(20,57.9),则解得,所以x=﹣==15(m).故选:B.二.填空题(共15小题)14.解:①y=1﹣x2;②y=,是反比例函数;③y=x(x﹣3);④y=ax2+bx+c,需要添加a≠0;⑤y=2x+1,是一次函数.其中,是二次函数的有:①y=1﹣x2;③y=x(x﹣3).故答案为:①③.15.解:根据抛物线的开口大小与二次函数的二次项系数的关系:系数越大,开口越小,故m>n,故答案为>.16.解:y=2(x﹣3)2+1对称轴是x=3,顶点坐标为(3,1),∵抛物线y=ax2﹣x+c与y=2(x﹣3)2+1对称轴相同,∴﹣=3,解得,a=,∵两抛物线的顶点相距3个单位长度,∴y=x2﹣x+c的顶点坐标为(3,4)或(3,﹣2),把(3,4)代入y=x2﹣x+c得,c=,把(3,﹣2)代入y=x2﹣x+c得,c=﹣,故答案为:或﹣.17.解:∵抛物线开口向下,∴a<0,∵对称轴在y轴右侧,∴>0,∴b>0,∵抛物线与y轴的交点在y轴正半轴,∴c>0,∴abc<0,故①错误;∵抛物线与x轴的一个交点为(3,0),又对称轴为直线x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴方程ax2+bx+c=0的两根是x1=﹣1,x2=3,故②正确;∵对称轴为直线x=1,∴=1,即2a+b=0,故③正确;∵由函数图象可得:当0<x<1时,y随x的增大而增大;当x>1时,y随x的增大而减小,故④错误;故答案为②③.18.解:∵二次函数的解析式为y=ax2﹣2ax﹣1,∴该抛物线对称轴为x=1,∵|﹣1﹣1|>|2﹣1|,且m>n,∴a>0.故答案为:>.19.解:∵抛物线y=﹣3x2向左平移一个单位后的顶点坐标为(﹣1,0),∴所得抛物线的解析式为y=﹣3(x+1)2,故答案为:y=﹣3(x+1)2.20.解:∵在函数y=﹣(x﹣1)2﹣7中a=﹣1<0,∴当x=1时,y取得最大值,最大值为﹣7,故答案为:﹣7.21.解:对称轴是直线x=2,则一次项系数与二次项系数的比是﹣4,因而可设函数解析式是y=ax2﹣4ax+ac,与y轴交点的纵坐标也是整数,因而ac是整数,y=ax2﹣4ax+ac=a(x2﹣4x+c),与x轴两个交点的横坐标都是整数,即方程x2﹣4x+c=0有两个整数解,设是﹣1和+5,则c=﹣5,则y=ax2﹣4ax+ac=a(x2﹣4x﹣5),∵以这三个交点为顶点的三角形的面积为3,∴a=±.则函数是:y=±(x+1)(x﹣5).(答案不唯一).22.解:y=x2+6x+5,=x2+6x+9﹣4,=(x2+6x+9)﹣4,=(x+3)2﹣4.故答案是:y=(x+3)2﹣4.23.解:∵点A(m﹣4,0)和C(2m﹣4,m﹣6)在直线y=﹣x+p上∴,解得:m=3,p=﹣1,∴A(﹣1,0),B(3,0),C(2,﹣3),设抛物线y=ax2+bx+c=a(x﹣3)(x+1),∵C(2,﹣3),代入得:﹣3=a(2﹣3)(2+1),∴a=1∴抛物线解析式为:y=x2﹣2x﹣3=(x﹣1)2﹣4,对称轴EF为x=1,当x=0时y=﹣3,即D点的坐标为(0,﹣3),作D关于EF的对称点N,连接AN,交EF于P,则此时P为所求,根据对称得N的坐标为(2,﹣3),设直线AN的解析式为y=kx+e,把A、N的坐标代入得:,解得:k=﹣1,e=﹣1,即y=﹣x﹣1,把x=1代入得:y=﹣2,即P点的坐标为(1,﹣2),故答案为:(1,﹣2).24.解:∵一元二次方程的一个根为0,另一个根在1到2,∴设两个根分别为0和,∴此一元二次方程可以是:x(x﹣)=0,∴二次函数关系式为:y=x(x﹣)=x2﹣x.故答案为:y=x2﹣x.25.解:∵当y1=y2时,即﹣x2+4x=2x时,解得:x=0或x=2,∴当x>2时,利用函数图象可以得出y2>y1;当0<x<2时,y1>y2;当x<0时,利用函数图象可以得出y2>y;1∴①错误;∵抛物线y1=﹣x2+4x,直线y2=2x,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;∴当x<0时,根据函数图象可以得出x值越大,M值越大;∴②正确;∵抛物线y1=﹣x2+4x的最大值为4,故M大于4的x值不存在,∴③正确;∵如图:当0<x<2时,y1>y2;当M=2,2x=2,x=1;x>2时,y>y1;2=2+,x2=2﹣(舍去),当M=2,﹣x2+4x=2,x∴使得M=2的x值是1或2+,∴④错误;∴正确的有②③两个.故答案为②③.26.解:根据题意得:y=10(x+1)2,故答案为:y=10(x+1)227.解:设抛物线解析式为y=ax2,把点B(10,﹣4)代入解析式得:﹣4=a×102,解得:a=﹣,∴y=﹣x2,把x=9代入,得:y=﹣=﹣3.24,此时水深=4+2﹣3.24=2.76米.28.解:根据图(2)可得,当点P到达点E时点Q到达点C,∵点P、Q的运动的速度分别是1cm/秒、2cm/秒∴BC=BE=10,∴AD=BC=10.∴①错误;又∵从M到N的变化是4,∴ED=4,∴AE=AD﹣ED=10﹣4=6.∵AD∥BC,∴∠EBQ=∠AEB,∴cos∠EBQ=cos∠AEB=,故③错误;如图1,过点P作PF⊥BC于点F,∵AD∥BC,∴∠EBQ=∠AEB,∴sin∠EBQ=sin∠AEB==,∴PF=PB sin∠EBQ=t,∴当0<t≤5时,y=BQ×PF=×2t×t=t2,故②正确,如图4,当t=时,点P在CD上,∴PD=﹣BE﹣ED=﹣10﹣4=,PQ=CD﹣PD=8﹣=,∴,,∴∵∠A=∠Q=90°,∴△ABE∽△QBP,故④正确.由②知,y=t2当y=4时, t2=4,从而,故⑤错误综上所述,正确的结论是②④.。
二次函数的应用练习题及答案一:知识点利润问题:总利润=总售价–总成本总利润=每件商品的利润×销售数量二:例题1、将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm2.2、某商品原价289元,经连续两次降价后售价为256元,设平均每次降价的百分率为x,则下面所列方程正确的是________________3、用48米长的竹篱笆围建一矩形养鸡场,养鸡场一面用砖砌成,另三面用竹篱笆围成,并且在与砖墙相对的一面开2米宽的门,问养鸡场的边长为多少米时,养鸡场占地面积最大?最大面积是多少?4、某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取降价措施,经调查发现,若每件衬衫每降价1元,商场平均每天可以多售出2件.若每件降价x 元,每天盈利y 元,求y 与x 的关系式.若商场平均每天要盈利1200元,每件衬衫应降价多少元?每件衬衫降价多少元时,商场每天盈利最多?盈利多少元?5、某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x元.求:房间每天的入住量y关于x的函数关系式.该宾馆每天的房间收费z关于x的函数关系式.该宾馆客房部每天的利润w关于x的函数关系式;当每个房间的定价为每天多少元时,w有最大值?最大值是多少?6、某商店经营一批进价每件为2元的小商品,在市场营销的过程中发现:如果该商品按每件最低价3元销售,日销售量为18件,如果单价每提高1元,日销售量就减少2件.设销售单价为x,日销售量为y.写出日销售量y与销售单价x之间的函数关系式;设日销售的毛利润为P,求出毛利润P与销售单价x之间的函数关系式;在下图所示的坐标系中画出P关于x的函数图象的草图,并标出顶点的坐标;观察图象,说出当销售单价为多少元时,日销售的毛利润最高?是多少?7、我州有一种可食用的野生菌,上市时,外商李经理按市场价格20元/千克收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存160元,同时,平均每天有3千克的野生菌损坏不能出售.设x到后每千克该野生菌的市场价格为y元,试写出y与x之间的函数关系式.O若存放x天后,将这批野生菌一次性出售,设这批野生菌的销售总额为P元,试写出P与x之间的函数关系式.李经理将这批野生茵存放多少天后出售可获得最大利润W元?8、为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y与销售单价x之间的函数关系如图所示.求月销售量y与销售单价x之间的函数关系式;当销售单价定为50元时,为保证公司月利润达到5万元,该公司可安排员工多少人?若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?9、大学毕业生响应国家“自主创业”的号召,投资开办了一个装饰品商店.该店采购进一种今年新上市的饰品进行了30天的试销售,购进价格为20元/件.销售结束后,得知日销售量P与销售时间x之间有如下关系:P=-2x+80;又知前20天的销售价格Q1 与销售时间x之间有如下关系:Q1?1x?30 ,后10天的销售价格Q与2销售时间x之间有如下关系:Q2=45.试写出该商店前20天的日销售利润R1和后l0天的日销售利润R2分别与销售时间x之间的函数关系式;请问在这30天的试销售中,哪一天的日销售利润最大?并求出这个最大利润.注:销售利润=销售收入一购进成本.10、红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m 与时间t的关系如下表:未来40天内,前20天每天的价格y1与时间t的函数关系式为y1?t?25,后20天每天的价格y2与时间t的函数关系式为y2??1t?40。
中考数学《二次函数》专项练习题及答案一、单选题1.如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b;⑤3a+c<0.其中正确的结论有()A.5个B.4个C.3个D.2个2.对于抛物线y=−13(x−5)2+3,下列说法正确的是()A.开口向下,顶点坐标(5,3)B.开口向上,顶点坐标(5,3)C.开口向下,顶点坐标(-5,3)D.开口向上,顶点坐标(-5,3)3.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的?()A.第8秒B.第10秒C.第12秒D.第15秒4.已知二次函数y=x2−4x+2,当自变量x取值在−2≤x≤5范围内时,下列说法正确的是()A.有最大值14,最小值-2B.有最大值14,最小值7C.有最大值7,最小值-2D.有最大值14,最小值25.如图,二次函数y=ax2+bx+c图象的对称轴为x=1,则下列说法正确的有()①abc<0,②2a+b=0,③a−b+c>0,④若4a+2b+c>0.A.①②③B.②③④C.①②④D.①②③④6.在平面直角坐标系中,对于点 P(x ,y) 和 Q(x ,y′) ,给出如下定义:若 y′={y +1 (x ≥0)−y (x <0),则称点 Q 为点 P 的“亲密点”.例如:点 (1,2) 的“亲密点”为点 (1,3) ,点 (−1,3) 的“亲密点”为点 (−1,−3) .若点 P 在函数 y =x 2−2x −3 的图象上.则其“亲密点” Q 的纵坐标 y′ 关于 x 的函数图象大致正确的是( )A .B .C .D .7.对于二次函数 y =2(x −1)2−3 ,下列说法正确的是( )A .图象开口向下B .图象和y 轴交点的纵坐标为-3C .x <1 时,y 随x 的增大而减小D .图象的对称轴是直线 x =−18.抛物线 y =−3x 2+12x −3 的顶点坐标是( )A .(2,9)B .(2,-9)C .(-2,9)D .(-2,-9)9.如图,二次函数y=ax 2+bx+c 的图象经过点(0,﹣2),与x 轴交点的横坐标分别为x 1,x 2,且﹣1<x 1<0,1<x 2<2,下列结论正确的是( )A .a <0B .a ﹣b+c <0C .−b 2a>1D .4ac ﹣b 2<﹣8a10.已知抛物线y =ax 2+bx +c(a ≠0)交x 轴于点A(1,0),B(3,0).P 1(x 1,y 1),P 2(x 2,y 2)是抛物线上两个点.若|x 1−2|>|x 2−2|>1,则下列结论一定正确的是( ) A .y 1<y 2B .y 1>y 2C .|y 1|<|y 2|D .|y 1|>|y 2|11.二次函数y=x2-1的图象可由下列哪个函数图象向右平移2个单位,向下平移2个单位得到()A.y=(x−2)2+1B.y=(x+2)2+1C.y=(x−2)2−3D.y=(x+2)2+312.如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF△BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为()A.B.C.D.二、填空题13.二次函数y=x2﹣2x﹣3的图象如图所示,若线段AB在x轴上,且AB为2 √3个单位长度,以AB为边作等边△ABC,使点C落在该函数y轴左侧的图象上,则点C的坐标为.14.将y=x2的向右平移3个单位,再向上平移5个单位后,所得的解析式是.15.为执行国家药品降价政策,给人民群众带来实惠,某药品经过两次降价,每瓶零售价由100元降为81元,则平均每次降价的百分率是.16.如果抛物线y=x2﹣6x+c的顶点到x轴的距离是3,那么c的值等于.17.不等式x2+ax+b≥0(a≠0)的解集为全体实数,假设f(x)=x2+ax+b,若关于x的不等式f(x)<c的解集为m<x<m+6,则实数c的值为.18.用16m长的篱笆围成长方形的生物园饲养小兔,设围成长方形的生物园的长为x m,则围成长方形的生物的面积S(单位:m2)与x的函数表达式是.(不要求写自变量x的取值范围)三、综合题19.鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?20.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<5050≤x≤90售价(元/件)x+4090每天销量(件)200﹣2x(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.21.如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x轴、y轴的正半轴,抛物线y=−12x2+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和四边形ABCD的面积.22.在平面直角坐标系xOy中,已知抛物线y=x2﹣4x+2m﹣1与x轴交于点A,B.(点A在点B的左侧)(1)求m的取值范围;(2)当m取最大整数时,求点A、点B的坐标.23.我市某电器商场代理销售某种家用空气净化器,其进价是200元/台,经过市场销售后发现,在一个月内,当售价是400元/台时,可售出200台,且售价每降低1元,就可多售出5台,若供货商规定这种空气净化器售价不低于330元/台,代理销售商每月要完成不低于450台的销售任务.(1)若某月空气净化器售价降低30元,则该月可售出多少台?(2)试确定月销售量y(台)与售价x(元/台)之间的函数关系式,并求出售价x的范围.(3)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获的利润w(元)最大,最大利润是多少?24.一家超市,经销一种地方特色产品,每千克成本为50元.这种产品在不同季节销量与单价满足一次函数变化关系.下表是其中不同4个月内一天的销量y(kg)与单价x(元/kg)的对应值.单价x(元/kg)55606570销量y(kg)70605040(2)平均每天获得600元销售利润的季节,顾客利益也较大,销售单价是多少?(3)当销售单价为多少时,一天的销售利润最大?最大利润是多少?参考答案1.【答案】B 2.【答案】A 3.【答案】B 4.【答案】A 5.【答案】D 6.【答案】B 7.【答案】C 8.【答案】A 9.【答案】D 10.【答案】D 11.【答案】B 12.【答案】D13.【答案】(1﹣ √7 ,﹣3) 14.【答案】y=(x ﹣3)2+5 15.【答案】10% 16.【答案】c=6或12 17.【答案】918.【答案】S =−x 2+8x19.【答案】(1)解:依题意有:y=10x+160;(2)解:依题意有:W=(80﹣50﹣x )(10x+160)=﹣10(x ﹣7)2+5290,∵-10<0且x 为偶数,故当x=6或x=8时,即故当销售单价定为74或72元时,每周销售利润最大,最大利润是5280元; (3)解:依题意有:﹣10(x ﹣7)2+5290≥5200,解得4≤x≤10,则200≤y≤260,200×50=10000(元).答:他至少要准备10000元进货成本.20.【答案】(1)解:当1≤x <50时,y=(200-2x )(x+40-30)=-2x 2+180x+2000当50≤x≤90时y=(200-2x )(90-30)=-120x+12000综上所述:y= {−2x 2+180x +2000(1≤x <50)−120x +12000(50≤x ≤90)(2)解:当1≤x <50时,二次函数开口向下,二次函数对称轴为x=45 当x=45时,y 最大=-2×452+180×45+2000=6050 当50≤x≤90时,y 随x 的增大而减小当x=50时,y最大=6000综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元(3)解:当1≤x<50时,y=-2x2+180x+2000≥4800,解得20≤x≤50,因此利润不低于4800元的天数是20≤x<50,共30天;当50≤x≤90时,y=-120x+12000≥4800,解得x≤60因此利润不低于4800元的天数是50≤x≤60,共11天所以该商品在销售过程中,共41天每天销售利润不低于4800元;21.【答案】(1)解:由已知得:C(0, 4),B(4, 4)把B与C坐标代入y=−12x2+bx+c得:{4b+c=12c=4解得:b=2则解析式为y=−12x2+2x+4;(2)解:∵y=−12x2+2x+4=−12(x−2)2+6∴抛物线顶点坐标为(2, 6)则S四边形ABDC=S△ABC+S△BCD=12×4×4+12×4×2=8+4=12. 22.【答案】(1)解:根据题意得△=(-4)2-4(2m-1)>0解得m<5 2;(2)解:m的最大整数为2抛物线解析式为y=x2-4x+3当y=0时,x2-4x+3=0,解得x1=1,x2=3所以A(1,0),B(3,0).23.【答案】(1)解:由题意得:200+30×5=350(台)答:该月可售出350台(2)解:由题意得:y=200+5(400−x)=−5x+2200由供货商对售价和销售量的规定得:{x≥330y≥450,即{x≥330−5x+2200≥450解得:330≤x≤350答:所求的函数关系式为y=−5x+2200,售价x的范围为330≤x≤350(3)解:由题意和(2)可得:w=(x−200)(−5x+2200)整理得:w=−5(x−320)2+72000由二次函数的性质可知:当330≤x≤350时,w随x的增大而减小则当x=330时,w取得最大值,最大值为w=−5×(330−320)2+72000=71500(元)答:当售价定为330元/台时,商场每月销售这种空气净化器所获的利润最大,最大利润是71500元24.【答案】(1)解:设y=kx+b,由题意得:{55k+b=70 60k+b=60解得{k=−2 b=180∴y(kg)与x(元/kg)之间的函数关系式为y=﹣2x+180.(2)解:由题意得:(x﹣50)(﹣2x+180)=600整理,得x2﹣140x+4800=0解得x1=60,x2=80∵顾客利益也较大∴x=60∴平均每天获得600元销售利润的季节,顾客利益也较大,销售单价是60元/千克.(3)解:一天的销售利润为:w=(x﹣50)(﹣2x+180)=﹣2x2+280x﹣9000=﹣2(x﹣70)2+800∴当x=70时,w最大=800.∴当销售单价为70元/kg时,一天的销售利润最大,最大利润是800元。
中考数学总复习《二次函数》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________一、单选题1.已知二次函数2281y x x =-+,当11x -≤≤时,函数y 的最小值是( )A .1B .5-C .6-D .7-2.把一抛物线向上平移3个单位,再向左平移1个单位得到的解析式为22y x =,则原抛物线的解析式为( ) A .()2213y x =-+B .()2213y x =++C .()2213y x =+-D .()2213y x =--3.新定义:若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:()1,3A 与()2,6B --,()0,0C 等都是“三倍点”.若二次函数2y x x c =--+的图像在31x -<<的范围内,至少存在一个“三倍点”,则c 的取值范围是( )A .45c -≤<B .43c -≤<-C .164c -≤<D .114c -≤< 4.如图为2y x bx c =++的图象,则( )A .0b > 0c <B .0b > 0c >C .0b < 0c >D .0b < 0c < 5.把抛物线22y x =-先向右平移6个单位长度,再向下平移2个单位长度后,所得函数的表达式为( )A .22(6)2y x =-++B .22(6)2y x =-+-C .22(6)2y x =--+D .22(6)2y x =---6.如图,抛物线2y ax c =-经过正方形OACB 的三个顶点A ,B ,C ,点C 在y 轴上,则ac 的值为( )A .1B .2C .3D .47.如图,菱形ABCD 的边长为3cm ,=60B ∠︒动点P 从点B 出发以3cm /s 的速度沿着边BC CD DA --运动,到达点A 后停止运动;同时动点Q 从点B 出发,以1cm/s 的速度沿着边BA 向A 点运动,到达点A 后停止运动.设点P 的运动时间为(s)x ,BPQ 的面积为()2cm y ,则y 关于x 的函数图象为( )A .B .B .C .D .8.已知在平面直角坐标系中,抛物线1C 的图象如图所示,对称轴为直线2x =-,将抛物线1C 向右平移2个单位长度得到抛物线2C :2y ax bx c =++ (a 、b 、c 为常数,且0a ≠),则代数式b c a +-与0的大小关系是( )A .0b c a +-<B .0b c a +-=C .0b c a +->D .不能确定二、填空题9.若关于x 的二次函数2321y x x m =-+-的值恒为正数,则m 的取值范围为 . 10.将抛物线2(1)2y x =++先向右平移3个单位,再向下平移4个单位,则所得抛物线的解析式为 .11.小华酷爱足球运动一次训练时,他将足球从地面向上踢出,足球距地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系为:2412h t t =-+,则足球距离地面的最大高度为 m .12.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,若水面下降1m ,则水面宽度增加 m .(结果可保留根号)13.如图,抛物线()20y ax bx c a =++≠的对称轴是直线2x =-,且抛物线与x 轴交于A ,B两点,若5OA OB =,则下列结论中:①0abc >;①()220a c b +->;①50a c +=;①若m 为任意实数,则224am bm b a ++≥,正确的是 .(填序号)三、解答题 14.已知抛物线23y ax bx =++交x 轴于()()1030A B ,,,两点 (1)求抛物线的函数表达式;(2)当x 取何值时,y 随x 的增大而减小.15.如图,抛物线214y x bx c =++过点()0,0O ,()10,0E 矩形ABCD 的边AB 在线段OE 上(点B 在点A 的左侧),点C ,D 在抛物线上.设动点B 坐标为(),0t .(1)求抛物线的函数表达式及顶点坐标;(2)当t 为何值时矩形ABCD 的周长有最大值?最大值是多少?16.“潼南柠檬”获评国家地理标志商标,被认定为全国名特优新农产品,柠檬即食片是其加工产品中非常受欢迎的一款零食.一家超市销售了净重500g 一袋的柠檬即食片,进价为每袋10元.销售过程中发现,如果以单价14元销售,那么一个月内可售出200袋.根据销售经验,提高销售单价会导致销售量减少,即销售单价每提高1元,每月销售量相应减少20袋.根据物价部门规定,这种柠檬即食片的销售单价不得低于进价且不得高于18元.(1)求每月销售量y (件)与销售单价x (元)之间的函数关系式;(2)设超市每月销售柠檬即食片获得离利润为w (元),当销售单价定为多少元时,每月可获得最大利润?最大利润是多少?(3)若超市想每月销售柠檬即食片所得利润w 稳定在900元,销售单价应定为多少元?17.如图,一名同学推铅球,铅球出手后行进过程中离地面的高度y (单位:m )与水平距离x (单位:m )近似满足函数关系212123y x x c =-++.已知铅球落地时的水平距离为10m .(1)求铅球出手后水平距离与这名同学相距多远时,铅球离地面最高?(2)在铅球出手后的行进过程中,当它离地面的高度为5m 3时,此时铅球的水平距离是多少?18.我市某企业安排20名工人生产甲、乙两种产品,根据生产经验,每人每天生产2件甲产品或1件乙产品(每人每天只能生产一种产品).甲产品生产成本为每件10元;若安排1人生产一件乙产品,则成本为38元,以后每增加1人,平均每件乙产品成本降低2元.规x x≥人生产乙产品.定甲产品每天至少生产20件.设每天安排()1(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品生产成本(元)甲10-乙x402x(2)为了增加利润,企业须降低成本,该企业如何安排工人生产才能使得每天的生产总成本最低?最低成本是多少?参考答案:1.B2.D3.A4.D5.D6.B7.D8.C9.43m > 10.2(2)2y x =--11.912.()264-13.③④/④③14.(1)243y x x =-+(2)当2x <,y 随x 的增大而减小15.(1)抛物线的函数表达式为21542y x x =-,顶点坐标为2554⎛⎫- ⎪⎝⎭,; (2)当1t =时,矩形ABCD 的周长有最大值,最大值为412.16.(1)()480201018y x x =-≤≤; (2)当销售单价定为17元时,每月可获得最大利润;每月获得最大利润为980元.(3)当销售单价定为15元时,每月获得利润可稳定在900元.17.(1)铅球出手后水平距离与这名同学相距3m 远时,铅球离地面最高为3m(2)此时铅球的水平距离为8m18.安排10名工人生产甲产品,10名工人生产乙产品才能使得每天的生产总成本最低,最低成本是400元。
二次函数动点专项练习30题(有答案)1.在平面直角坐标系xOy中,二次函数y=﹣x2+x+2的图象与x轴交于点A,B(点B在点A的左侧),与y 轴交于点C.过动点H(0,m)作平行于x轴的直线l,直线l与二次函数y=﹣x2+x+2的图象相交于点D,E.(1)写出点A,点B的坐标;(2)若m>0,以DE为直径作⊙Q,当⊙Q与x轴相切时,求m的值;(3)直线l上是否存在一点F,使得△ACF是等腰直角三角形?若存在,求m的值;若不存在,请说明理由.2.如图,已知抛物线y=﹣+bx+c图象经过A(﹣1,0),B(4,0)两点.(1)求抛物线的解析式;(2)若C(m,m﹣1)是抛物线上位于第一象限内的点,D是线段AB上的一个动点(不与A、B重合),过点D 分别作DE∥BC交AC于E,DF∥AC交BC于F.①求证:四边形DECF是矩形;②连接EF,线段EF的长是否存在最小值?若存在,求出EF的最小值;若不存在,请说明理由.3.如图,抛物线y=(x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.4.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由;(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出∠BDA的度数.5.如图,已知二次函数图象的顶点坐标为M(2,0),直线y=x+2与该二次函数的图象交于A、B两点,其中点A 在y轴上,P为线段AB上一动点(除A,B两端点外),过P作x轴的垂线与二次函数的图象交于点Q设线段PQ 的长为l,点P的横坐标为x.(1)求二次函数的解析式;(2)求l与x之间的函数关系式,并求出l的取值范围;(3)线段AB上是否存在一点P,使四边形PQMA为梯形?若存在,求出点P的坐标;若不存在,请说明理由.6.如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2 与x轴交于点C,直线y=﹣2x+7经过抛物线上一点B(5,m),且与直线x=2交于点E.(1)求m的值及该抛物线的函数关系式;(2)若点D是x轴上一动点,当△DCB∽△ECB时,求点D的坐标;(3)若P(x,y)是该抛物线上的一个动点,是否存在这样的点P,使得PB=PC?若存在,试求出所有符合条件的点P的坐标;若不存在,请说明理由.7.矩形OABC在平面直角坐标系中的位置如图所示,其中OA=5,AB=2,抛物线y=﹣x2+3x的图象与BC交于D、E两点.(1)求DE的长_________;(2)M是BC上的动点,若OM⊥AM,求点M的坐标;(3)在抛物线上是否存在点Q,使以D、O、Q、M为顶点的四边形是平行四边形?若存在,求出点Q的坐标;若不存在,请说明理由.8.如图,已知抛物线与x轴交于A(﹣4,0)和B(1,0)两点,与y轴交于C(0,﹣2)点.(1)求此抛物线的解析式;(2)设G是线段BC上的动点,作GH∥AC交AB于H,连接CH,当△BGH的面积是△CGH面积的3倍时,求H点的坐标;(3)若M为抛物线上A、C两点间的一个动点,过M作y轴的平行线,交AC于N,当M点运动到什么位置时,线段MN的值最大,并求此时M点的坐标.9.如图,抛物线y=ax2+bx+3(a≠0)的图象经过A(3,0),B(4,1)两点,且与y轴交于点C.(1)直接写出点C的坐标;(2)试求抛物线y=ax2+bx+3(a≠0)的函数关系式;(3)连接AC,点E为线段AC上的动点(不与A、C重合),经过A、E、O三点的圆交直线AB于点F.当△OEF 的面积取得最小值时,请求出点E的坐标.10.抛物线y=a(x+6)2﹣3与x轴相交于A,B两点,与y轴相交于C,D为抛物线的顶点,直线DE⊥x轴,垂足为E,AE2=3DE.(1)求这个抛物线的解析式;(2)P为直线DE上的一动点,以PC为斜边构造直角三角形,使直角顶点落在x轴上.若在x轴上的直角顶点只有一个时,求点P的坐标;(3)M为抛物线上的一动点,过M作直线MN⊥DM,交直线DE于N,当M点在抛物线的第二象限的部分上运动时,是否存在使点E三等分线段DN的情况?若存在,请求出所有符合条件的M的坐标;若不存在,请说明理由.11.如图,已知抛物线y=ax2+bx+c经过点A(2,3),B(6,1),C(0,﹣2).(1)求此抛物线的解析式,并用配方法把解析式化为顶点式;(2)点P是抛物线对称轴上的动点,当AP⊥CP时,求点P的坐标;(3)设直线BC与x轴交于点D,点H是抛物线与x轴的一个交点,点E(t,n)是抛物线上的动点,四边形OEDC 的面积为S.当S取何值时,满足条件的点E只有一个?当S取何值时,满足条件的点E有两个?12.如图,抛物线的对称轴是直线x=1,它与x轴交于A、B两点,与y轴交于C点,点A、C的坐标分别是(﹣1,0)、(0,3)(1)求此抛物线对应的函数解析式;(2)若点P是抛物线上位于x轴上方的一个动点,求△ABP面积的最大值;(3)若过点A(﹣1,0)的直线AD与抛物线的对称轴和x轴围成的三角形的面积为6,求此直线的解析式.13.已知抛物线y=ax2+bx+c的对称轴为直线x=2,且与x轴交于A、B两点,与y轴交于点C,其中A(1,0),C (0,﹣3).(1)求抛物线的解析式;(2)若点P在抛物线上运动(点P异于点A).①如图1.当△PBC面积与△ABC面积相等时.求点P的坐标;②如图2.当∠PCB=∠BCA时,求直线CP的解析式.14.如图,平面直角坐标系xOy中,点A的坐标为(﹣2,2),点B的坐标为(6,6),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点E.(1)求点E的坐标;(2)求抛物线的函数解析式;(3)点F为线段OB上的一个动点(不与点O、B重合),直线EF与抛物线交于M、N两点(点N在y轴右侧),连接ON、BN,当点F在线段OB上运动时,求△BON面积的最大值,并求出此时点N的坐标;(4)连接AN,当△BON面积最大时,在坐标平面内求使得△BOP与△OAN相似(点B、O、P分别与点O、A、N对应)的点P的坐标.15.如图,抛物线y=ax2+bx+(a≠0)经过A(﹣3,0)、C(5,0)两点,点B为抛物线的顶点,抛物线的对称轴与x轴交于点D.(1)求此抛物线的解析式;(2)动点P从点B出发,沿线段BD向终点D作匀速运动,速度为每秒1个单位长度,运动时间为ts,过点P作PM⊥BD交BC于点M,过点M作MN∥BD,交抛物线于点N.①当t为何值时,线段MN最长;②在点P运动的过程中,是否有某一时刻,使得以O、P、M、C为顶点的四边形为等腰梯形?若存在,求出此刻的t值;若不存在,请说明理由.参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是.16.如图,抛物线y=ax2+2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A(﹣4,0)和B.(1)求该抛物线的解析式;(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CEQ的面积最大时,求点Q 的坐标;(3)平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(﹣2,0).问是否有直线l,使△ODF是等腰三角形?若存在,请求出点F的坐标;若不存在,请说明理由.17.在平面直角坐标系xOy中,抛物线y=ax2++c与x轴交于点(﹣1,0)和点B,与y轴交于点C(0,4).(1)求抛物线的解析式;(2)若P是抛物线上一点,且△ABP的面积是,求P点的坐标;(3)若D是线段BC上的一个动点,过点D作DE⊥BC,交OC于E点.设CD的长为t,四边形DEOB的周长为l,求l与t之间的函数关系式,并写出t的取值范围.18.(2011•宝安区三模)如图,在直角坐标系中,点A(2,0),点B(0,4),AB的垂直平分线交AB于C,交x 轴于D,(1)求点C、D的坐标;(2)求过点B、C、D的抛物线的解析式;(3)点P为CD间的抛物线上一点,求当点P在何处时,以P,C,D,B为顶点的四边形的面积最大?19.(2010•菏泽)如图所示,抛物线y=ax2+bx+c经过原点O,与x轴交于另一点N,直线y=kx+4与两坐标轴分别交于A、D两点,与抛物线交于B(1,m)、C(2,2)两点.(1)求直线与抛物线的解析式;(2)若抛物线在x轴上方的部分有一动点P(x,y),设∠PON=α,求当△PON的面积最大时tanα的值;(3)若动点P保持(2)中的运动路线,问是否存在点P,使得△POA的面积等于△PON面积的?若存在,请求出点P的坐标;若不存在,请说明理由.20.已知抛物线y=ax2+bx+c的顶点为A(3,﹣3),与x轴的一个交点为B(1,0).(1)求抛物线的解析式.(2)P是y轴上一个动点,求使P到A、B两点的距离之和最小的点P0的坐标.(3)设抛物线与x轴的另一个交点为C.在抛物线上是否存在点M,使得△MBC的面积等于以点A、P0、B、C 为顶点的四边形面积的三分之一?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.21.如图,已知抛物线y=+bx+c与y轴相交于C,与x轴相交于A、B,点A的坐标为(2,0),点C的坐标为(0,﹣1).(1)求抛物线的解析式;(2)点E是线段AC上一动点,过点E作DE⊥x轴于点D,连接DC,当△DCE的面积最大时,求点D的坐标;(3)在直线BC上是否存在一点P,使△ACP为等腰三角形?若存在,求点P的坐标;若不存在,说明理由.22.如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,﹣1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,求点P的坐标;(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.23.如图,在直角坐标系xOy中,正方形OCBA的顶点A,C分别在y轴,x轴上,点B坐标为(6,6),抛物线y=ax2+bx+c经过点A,B两点,且3a﹣b=﹣1.(1)求a,b,c的值;(2)如果动点E,F同时分别从点A,点B出发,分别沿A→B,B→C运动,速度都是每秒1个单位长度,当点E 到达终点B时,点E,F随之停止运动,设运动时间为t秒,△EBF的面积为S.①试求出S与t之间的函数关系式,并求出S的最大值;②当S取得最大值时,在抛物线上是否存在点R,使得以E,B,R,F为顶点的四边形是平行四边形?如果存在,求出点R的坐标;如果不存在,请说明理由.24.如图,抛物线经过A(4,0),B(1,0),C(0,﹣2)三点.(1)求出抛物线的解析式;(2)P是(1)中抛物线AB段上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△ACO相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标.25.在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.26.如图1,在平面直角坐标系xOy中,已知A、B两点的坐标分别为(4,0)、(0,2),将△OAB绕点O逆时针旋转90°后得到△OCD,抛物线y=ax2﹣2ax+4经过点A.(1)求抛物线的函数表达式,并判断点D是否在该抛物线上;(2)如图2,若点P是抛物线对称轴上的一个动点,求使|PC﹣PD|的值最大时点P的坐标;(3)设抛物线上是否存在点E,使△CDE是以CD为直角边的直角三角形?若存在,请求出所有点E的坐标;若不存在,请说明理由.27.已知抛物线y=x2+bx+1的顶点在x轴上,且与y轴交于A点.直线y=kx+m经过A、B两点,点B的坐标为(3,4).(1)求抛物线的解析式,并判断点B是否在抛物线上;(2)如果点B在抛物线上,P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E,设线段PE的长h,点P的横坐标为x,当x为何值时,h取得最大值,求出这时的h值.28.如图,已知直线y=x+1与y轴交于点A,与x轴交于点D,抛物线y=x2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).(1)求该抛物线的解析式;(2)动点P在x轴上移动,当△PAE是直角三角形时,求点P的坐标P;(3)在抛物线的对称轴上找一点M,使|AM﹣MC|的值最大,求出点M的坐标.29.阅读材料:如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:S△ABC=ah,即三角形面积等于水平宽与铅垂高乘积的一半.解答下列问题:如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求抛物线和直线AB的解析式;(2)点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB;(3)是否存在抛物线上一点P,使S△PAB=S△CAB?若存在,求出P点的坐标;若不存在,请说明理由.30.如图,抛物线与x轴交于A(x1,0),B(x2,0)两点,且x1>x2,与y轴交于点C(0,4),其中x1,x2是方程x2﹣2x﹣8=0的两个根.(1)求这条抛物线的解析式;(2)点P是线段AB上的动点,过点P作PE∥AC,交BC于点E,连接CP,当△CPE的面积最大时,求点P的坐标;(3)探究:若点Q是抛物线对称轴上的点,是否存在这样的点Q,使△QBC成为等腰三角形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.二次函数动点30题参考答案:1.解:(1)当y=0时,有,解得:x1=4,x2=﹣1,∴A、B两点的坐标分别为(4,0)和(﹣1,0).(2)∵⊙Q与x轴相切,且与交于D、E两点,∴圆心Q位于直线与抛物线对称轴的交点处,∵抛物线的对称轴为,⊙Q的半径为H点的纵坐标m(m>0),∴D、E两点的坐标分别为:(﹣m,m),(+m,m)∵E点在二次函数的图象上,∴,解得或(不合题意,舍去).(3)存在.①如图1,当∠ACF=90°,AC=FC时,过点F作FG⊥y轴于G,∴∠AOC=∠CGF=90°,∵∠ACO+∠FCG=90°,∠GFC+∠FCG=90°,∴∠ACO=∠CFG,∴△ACO≌△CFG,∴m=OG=2+4=6;反向延长FC,使得CF=CF′,此时△ACF′亦为等腰直角三角形,易得y C﹣y F′=CG=4,∴m=CO﹣4=2﹣4=﹣2.②如图2,当∠CAF=90°,AC=AF时,过点F作FP⊥x轴于P,∵∠AOC=∠APF=90°,∠ACO+∠OAC=90°,∠FAP+∠OAC=90°,∴∠ACO=∠FAP,∴△ACO≌△∠FAP,∴FP=AO=4,∴m=FP=4;反向延长FA,使得AF=AF′,此时△ACF’亦为等腰直角三角形,易得y A﹣y F′=FP=4,∴m=0﹣4=﹣4.③如图3,当∠AFC=90°,FA=FC时,则F点一定在AC的中垂线上,此时存在两个点分别记为F,F′,分别过F,F′两点作x轴、y轴的垂线,分别交于E,G,D,H.∵∠DFC+∠CFE=∠CFE+∠EFA=90°,∴∠DFC=∠EFA,∵∠CDF=∠AEF,CF=AF,∴△CDF≌△AEF,∴CD=AE,DF=EF,∴四边形OEFD为正方形,∴CD=1,∴m=OC+CD=2+1=3.∵∠HF′C+∠CGF′=∠CF′G+∠GF′A,∴∠HF′C=∠GF′A,∵∠HF′C=∠GF′A,CF′=AF′,∴△HF′C≌△GF′A,∴HF′=GF′,CH=AG,∴四边形OHF′G为正方形,∴OH=CH﹣CO=AG﹣CO=AO﹣OG﹣CO=AO﹣OH﹣CO=4﹣OH﹣2,∴OH=1,∴m=﹣1.∵y=﹣x2+x+2=﹣(x﹣)2+,∴y的最大值为.∵直线l与抛物线有两个交点,∴m<.∴m可取值为:﹣4、﹣2、﹣1或3.综上所述,直线l上存在一点F,使得△ACF是等腰直角三角形,m的值为﹣4、﹣2、﹣1或3 2.(1)∵抛物线y=﹣+bx+c图象经过A(﹣1,0),B(4,0)两点,∴根据题意,得,解得,所以抛物线的解析式为:;(2)①证明:∵把C(m,m﹣1)代入得∴,解得:m=3或m=﹣2,∵C(m,m﹣1)位于第一象限,∴,∴m>1,∴m=﹣2舍去,∴m=3,∴点C坐标为(3,2),过C点作CH⊥AB,垂足为H,则∠AHC=∠BHC=90°,由A(﹣1,0)、B(4,0)、C(3,2)得AH=4,CH=2,BH=1,AB=5∴△AHC∽△CHB,∴∠ACH=∠CBH,∵∠CBH+∠BCH=90°∴∠ACH+∠BCH=90°∴∠ACB=90°,∵DE∥BC,DF∥AC,∴四边形DECF是平行四边形,∴▱DECF是矩形;②存在;连接CD∵四边形DECF是矩形,∴EF=CD,当CD⊥AB时,CD的值最小,∵C(3,2),∴DC的最小值是2,∴EF的最小值是2;3. (1)解:顶点D的坐标为(3,﹣1).令y=0,得(x﹣3)2﹣1=0,解得:x1=3+,x2=3﹣,∵点A在点B的左侧,∴A(3﹣,0),B(3+,0).(2)证明:如答图1,过顶点D作DG⊥y轴于点G,则G(0,﹣1),GD=3.令x=0,得y=,∴C(0,).∴tan∠DCG=.设对称轴交x轴于点M,则OM=3,DM=1,AM=3﹣(3﹣)=.由OE⊥CD,易知∠EOM=∠DCG.∴tan∠EOM=tan∠DCG==,解得EM=2,∴DE=EM+DM=3.在Rt△AEM中,AM=,EM=2,由勾股定理得:AE=;在Rt△ADM中,AM=,DM=1,由勾股定理得:AD=.∵AE2+AD2=6+3=9=DE2,∴△ADE为直角三角形,∠EAD=90°.设AE交CD于点F,∵∠AEO+∠EFH=90°,∠ADC+AFD=90°,∠EFH=∠AFD(对顶角相等),∴∠AEO=∠ADC.(3)解:依题意画出图形,如答图2所示:由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.设点P坐标为(x,y),由勾股定理得:EP2=(x﹣3)2+(y﹣2)2.∵y=(x﹣3)2﹣1,∴(x﹣3)2=2y+2.∴EP2=2y+2+(y﹣2)2=(y﹣1)2+5当y=1时,EP2有最小值,最小值为5.将y=1代入y=(x﹣3)2﹣1,得(x﹣3)2﹣1=1,解得:x1=1,x2=5.又∵点P在对称轴右侧的抛物线上,∴x1=1舍去.∴P(5,1).此时点Q坐标为(3,1)或(,)4.解:(1)∵该抛物线过点C(0,2),∴可设该抛物线的解析式为y=ax2+bx+2.将A(﹣1,0),B(4,0)代入,解得,∴抛物线的解析式为:y=﹣x2+x+2.(2)存在.由图象可知,以A、B为直角顶点的△ABE不存在,所以△ABE只可能是以点E为直角顶点的三角形.在Rt△BOC中,OC=2,OB=4,∴BC==.在Rt△BOC中,设BC边上的高为h,则×h=×2×4,∴h=.∵△BEA∽△COB,设E点坐标为(x,y),∴=,∴y=±2将y=2代入抛物线y=﹣x2+x+2,得x1=0,x2=3.当y=﹣2时,不合题意舍去.∴E点坐标为(0,2),(3,2).(3)如图2,连结AC,作DE⊥x轴于点E,作BF⊥AD于点F,∴∠BED=∠BFD=∠AFB=90°.设BC的解析式为y=kx+b,由图象,得,∴,y BC=﹣x+2.由BC∥AD,设AD的解析式为y=﹣x+n,由图象,得0=﹣×(﹣1)+n∴n=﹣,y AD=﹣x﹣.∴﹣x2+x+2=﹣x﹣,解得:x1=﹣1,x2=5∴D(﹣1,0)与A重合,舍去;∴D(5,﹣3).∵DE⊥x轴,∴DE=3,OE=5.由勾股定理,得BD=.∵A(﹣1,0),B(4,0),C(0,2),∴OA=1,OB=4,OC=2.∴AB=5在Rt△AOC中,Rt△BOC中,由勾股定理,得AC=,BC=2,∴AC2=5,BC2=20,AB2=25,∴AC2+BC2=AB2∴△ACB是直角三角形,∴∠ACB=90°.∵BC∥AD,∴∠CAF+∠ACB=180°,∴∠CAF=90°.∴∠CAF=∠ACB=∠AFB=90°,∴四边形ACBF是矩形,∴AC=BF=,在Rt△BFD中,由勾股定理,得DF=,∴DF=BF,∴∠ADB=45°5.解:(1)依题意,设二次函数的解析式为y=a(x﹣2)2,由于直线y=x+2与y轴交于(0,2),∴x=0,y=2满足y=a(x﹣2)2,于是求得a=,二次函数的解析式为y=(x﹣2)2;(2)∵PQ⊥x轴且横坐标为x,∴l=(x+2)﹣(x﹣2)2=﹣x2+3x,由得点B的坐标为B(6,8),∵点p在线段AB上运动,∴0<x<6.∵,∴当x=3时,.∴0<l<;(3)作MQ∥AP.过M作MD∥PQ,MD交AB于N,则四边形PQMD为平行四边形.∴MD=PQ,∵M(2,0),∴D(2,4),∴MD=4.∴.∴x2﹣6x+8=0,∴x1=2,x2=4.∵2<x<6,∴x=4.∴P(4,6),Q(4,2).即P点的坐标为:(4,6)6.:(1)∵点B(5,m)在直线y=﹣2x+7上,∴m=﹣5×2+7=﹣3,∴B(5,﹣3),∵抛物线经过原点O和点A,对称轴为x=2,∴点A的坐标为(4,0)设所求的抛物线对应函数关系式为y=a(x﹣0)(x﹣4),将点B(5,﹣3)代入上式,得﹣3=a(5﹣0)(5﹣4),∴a=﹣,∴所求的抛物线对应的函数关系式为y=﹣x(x﹣4),即y=﹣x2+x.(2)∵点A(4,0),B(5,﹣3),C(2,0),∴AC=4﹣2=2,BC==3,当点D在直线x=2的右侧时,当△DCB∽△ECB,∴=,即=,解得:CD=9,∴点D的坐标为:(11,0),当点D在直线x=2的左侧时,∵∠ACB=∠CDB+∠CBA,且∠ACB<∠DCB,∴在△DCB中不可能存在与∠DCB相等的角,即此时不存在点使三角形相似;综上所述,存在点D的坐标是(11,0),使三角形相似;(3)存在符合条件的点P使PB=PC,∵C(2,0),B(5,﹣3),∴∠ACB=45°,BC垂直平分线的解析式为:y=x﹣5,∴,∴解得:,,∴符合条件的点P的坐标为(,)或(,).7.解:(1)由图知:点D、E的纵坐标为2,依题意,有:﹣x2+3x=2,解得:x1=1、x2=2∴D(1,2)、E(2,2),DE=1.(2)如右图;矩形OABC中,∠OMA=90°,∴∠CMO=∠MAB=90°﹣∠AMB,又∠OCM=∠MBA=90°,∴△OCM∽△MBA,有:=设点M(m,2),则:CM=m,BM=5﹣m∴=,解得m1=1,m2=4∴点M的坐标为(1,2)或(4,2).(3)若以D、O、Q、M为顶点的四边形是平行四边形,那么点D、M不共点,所以点M取(4,2);①当DM为平行四边形的对角线时,点O、Q关于DM的中点对称,即点Q的纵坐标为4,由图知,点Q必不在抛物线图象上,不合题意;②当DM为平行四边形的边时,OM∥OQ,且OM=OQ;∵D(1,2)、M(4,2)∴OQ=DM=3,即Q(﹣3,0)或(3,0);经验证,点(﹣3,0)不在抛物线图象上;点(3,0)在抛物线图象上;综上,存在符合条件的点Q,且坐标为(3,0)8. 解:(1)设抛物线的解析式:y=a(x+4)(x﹣1),代入C(0,﹣2),得:﹣2=a(0+4)(0﹣1),解得:a=故抛物线的解析式:y=(x+4)(x﹣1)=x2+x﹣2.(2)∵当△BGH的面积是△CGH面积的3倍,∴BG:CG=3:1,即BG:BC=3:4;∵GH∥AC,∴==;易知:BA=OB+OA=5,则BH=AB=,∴OH=BH﹣OB=﹣1=,即H(﹣,0).(3)设直线AC:y=kx+b,代入A(﹣4,0)、C(0,﹣2),得:,解得故直线AC:y=﹣x﹣2;设M(x,x2+x﹣2),则N(x,﹣x﹣2),则:MN=(﹣x﹣2)﹣(x2+x﹣2)=﹣x2﹣2x=﹣(x+2)2+2因此当M运动到OA的中垂线上,即M(﹣2,﹣3)时,线段MN的长最大.9.(1)令x=0,可得y=3,故点C的坐标为(0,3);(2)将点A(3,0),B(4,1)代入可得:,解得:,故函数解析式为y=x2﹣x+3;(3)如图,∵点A(3,0),点B(4,1),∴直线AB的解析式为:y=x﹣3,∵A(3,0),C(0,3),∴OA=3,OC=3,∴tan∠OAC===1,∴∠OAC=45°,∴∠OAC=∠OAF=45°,∵∠OEF=∠OAF=45°,∠OFE=∠OAE=45°,∴OE=OF,∠EOF=180°﹣45°×2=90°,∴△OEF是等腰直角三角形,∴S△OEF=×OE×OF=OE2,当OE最小时,S△FEO最小,根据等腰直角三角形的性质,当OE⊥AC时,OE最小,此时点E为AC的中点,故点E的坐标为(,).10.解:(1)易知抛物线的顶点D(﹣6,﹣3),则DE=3,OE=6;∵AE2=3DE=9,∴AE=3,即A(﹣3,0);将A点坐标代入抛物线的解析式中,得:a(﹣3+6)2﹣3=0,即a=,即抛物线的解析式为:y=(x+6)2﹣3=x2+4x+9.(2)设点P(﹣6,t),易知C(0,9);则PC的中点Q(﹣3,);易知:PC=;若以PC为斜边构造直角三角形,在x轴上的直角顶点只有一个时,以PC为直径的圆与x轴相切,即:||=,解得t=1,故点P(﹣6,1),当点P与点E重合时,由抛物线的解析式可知,A(﹣3,0),B(﹣9,0).所以P(﹣6,0),故点P的坐标为(﹣6,1)或(﹣6,0),(3)设点M(a,b)(a<0,b>0),分两种情况讨论:①当NE=2DE时,NE=6,即N(﹣6,6),已知D(﹣6,﹣3),则有:直线MN的斜率:k1=,直线MD的斜率:k2=;由于MN⊥DM,则k1•k2==﹣1,整理得:a2+b2+12a﹣3b+18=0…(△),由抛物线的解析式得:a2+4a+9=b,整理得:a2+12a﹣3b+27=0…(□);(△)﹣(□)得:b2=9,即b=3(负值舍去),将b=3代入(□)得:a=﹣6+3,a=﹣6﹣3,故点M(﹣6+3,3)或(﹣6﹣3,3);②当2NE=DE时,NE=,即N(﹣6,),已知D(﹣6,﹣3),则有:直线MN的斜率:k1=,直线DM的斜率:k2=;由题意得:k1•k2==﹣1,整理得:a2+b2+b+12a+=0,而a2+12a﹣3b+27=0;两式相减,得:2b2+9b+9=0,解得b=﹣2,b=﹣,(均不符合题意,舍去);综上可知:存在符合条件的M点,且坐标为:M(﹣6+3,3)或(﹣6﹣3,3).11.(1)将A,B,C三点坐标代入y=ax2+bx+c中,得,解得,∴y=﹣x2+x﹣2=﹣(x﹣)2+;(2)设点P(,m),分别过A、C两点作对称轴的垂线,垂足为A′,C′,∵AP⊥CP,∴△AA′P∽△PC′C,可得=,即=,解得m1=,m2=﹣,∴P(,)或(,﹣);(3)①由B(6,1),C(0,﹣2),得直线BC的解析式为y=x﹣2,∴D(4,0),当E点为抛物线顶点时,满足条件的点E只有一个,此时S=×4×2+×4×=,∵S△BOC=×2×6=6,∴当6≤S<时,满足条件的点E有两个.②当4<S<6时,﹣x2+x﹣2=0的△>0,方程有两个不相等的实数根,此时0<n<1,需满足的条件点E只能在点H与点B之间的抛物线上,故此时满足条件的点E只有一个.12. 解:(1)∵抛物线的对称轴是直线x=1,设抛物线的解析式是y=a(x﹣1)2+k,∴解得:,∴y=﹣(x﹣1)2+4即y=﹣x2+2x+3(2)∵y=﹣x2+2x+3,当y=0时,∴x2﹣2x﹣3=0,解得:x1=﹣1,x2=3,∴B(3,0),A(﹣1,0)∴AB=4.设P(a,﹣a2+2a+3)∴S△ABP==﹣2(a﹣1)2+8,∴△ABP面积的最大值为8(3)设D的坐标为(1,b),∴=6,∴b=±6,∴D(1,6)或(1,﹣6),设AD的解析式为y=kx+b,得或解得:或∴直线AD的解析式为:y=3x+3或y=﹣3x﹣313. 解:(1)由题意,得,解得∴抛物线的解析式为y=﹣x2+4x﹣3;(2)①令﹣x2+4x﹣3=0,解得x1=1,x2=3,∴B(3,0),当点P在x轴上方时,如图1,过点A作直线BC的平行线交抛物线于点P,易求直线BC的解析式为y=x﹣3,∴设直线AP的解析式为y=x+n,∵直线AP过点A(1,0),代入求得n=﹣1.∴直线AP的解析式为y=x﹣1解方程组,得,∴点P1(2,1)当点P在x轴下方时,如图1:设直线AP1交y轴于点E(0,﹣1),把直线BC向下平移2个单位,交抛物线于点P2,P3,得直线P2P3的解析式为y=x﹣5,解方程组,得,∴P2(,),P3(,),综上所述,点P的坐标为:P1(2,1),P2(,),P3(,),②∵B(3,0),C(0,﹣3)∴OB=OC,∴∠OCB=∠OBC=45°设直线CP的解析式为y=kx﹣3如图2,延长CP交x轴于点Q,设∠OCA=α,则∠ACB=45°﹣α,∵∠PCB=∠BCA,∴∠PCB=45°﹣α,∴∠OQC=∠OBC﹣∠PCB=45°﹣(45°﹣α)=α,∴∠OCA=∠OQC又∵∠AOC=∠COQ=90°∴Rt△AOC∽Rt△COQ∴,∴,∴OQ=9,∴Q(9,0)∵直线CP过点Q(9,0),∴9k﹣3=0∴∴直线CP的解析式为.其它方法略.114.解:(1)设直线AB解析式为y=kx+b,将A(﹣2,2),B(6,6)代入,得,解得,∴y=x+3,令x=0,∴E(0,3);(2)设抛物线解析式为y=ax2+bx+c,将A(﹣2,2),B(6,6),O(0,0)三点坐标代入,得,解得,∴y=x2﹣x(3)依题意,得直线OB的解析式为y=x,设过N点且与直线OB平行的直线解析式为y=x+m,联立,得x2﹣6x﹣4m=0,当△=36+16m=0时,过N点与OB平行的直线与抛物线有唯一的公共点,则点N到BO的距离最大,所以△BON面积最大,解得m=﹣,x=3,y=,即N(3,);此时△BON面积=×6×6﹣(+6)×3﹣××3=;(4)过点A作AS⊥GQ于S,∵A(﹣2,2),B(6,6),N(3,),∵∠AOE=∠OAS=∠BOH=45°,OG=3,NG=,NS=,AS=5,在Rt△SAN和Rt△NOG中,∴tan∠SAN=tan∠NOG=,∴∠SAN=∠NOG,∴∠OAS﹣∠SAN=∠BOG﹣∠NOG,∴∠OAN=∠NOB,∴ON的延长线上存在一点P,使得△BOP∽△OAN,∵A(﹣2,2),N(3,),∵△BOP与△OAN相似(点B、O、P分别与点O、A、N对应),即△BOP∽△OAN,∴BO:OA=OP:AN=BP:ON又∵A(﹣2,2),N(3,),B(6,6),∴BO=6,OA=2,AN=,ON=,∴OP=,BP=,设P点坐标为(4x,x),∴16x2+x2=()2,解得x=,4x=15,∵P、P′关于直线y=x轴对称,∴P点坐标为(15,)或(,15).15.解:(1)∵抛物线y=ax2+bx+与x轴交于点A(﹣3,0),C(5,0)∴解得.∴抛物线的函数关系式为y=﹣x2+x+.(2)①延长NM交AC于E,∵B为抛物线y=﹣x2+x+的顶点,∴B(1,8).(5分)∴BD=8,OD=1.∵C(5,0),∴CD=4.∵PM⊥BD,BD⊥AC,∴PM∥AC.∴∠BPM=∠BDC=90°,∠BMP=∠BCD.∴△BPM∽△BDC.∴=.根据题意可得BP=t,∴=.∴PM=t.∵MN∥BD,PM∥AC,∠BDC=90°,∴四边形PMED为矩形.∴DE=PM=t.∴OE=OD+DE=1+t.∴E(1+t,0).∵点N在抛物线上,横坐标为1+t,∴点N的纵坐标为﹣(1+t)2+(1+t)+.∴NE=﹣(1+t)2+(1+t)+=﹣t2+8.∵PB=t,PD=ME,∴EM=8﹣t.∴MN=NE﹣EM=﹣t2+8﹣(8﹣t)=﹣(t﹣4)2+2.当t=4时,MN最大=2.②存在符合条件的t值.连接OP,如图(2).若四边形OPMC是等腰梯形,只需OD=EC.∵OD=1,DE=PM=t,∴EC=5﹣(t+1).∴5﹣(t+1)=1.解得t=6.∴当t=6时,四边形OPMC是等腰梯形16.(1)由题意,得:,解得:,∴所求抛物线的解析式为:y=﹣x2﹣x+4.(2)设点Q的坐标为(m,0),过点E作EG⊥x轴于点G.由﹣x2﹣x+4=0,得x1=2,x2=﹣4,∴点B的坐标为(2,0),∴AB=6,BQ=2﹣m,∵QE∥AC,∴△BQE∽△BAC,∴,即,∴EG=(2﹣m),∴S△CQE=S△CBQ﹣S△EBQ=BQ•CO﹣BQ•EG=(2﹣m)[4﹣(2﹣m)]=﹣(m+1)2+3又∵﹣4≤m≤2,∴当m=﹣1时,S△CQE有最大值3,此时Q(﹣1,0).(3)存在.在△ODF中.(ⅰ)若DO=DF,∵A(﹣4,0),D(﹣2,0)∴AD=OD=DF=2,又在Rt△AOC中,OA=OC=4,∴∠OAC=45°,∴∠DFA=∠OAC=45°,∴∠ADF=90°.此时,点F的坐标为(﹣2,2)(ⅱ)若FO=FD,过点F作FM⊥x轴于点M由等腰三角形的性质得:OM=MD=1,∴AM=3,∴在等腰直角△AMF中,MF=AM=3,∴F(﹣1,3);(ⅲ)若OD=OF,∵OA=OC=4,且∠AOC=90°,∴AC=4,∴点O到AC的距离为2,而OF=OD=2<2,∴此时不存在这样的直线l,使得△ODF是等腰三角形,综上所述,存在这样的直线l,使得△ODF是等腰三角形,所求点F的坐标为:F(﹣2,2)或(﹣1,3).17.解:(1)∵抛物线y=ax2++c与x轴交于点(﹣1,0)和点B,与y轴交于点C(0,4).∴,解得:,∴y=﹣x2++4;(2)令y=0,可得x1=﹣1,x2=3,∴B点坐标为:(3,0),设P点坐标为(x,y),依据题意得出:×4×|y|=,∴|y|=,∵y=﹣x2++4;=﹣(x﹣1)2+,∴抛物线开口向下,顶点坐标为(1,),∴纵坐标最大值为:,∴y=﹣,∴﹣=﹣x2++4;解得:x1=﹣2,x2=4,∴P点的坐标为:(4,﹣),(﹣2,﹣);(3)如图所示:在△ABC中,OB=3,CO=4,∠BOC=90°,由勾股定理得BC=5,∵DE⊥BC,∴∠EDC=∠BOC=90°,∵∠DCE=∠OCB,∴△DCE∽△OCB,∴==,∵CD=t,∴==,∴CE=t,DE=t,∴四边形DEOB的周长为l=EO+BO+DB+DE=4﹣t+3+t+5﹣t=12﹣t,t的取值范围是:0<t<.18.:(1)过C作CD⊥x轴于G,∵点C为线段AB的中点,∴CG是△OAB的中位线,∴点C的坐标是(1,2),┅┅┅┅┅┅┅┅(1分)又∵OA=2,OB=4,∴AB=,AC=,显然△ABO∽△ADC,∴,即,┅┅┅┅┅┅┅┅┅┅┅(2分)∴AD=5OD=AD﹣OA=3,∴点D的坐标是(﹣3,0);┅┅┅┅┅┅┅┅┅(3分)(2)解:设过B(0,4),C(1,2),D(﹣3,0)的抛物线的关系式为y=ax2+bx+c,∴,┅┅┅┅┅┅(4分)解得:,┅┅┅┅┅┅┅┅┅┅┅┅(5分)∴抛物线的关系式为;┅┅┅┅┅┅┅┅┅(6分)(3)解:设点P的坐标为(x,y)连BD,过点P作PH⊥x轴于H,交BD于E,S四边形PBCD=S△BCD+S△PBD,∵S△BCD=S△ACD为定值,∴要使四边形PBCD的面积最大就是使△PBD的面积最大,①当P在BD间的抛物线上时,即﹣3<x<0,S△PBD=S△PBE+S△PED=PE×DH+PE×OH=PE×OD=PE,∵PE=PH﹣EH=y P﹣y E,┅┅┅┅┅┅┅┅(7分)直线BD的关系式为y=,∴PE=,=,当x=时,PE最大为,∴点P的坐标(,),┅┅┅┅┅┅┅┅┅┅(8分)②当P在BC间的抛物线上时,即0<x<1,同理可求出四边形PBCD的面积,很显然,此时四边形PBCD的面积要小于点P在BD间的抛物线上时的四边形PBCD的面积,故P点的坐标是(,).┅┅┅┅┅┅┅┅┅(9分)19.解:(1)将点C(2,2)代入直线y=kx+4,可得k=﹣1所以直线的解析式为y=﹣x+4当x=1时,y=3,所以B点的坐标为(1,3)将B、C、O三点的坐标分别代入抛物线y=ax2+bx+c,可得解得,所以所求的抛物线为y=﹣2x2+5x.(2)因为ON的长是一定值,所以当点P为抛物线的顶点时,△PON的面积最大,又该抛物线的顶点坐标为(),此时tan∠PON=.(3)存在;把x=0代入直线y=﹣x+4得y=4,所以点A(0,4)把y=0代入抛物线y=﹣2x2+5x得x=0或x=,所以点N(,0)设动点P坐标为(x,y),其中y=﹣2x2+5x (0<x<)则得:S△OAP=|OA|•x=2xS△ONP=|ON|•y=•(﹣2x2+5x)=(﹣2x2+5x)由S△OAP=S△ONP,即2x=•(﹣2x2+5x)解得x=0或x=1,舍去x=0得x=1,由此得y=3所以得点P存在,其坐标为(1,3)20.解:(1)设抛物线的解析式为:y=a(x﹣3)2﹣3,依题意有:a(1﹣3)2﹣3=0,a=,∴该抛物线的解析式为:y=(x﹣3)2﹣3=x2﹣x+.(2)设B点关于y轴的对称点为B′,则B′(﹣1,0);设直线AB′的解析式为y=kx+b,则有:,解得;∴y=﹣x﹣;故P0(0,﹣).(3)由(1)的抛物线知:y=x2﹣x+=(x﹣1)(x﹣5),故C(5,0);∵S四边形AP0BC=S△AB′C﹣S△BB′P0=×6×3﹣×2×=;∴S△BCM=S四边形AP0BC=;易知BC=4,则|y M|=;当M的纵坐标为时,x2﹣x+=,解得x=3+,x=3﹣;当M的纵坐标为﹣时,x2﹣x+=﹣,解得x=3+,x=3﹣;故符合条件的M点有四个,它们的坐标分别是:M1(3+,),M2(3﹣,),M3(3+,﹣),M4(3﹣,﹣).21.:(1)由于抛物线经过A(2,0),C(0,﹣1),则有:,解得;∴抛物线的解析式为:y=﹣x﹣1.(2)∵A(2,0),C(0,﹣1),∴直线AC:y=x﹣1;设D(x,0),则E(x,x﹣1),故DE=0﹣(x﹣1)=1﹣x;∴△DCE的面积:S=DE×|x D|=×(1﹣x)×x=﹣x2+x=﹣(x﹣1)2+,因此当x=1,即D(1,0)时,△DCE的面积最大,且最大值为.(3)由(1)的抛物线解析式易知:B(﹣1,0),可求得直线BC的解析式为:y=﹣x﹣1;设P(x,﹣x﹣1),因为A(2,0),C(0,﹣1),则有:AP2=(x﹣2)2+(﹣x﹣1)2=2x2﹣2x+5,AC2=5,CP2=x2+(﹣x﹣1+1)2=2x2;①当AP=CP时,AP2=CP2,有:2x2﹣2x+5=2x2,解得x=2.5,∴P1(2.5,﹣3.5);②当AP=AC时,AP2=AC2,有:2x2﹣2x+5=5,解得x=0(舍去),x=1,∴P2(1,﹣2);③当CP=AC时,CP2=AC2,有:2x2=5,解得x=±,∴P3(,﹣﹣1),P4(﹣,﹣1);综上所述,存在符合条件的P点,且P点坐标为:P1(2.5,﹣3.5)、P2(1,﹣2)、P3(,﹣﹣1)、P4(﹣,﹣1).22.解:(1)∵抛物线的顶点为Q(2,﹣1),∴设抛物线的解析式为y=a(x﹣2)2﹣1,将C(0,3)代入上式,得:3=a(0﹣2)2﹣1,a=1;∴y=(x﹣2)2﹣1,即y=x2﹣4x+3;(2)分两种情况:①当点P1为直角顶点时,点P1与点B重合;令y=0,得x2﹣4x+3=0,解得x1=1,x2=3;∵点A在点B的右边,∴B(1,0),A(3,0);∴P1(1,0);②当点A为△AP2D2的直角顶点时;∵OA=OC,∠AOC=90°,∴∠OAD2=45°;当∠D2AP2=90°时,∠OAP2=45°,∴AO平分∠D2AP2;又∵P2D2∥y轴,∴P2D2⊥AO,∴P2、D2关于x轴对称;设直线AC的函数关系式为y=kx+b(k≠0).将A(3,0),C(0,3)代入上式得:,解得;∴y=﹣x+3;设D2(x,﹣x+3),P2(x,x2﹣4x+3),则有:(﹣x+3)+(x2﹣4x+3)=0,即x2﹣5x+6=0;解得x1=2,x2=3(舍去);∴当x=2时,y=x2﹣4x+3=22﹣4×2+3=﹣1;∴P2的坐标为P2(2,﹣1)(即为抛物线顶点).∴P点坐标为P1(1,0),P2(2,﹣1);(3)由(2)知,当P点的坐标为P1(1,0)时,不能构成平行四边形;当点P的坐标为P2(2,﹣1)(即顶点Q)时,平移直线AP交x轴于点E,交抛物线于F;∵P(2,﹣1),∴可设F(x,1);∴x2﹣4x+3=1,解得x1=2﹣,x2=2+;∴符合条件的F点有两个,即F1(2﹣,1),F2(2+,1).23.解:(1)由已知A(0,6),B(6,6)在抛物线上,得方程组,(1分)解得.(3分)(2)①运动开始t秒时,EB=6﹣t,BF=t,S=EB•BF=(6﹣t)t=﹣t2+3t,(4分)以为S=﹣t2+3t=﹣(t﹣3)2+,所以当t=3时,S有最大值.(5分)②当S取得最大值时,∵由①知t=3,∴BF=3,CF=3,EB=6﹣3=3,若存在某点R,使得以E,B,R,F为顶点的四边形是平行四边形,则FR1=EB且FR1∥EB,。
【最新整理,下载后即可编辑】二次函数练习题(一)1、一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t (秒)的数据如下表:写出用t 表示s 的函数关系式.2、下列函数:① 23yx ;②()21y x x x =-+;③()224y x x x =+-;④21yx x ;⑤()1y x x =-,其中是二次函数的是,其中a,b,c3、当m 时,函数()2235y m x x =-+-(m 为常数)是关于x 的二次函数4、当____m =时,函数2221mm ym m x 是关于x 的二次函数5、当____m =时,函数()2564m m y m x -+=-+3x 是关于x 的二次函数 6、若点 A ( 2,m )在函数12-=x y 的图像上,则 A 点的坐标是____.7、在圆的面积公式S=πr2中,s 与r 的关系是()A、一次函数关系B、正比例函数关系C、反比例函数关系D、二次函数关系8、正方形铁片边长为15cm,在四个角上各剪去一个边长为x(cm)的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S(cm2)与小正方形边长x(cm)之间的函数关系式;(2)当小正方形边长为3cm时,求盒子的表面积.9、矩形的长是4cm,宽是3cm,如果将长和宽都增加x cm,那么面积增加ycm2,①求y 与x 之间的函数关系式.②求当边长增加多少时,面积增加8cm2.10、已知二次函数),0(2≠axy当x=1时,y= -1;当x=2时,y=2,求该c=a+函数解析式.11、富根老伯想利用一边长为a米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形.(1)如果设猪舍的宽AB为x米,则猪舍的总面积S(米2)与x有怎样的函数关系?(2) 请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC 和宽AB 的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?二次函数练习题(二)-----函数2ax y =的图象与性质1、填空:(1)抛物线221x y =的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ; (2)抛物线221x y -=的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ; 2、对于函数22x y =下列说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④图象关于y 轴对称.其中正确的是 .3、抛物线 y =-x 2 不具有的性质是( )A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点4、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S =12gt 2(g =9.8),则 s 与 t 的函数图像大致是( )A B C D 5、函数2ax y =与b ax y +-=的图象可能是( )A .B .C .D .6、已知函数24mm ymx 的图象是开口向下的抛物线,求m 的值.stOstOstOstO7、二次函数12-=m mx y 在其图象对称轴的左侧,y 随x 的增大而增大,求m的值.8、二次函数223x y -=,当x 1>x 2>0时,求y 1与y 2的大小关系.9、已知函数()422-++=m m x m y 是关于x 的二次函数,求:(1) 满足条件的m 的值;(2) m 为何值时,抛物线有最低点?求出这个最低点,这时x 为何值时,y 随x 的增大而增大;(3) m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x的增大而减小?10、如果抛物线2y ax与直线1=-交于点,2b,求这条抛物线所对应的二y x次函数的关系式.二次函数练习题(三)-----函数c=2的图象与性质axy+1、抛物线322-y的开口,对称轴是,顶点坐标-=x是,当x 时, y随x的增大而增大, 当x 时, y随x的增大而减小.2、将抛物线231x y =向下平移2个单位得到的抛物线的解析式为 ,再向上平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 .3、任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其中判断正确的是 .4、将抛物线122-=x y 向上平移4个单位后,所得的抛物线是 ,当x= 时,该抛物线有最 (填大或小)值,是 .5、已知函数2)(22+-+=x m m mx y 的图象关于y 轴对称,则m =________;6、二次函数c ax y +=2()0≠a 中,若当x 取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值等于 .二次函数练习题(四)-----函数()2h x a y -=的图象与性质1、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有最 值 .2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标.(1)右移2个单位;(2)左移32个单位;(3)先左移1个单位,再右移4个单位.3、请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个).4、二次函数()2h x a y -=的图象如图:已知21=a ,OA=OC ,试求该抛物线的解析式.5、抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积.6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6.(1)求出此函数关系式.(2)说明函数值y 随x 值的变化情况.7、已知抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值.二次函数练习题(五)-----()k h x a y +-=2的图象与性质 1、请写出一个二次函数以(2, 3)为顶点,且开口向上.____________.2、二次函数 y =(x -1)2+2,当 x =____时,y 有最小值.3、函数 y =12(x -1)2+3,当 x ____时,函数值 y 随 x 的增大而增大. 4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到. 5、已知抛物线的顶点坐标为2,1,且抛物线过点3,0,则抛物线的关系式是 6、如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是( ) A 、x>3 B 、x<3 C 、x>1 D 、x<1 7、已知函数()9232+--=x y .(1) 确定下列抛物线的开口方向、对称轴和顶点坐标; (2) 当x= 时,抛物线有最 值,是 .(3)当x 时,y随x的增大而增大;当x 时,y随x的增大而减小.(4)求出该抛物线与x轴的交点坐标及两交点间距离;(5)求出该抛物线与y轴的交点坐标;(6)该函数图象可由23x=的图象经过怎样的平移得到的?y-8、已知函数()412-y.+=x(1)指出函数图象的开口方向、对称轴和顶点坐标;(2)若图象与x轴的交点为A、B和与y轴的交点C,求△ABC的面积;(3)指出该函数的最值和增减性;(4)若将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式;(5)该抛物线经过怎样的平移能经过原点.(6)画出该函数图象,并根据图象回答:当x取何值时,函数值大于0;当x取何值时,函数值小于0.二次函数练习题(六)-----c bx ax y ++=2的图象和性质 1、抛物线942++=x x y 的对称轴是 . 2、抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 .3、试写出一个开口方向向上,对称轴为直线x=-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .4、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,则 y =____.5、把二次函数215322y x x =---的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是 6、抛物线1662--=x x y 与x 轴交点的坐标为_________; 7、函数x x y +-=22有最____值,最值为___ ____;8、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于( )A 、6,4B 、-8,14C 、-6,6D 、-8,-14 9、二次函数122--=x x y 的图象在x 轴上截得的线段长为( ) A 、22 B 、23 C 、32 D 、3310、通过配方,写出下列函数的开口方向、对称轴和顶点坐标: (1)12212+-=x x y ; (2)2832-+-=x x y ; (3)4412-+-=x x y11、把抛物线1422++-=x x y 沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由.12、求二次函数62+--=x x y 的图象与x 轴和y 轴的交点坐标13、已知一次函数的图象过抛物线223yx x的顶点和坐标原点1)求一次函数的关系式;2)判断点()-是否在这个一次函数的图象上2,514、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?二次函数练习题(七)-----c+=2的性质axy+bx1、函数2y x px q的图象是以3,2为顶点的一条抛物线,这个二次函数的表达式为2、二次函数22y mx x m m的图象经过原点,则此抛物线的顶点坐标24是3、如果抛物线2y ax bx c与y轴交于点A(0,2),它的对称轴是1x,那么acb4、抛物线c+=2与x轴的正半轴交于点A、B两点,与y轴交于点C,y+xbx且线段AB的长为1,△ABC的面积为1,则b的值为______.5、已知二次函数c=2的图象如图所示,则a___0,b___0,c___0,y++axbx2-____0;acb46、二次函数c bx ax y ++=2的图象如图,则直线bc ax y +=的图象不经过第 象限.7、已知二次函数2yax bxc (0≠a )的图象如图所示,则下列结论:1),a b 同号; 2)当1x 和3x时,函数值相同;3)40a b;4)当2422b b acy a-±-=-时,x 的值只能为0;其中正确的是 8、已知二次函数2224m mx x y +--=与反比例函数xm y 42+=的图象在第二象限内的一个交点的横坐标是-2,则m= 9、二次函数2yx axb 中,若0ab,则它的图象必经过点()A ()1,1--B ()1,1-C 1,1D ()1,1-10、函数b ax y +=与c bx ax y ++=2的图象如图所示,则下列选项中正确的是( )A 、0,0>>c abB 、0,0><c abC 、0,0<>c abD 、0,0<<c ab111、已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是( )12、二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有( ) A .4个 B .3个 C .2个 D .1个 13、抛物线的图角如图,则下列结论: ①>0;②;③>;④<1.其中正确的结论是( ). (A )①② (B )②③ (C )②④ (D )③④ 14、二次函数2y ax bxc 的最大值是3a ,且它的图象经过()1,2--,1,6两点,求a 、b 、c15、试求抛物线2y ax bx c与x轴两个交点间的距离(240b ac)二次函数练习题(八)-----确定二次函数解析式1、抛物线y=ax2+bx+c经过A(-1,0), B(3,0), C(0,1)三点,则a= , b= , c=2、把抛物线y=x2+2x-3向左平移3个单位,然后向下平移2个单位,则所得的抛物线的解析式为.3、二次函数有最小值为1,当0x时,1x,y,它的图象的对称轴为1则函数的关系式为4、根据条件求二次函数的解析式(1)抛物线过(-1,-6)、(1,-2)和(2,3)三点(2)抛物线的顶点坐标为(-1,-1),且与y轴交点的纵坐标为-3(3)抛物线过(-1,0),(3,0),(1,-5)三点;(4)抛物线在x轴上截得的线段长为4,且顶点坐标是(3,-2);5、已知二次函数的图象经过1,1、2,1两点,且与x轴仅有一个交点,求二次函数的解析式6、抛物线y=ax2+bx+c过点(0,-1)与点(3,2),顶点在直线y=3x-3上,a<0,求此二次函数的解析式.7、已知二次函数的图象与x轴交于A(-2,0)、B(3,0)两点,且函数有最大值是2.(1)求二次函数的图象的解析式;(2)设次二次函数的顶点为P,求△ABP的面积.8、以x为自变量的函数)32(2)1(42-mxy中,m为不小于零的整mx-+=m++-数,它的图象与x轴交于点A和B,点A在原点左边,点B在原点右边.(1)求这个二次函数的解析式;(2)一次函数y=kx+b的图象经过点A,与这个二次函数的图象交于点C ,且ABC S ∆=10,求这个一次函数的解析式.二次函数练习题(九)-----二次函数与方程和不等式1、已知二次函数772--=x kx y 与x 轴有交点,则k 的取值范围是 .2、关于x 的一元二次方程02=--n x x 没有实数根,则抛物线n x x y --=2的顶点在第_____象限;3、抛物线222++-=kx x y 与x 轴交点的个数为( ) A 、0 B 、1 C 、2 D 、以上都不对4、二次函数c bx ax y ++=2对于x 的任何值都恒为负值的条件是( ) A 、0,0>∆>a B 、0,0<∆>a C 、0,0>∆<a D 、0,0<∆<a5、12++=kx x y 与k x x y --=2的图象相交,若有一个交点在x 轴上,则k 为( ) A 、0 B 、-1 C 、2 D 、416、若方程02=++c bx ax 的两个根是-3和1,那么二次函数c bx ax y ++=2的图象的对称轴是直线( )A 、x =-3 B 、x =-2 C 、x =-1 D 、x =17、已知二次函数2y x pxq 的图象与x 轴只有一个公共点,坐标为1,0,求,p q 的值。
二次函数总复习经典练习题1.抛物线y=-3x2+2x-1 的图象与坐标轴的交点情况是( )(A) 没有交点.(B) 只有一个交点.(C) 有且只有两个交点.(D) 有且只有三个交点.2.已知直线y=x 与二次函数y=ax2-2x- 1 图象的一个交点的横坐标为1,则 a 的值为( )(A)2 .(B)1 .(C)3 .(D)4 .3.二次函数y=x2-4x+3的图象交x轴于A、B两点,交y 轴于点C,则△ ABC的面积为( ) (A)6 .(B)4 .(C)3 .(D)1 .24.函数y=ax 2+bx+ c 中,若a> 0,b< 0,c<0,则这个函数图象与x 轴的交点情况是( )(A) 没有交点.(B) 有两个交点,都在x 轴的正半轴.(C) 有两个交点,都在x 轴的负半轴.(D) 一个在x 轴的正半轴,另一个在x 轴的负半轴.5.已知(2 ,5) 、(4 ,5)是抛物线y=ax2+bx+c 上的两点,则这个抛物线的对称轴方程是( ) a(A) x= .(B) x=2.(C) x=4.(D) x=3.b6.已知函数y=ax2+bx+ c 的图象如图 1 所示,那么能正确反映函数y=ax+ b 图象的只可能是( )7.二次函数y=2x2-4x+5 的最小值是_____ .28.某二次函数的图象与x轴交于点( -1,0) ,(4 ,0) ,且它的形状与y=-x2形状相同.则这个二次函数的解析式为_____ .9.若函数y=-x2+4 的函数值y> 0,则自变量x 的取值范围是______ .10.某品牌电饭锅成本价为70 元,销售商对其销量与定价的关系进行了调查,结果如下:801001101008060为获得最大利润,销售商应将该品牌电饭锅定价为元.11.函数y=ax 2-(a-3)x+ 1 的图象与x 轴只有一个交点,那么 a 的值和交点坐标分别为12.某涵洞是一抛物线形, 它的截面如图3 所示, 现测得水面宽AB 1.6m, 涵洞顶点O 到水面的距离为2.4m, 在图中的直角坐标系内, 涵洞所在抛物线的解析式为13.(本题8 分)已知抛物线y=x2-2x-2 的顶点为A,与y 轴的交点为B,求过A、B 两点的直线的解析式.14.(本题8分)抛物线y=ax2+2ax+a2+2的一部分如图3所示,求该抛物线在y 轴左侧与x 轴的交点坐标.15.(本题8 分)如图4,已知抛物线y=ax2+bx+c(a> 0)的顶点是C(0,1),直线l :y=-ax+3 与这条抛物线交于P、Q两点,且点P 到x 轴的距离为2.(1)求抛物线和直线l 的解析式;(2)求点Q的坐标.16.(本题8 分)工艺商场以每件155 元购进一批工艺品.若按每件200 元销售,工艺商场每天可售出该工艺品100 件;若每件工艺品降价 1 元,则每天可多售出该工艺品 4 件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?17.(本题10 分))杭州休博会期间,嘉年华游乐场投资150万元引进一项大型游乐设施.若不计维修保养费用,预计开放后每月可创收33万元.而该游乐设施开放后,从第 1个月到第x 个月的维修保养费用累计为y(万元),且y=ax2+bx;若将创收扣除投资和维修保养费用称为游乐场的纯收益g(万元) ,g也是关于x 的二次函数.(1) 若维修保养费用第 1 个月为 2 万元,第 2 个月为 4 万元.求y 关于x 的解析式;(2) 求纯收益g 关于x 的解析式;(3) 问设施开放几个月后,游乐场的纯收益达到最大?几个月后,能收回投资?18(本题10分)如图所示,图4- ①是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m,支柱A3B3=50m,5 根支柱A1B1、A2B2、A3B3、A4B4、A5B5 之间的距离均为15m,B1B5∥ A1A5,将抛物线放在图4- ②所示的直角坐标系中.(1) 直接写出图4- ②中点B1、B3、B5的坐标;(2) 求图4- ②中抛物线的函数表达式;(3) 求图4- ①中支柱A2B2、A4B4 的长度.B319、如图5,已知A(2,2),B(3,0).动点P( m,0)在线段OB上移动,过点P作直线l 与x 轴垂直.(1) 设△ OAB中位于直线l 左侧部分的面积为S,写出S与m之间的函数关系式;(2) 试问是否存在点P,使直线l 平分△ OAB的面积?若有,求出点P 的坐标;若无,请说明理由.更多学习方法和中高考复习资料,免费下载,扫一扫关注微信:答案:一、1.B 2 .D 3 .C 4 .D 5 .D 6.B二、 7.3 8 .y =- x +3x +4 9 .- 2< x <2 10 .1301 115 211. a =0, ( ,0);a =1,(-1,0);a =9,( ,0) 12 . y x 23 3 413.抛物线的顶点为 (1,- 3),点 B 的坐标为 (0,- 2).直线 AB 的解析式为 y =-x -2 14.依题意可知抛物线经过点 (1,0) .于是 a + 2a + a 2+ 2=0,解得 a 1=-1,a 2=-2.当 a = -1 或 a =-2 时,求得抛物线与 x 轴的另一交点坐标均为 ( -3,0)2 15. (1) 依题意可知 b =0,c =1,且当 y =2 时,ax 2+1=2①,- ax +3=2②.由①、②解得 a =1, x =1.故抛物线与直线的解析式分别为: y =x 2+ 1,y =- x +3;(2) Q ( -2,5)216.设降价 x 元时,获得的利润为 y 元.则依意可得 y =(45-x )(100 +4x )= -4x 2+80x +4500, 即 y =-4(x -10)2+4900.故当 x =10时, y 最大=4900(元)2217. (1) 将(1,2)和(2,6) 代入 y =ax 2+bx ,求得 a =b =1.故 y =x 2+x ;(2) g =33x -150-y , 22即 g =-x 2+32x -150;(3) 因 y =-(x -16) 2+106,所以设施开放后第 16 个月,纯收益最大.令 g =0,得- x 2+ 32 x - 150=0.解得 x =16± 106 ,x ≈16- 10.3=5.7( 舍去 26.3) .当 x =5 时, g <0, 当 x =6 时, g >0,故 6 个月后,能收回投资18.(1) B 1( 30,0), B 3 (0,30) , B 5 (30,0) ;(2)设抛物线的表达式为 y a (x 30)(x 30) ,把 B 3 (0,30) 代入得 y a(0 30)(0 30) 30.1∴ a .30∵所求抛物线的表达式为: y3)∵ B 4 点的横坐标为 15, 1 45∴B 4 的纵坐标 y 4 (15 30)(15 30) .4 30 2∵ A 3B 3 50 ,拱高为 30,1 (x 30)(x 30) . 30∴立柱A4B445 8520 (m) .22由对称性知:85A2B2 A4B4 (m) .2四、1 2 1 119.(1)当0≤m≤2时,S= m2;当2<m≤3时,S= ×3×2-(3 -m)(-2m+6)= -m22 2 2+6m-6.(2)若有这样的P点,使直线l 平分△ OAB的面积,很显然0<m<2.由于△ OAB3 1 3的面积等于3,故当l 平分△ OAB面积时,S= .∴ m2.解得m= 3 .故存在这样2 2 2的P点,使l 平分△ OAB的面积.且点P的坐标为(3 ,0).。
二次函数基础练习练习一二次函数1、一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离5(米)与时间1(秒)的数据如下表:时间短秒)1234• • •距离5(米)281832• • •写出用1表示5的函数关系式.2、下列函数:① g = \:'3x2 ;② y — x2 — x 1 + x ;③ y = x2 x2 -p x— 4 ;④y = — + x;⑤y = x 1_x,其中是二次函数的是,其中a= ,x 2b =,c =3、当m时,函数y= m-2 x 2 + 3x—5 (m为常数)是关于x的二次函数4、当m ______ 时,函数y = m2 + m x m厂2m-1是关于x的二次函数5、当m ______ 时,函数y = m-4 x m 2-5 m+ 6 +3x是关于x的二次函数6、若点A (2, m)在函数y = x 2 -1的图像上,则A点的坐标是_________ .7、在圆的面积公式S二n「2中,5与r的关系是()人、一次函数关系8、正比例函数关系1反比例函数关系口、二次函数关系8、正方形铁片边长为15^^,在四个角上各剪去一个边长为x(cm)的小正方形,用余下的部分做成一个无盖的盒子.⑴求盒子的表面积5552)与小正方形边长x(cm)之间的函数关系式;⑵当小正方形边长为3cm时,求盒子的表面机9、如图,矩形的长是4^^,宽是3^^,如果将长和宽都增加x cm, 那么面积增加ycm2,①求y与x之间的函数关系式.②求当边长增加多少时,面积增加8cm2.10、已知二次函数y = ax 2 + c(a丰0),当x=1时,y= -1;当x=2时,y=2,求该函数解析式.11、富根老伯想利用一边长为2米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形.(1)如果设猪舍的宽人8为*米,则猪舍的总面积$(米2)与*有怎样的函数关系?(2)请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC和宽人8的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?练习二函数y = ax2的图象与性质1、填空:(1)抛物线y = 1 x2的对称轴是(或),顶点坐标是,当X 时,y随*的增大而增大,当x 时,y随*的增大而减小,当x=时,该函数有最____ 值是_________ ;(2)抛物线y = - 1 x 2的对称轴是(或),顶点坐标是________________________________ ,当x 时,"随*的增大而增大,当x 时,"随*的增大而减小,当x=时,该函数有最值是;2、对于函数y = 2 x 2下列说法:①当*取任何实数时,y的值总是正的;②x的值增大,旷的值也增大;③"随*的增大而减小;④图象关于"轴对称.其中正确的是.3、抛枷线V= -X2不具有的性质是( )A 、开口向下B 、对称轴是V 轴C 、与V 轴不相交D 、最高点是原点4、苹果熟了,从树上落下所经过的路程S 与下落时间t 满足S = 1 gt 2(g = 9.8),则s 与t 的 25、函数y = ax 2 3与y = — ax + b 的图象可能是( )6、已知函数y =mx m 2 ~m~ 4的图象是开口向下的抛物线,求m 的值.7、二次函数y = mx m 2 -i 在其图象对称轴的左侧,"随*的增大而增大,求团的值.3••一8、二次函数y = -- x 2,当x 1>x 2>0时,求匕与旷2的大小关系. 已知函数y & + 2^m 2 + m -4是关于*的二次函数,求:团为何值时,抛物线有最低点?求出这个最低点,这时*为何值时,"随*的增大而增大;团为何值时,抛物线有最大值?最大值是多少?当*为何值时,"随*的增大而减小?9、(1) 满足条件的m 的值;(2)(3)10、如果抛物线y = ax2与直线y=x — 1交于点b,2,求这条抛物线所对应的二次函数的关系式.练习三函数y=ax 2 +。
《二次函数》练习题与答案一、 选择题1,下列函数中,是二次函数の是( ) A,12-=x y B,x x y +=3C,312++=x x y D,2==x y 2,(2012广州)将二次函数y=x 2の图象向下平移一个单位,则平移以后の二次函数の解析式为( ) A .y=x 2﹣1 B .y=x 2+1 C .y=(x ﹣1)2 D .y=(x+1)2 3,(2012兰州)抛物线y=-2x 2+1の对称轴是( ) A.直线12x =B. 直线12x =- C. y 轴 D. 直线x=2 4,(2012北海)已知二次函数y =x 2-4x +5の顶点坐标为( )A .(-2,-1)B .(2,1)C .(2,-1)D .(-2,1)5,(2011XX 台北,6)若下列有一图形为二次函数y =2x 2-8x +6の图形,则此图为何?( )6,(2012滨州)抛物线234y x x =--+ 与坐标轴の交点个数是( ) A .3 B .2 C .1 D .07, ( 2012巴中)对于二次函数y =2(x +1)(x -3)下列说法正确の是( ) A. 图象开口向下 B. 当x >1时,y 随x の增大而减小 C. x <1时,y 随x の增大而减小 D. 图象の对称轴是直线x= - 1 8,(2011XX 威海,7,3分)二次函数223y x x =--の图象如图所示. 当y <0时,自变量x の取值范围是( ). A .-1<x <3B .x <-1C . x >3D .x <-1或x >39,(2012泰安)设A 1(2)y -,,B 2(1)y ,,C 3(2)y ,是抛物线2(1)y x a =-++上の三点,则1y ,2y ,3y の大小关系为( )A .213y y y >>B .312y y y >>C .321y y y >>D .312y y y >>10,(2012菏泽)已知二次函数2y ax bx c =++の图像如图所示,那么一次函数y bx c =+和反比例函数ay x=在同一平面直角坐标系中の图像大致是( )xy(第3题)O11(1,-2)cbx x y ++=2-1 A . B .C .D .,11,(2012泰安)二次函数2()y a x m n =++の图象如图,则一次函数y mx n =+の图象经过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限12,(2012•资阳)如图是二次函数y=ax 2+bx+c の部分图象,由图象可知 不等式ax 2+bx+c <0の解集是( )A .﹣1<x <5B .x >5C .x <﹣1且x >5D .x <﹣1或x >5二、填空题1.(2011江津,18,4)将抛物线y=x 2-2x 向上平移3个单位,再向右平移4 个单位等到の抛物线是_ _ ___.2.(2012XX )二次函数622+-=x x y の最小值是.3. (2011XX 舟山,15,4)如图,已知二次函数c bx x y ++=2の图象经过 点(-1,0),(1,-2),当y 随x の增大而增大时,x の取值范围是. 4.(2012无锡)若抛物线y=ax 2+bx+c の顶点是A (2,1),且经过点B (1,0), 则抛物线の函数关系式为.5. 若抛物线y=x 2-2x-3与x 轴分别交于A 、B 两点,则AB の长为____ ___.6.(2011XX 日照,17,4)如图是二次函数y =ax 2+bx +c (a ≠0)の图象の一 部分,给出下列命题 :①a+b+c=0;②b >2a ;③ax 2+bx +c =0の两根分别为-3和1; ④a -2b +c >0.其中正确の命题是 .(只要求填写正确命题の序号) 7. (2012广安)如图,把抛物线y=21x 2平移得到抛物线m ,抛物线m 经过点 A (-6,0)和原点O (0,0),它の顶点为P ,它の对称轴与抛物线y=21x 2交于点Q ,则图中阴影部分の面积为________________.三、解答题1.(2011广东东莞,15,6分)已知抛物线212y x x c =++与x 轴没有交点. (1)求c の取值范围;(2)试确定直线y =cx +1经过の象限,并说明理由.2.(2012•佳木斯)如图,抛物线y=x 2+bx+c 经过坐标原点,并与x 轴交于点A (2,0). (1)求此抛物线の解析式;(2)写出顶点坐标与对称轴; (3)若抛物线上有一点B ,且S △OAB =3,求点B の坐标.3.(2012•嘉兴)某汽车租赁公司拥有20辆汽车.据统计,当每辆车の日租金为400元时,可全部租出;当每 辆车の日租金每增加50元,未租出の车将增加1辆;公司平均每日の各项支出共4800元.设公司每日租出工辆车时,日收益为y 元.(日收益=日租金收入一平均每日各项支出)(1)公司每日租出x 辆车时,每辆车の日租金为 _________ 元(用含x の代数式表示); (2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元? (3)当每日租出多少辆时,租赁公司の日收益不盈也不亏?4.(2012•鸡西)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3.(1)求抛物线の解析式.(2)若点D(2,2)是抛物线上一点,那么在抛物线の对称轴上,是否存在一点P,使得△BDPの周长最小?若存在,请求出点Pの坐标;若不存在,请说明理由.5.(2012•XX)如图,已知二次函数L1:y=x2﹣4x+3与x轴交于A、B两点),与y轴交于点C.(1)写出A、B两点の坐标;(2)二次函数L2:y=kx2﹣4kx+3k(k≠0),顶点为P.①直接写出二次函数L2与二次函数L1有关图象の两条相同の性质;②是否存在实数k,使△ABP为等边三角形?如果存在,请求出kの值;如不存在,请说明理由;③若直线y=8k与抛物线L2交于E、F两点,问线段EFの长度是否会发生变化?如果不会,请求出EFの长度;如果会,请说明理由.答 案一,选择题.1,解:)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数の一般式。
二次函数练习
一、填空题:
1、抛物线 y=-x2+1 的开口向____。
2、抛物线 y=2x2 的对称轴是____。
3、函数 y=2 (x-1)2 图象的顶点坐标为____。
4、将抛物线 y=2x2 向下平移 2 个单位,所得的抛物线的解析式为________。
5、函数 y=x2+bx+3 的图象经过点(-1, 0),则 b=____。
6、二次函数 y=(x-1)2+2,当 x=____时,y 有最小值。
7、函数 y=12 (x-1)2+3,当 x____时,函数值 y 随 x 的增大而增大。
8、将 y=x2-2x+3 化成 y=a (x-h)2+k 的形式,则 y=____。
9、若点 A ( 2, m) 在函数 y=x2-1 的图像上,则 A 点的坐标是____。
10、抛物线 y=2x2+3x-4 与 y 轴的交点坐标是____。
11、请写出一个二次函数以(2, 3)为顶点,且开口向上。____________。
12、已知二次函数 y=ax2+bx+c 的图像如图所示:则这个二次函数的解析式是 y=___。
二、选择题:
1、在圆的面积公式 S=πr2 中,s 与 r 的关系是( )
A、一次函数关系 B、正比例函数关系 C、反比例函数关系 D、二次函数关系
2、已知函数 y=(m+2) 22mx是二次函数,则 m 等于( )
A、±2 B、2 C、-2 D、±2
3、已知 y=ax2+bx+c 的图像如图所示,则 a、b、c 满足( )
A、a<0,b<0,c<0 B、a>0,b<0,c>0
C、a<0,b>0,c>0 D、a<0,b<0,c>0
4、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S=12gt2(g=9.8),则 s 与 t 的函数
图像大致是( )
A B C D
5、抛物线 y=-x2 不具有的性质是( )
A、开口向下 B、对称轴是 y 轴 C、与 y 轴不相交 D、最高点是原点
6、抛物线 y=x2-4x+c 的顶点在 x 轴,则 c 的值是( )
A、0 B、4 C、-4 D、2
三、解答题:
1、如图,矩形的长是 4cm,宽是 3cm,如果将长和宽都增加 x cm,那么面积增加 ycm2,
① 求 y 与 x 之间的函数关系式。
② 求当边长增加多少时,面积增加 8cm2。
s t O s t O s
t
O
s
t
O
x
y
O 1 1 2
-1
x
y
O
2、已知抛物线的顶点坐标是(-2,1),且过点(1,-2),求抛物线的解析式。
3、已知二次函数的图像经过(0,1),(2,1)和(3,4),求该二次函数的解析式。
4、用 6m 长的铝合金型材做一个形状如图所示的矩形窗框,应做成长、宽各为多少时,才能使做成的
窗框的透光面积最大?最大透光面积是多少?
5、有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为 4m,跨度为 10m
,如图所示,把它的图形
放在直角坐标系中。
①求这条抛物线所对应的函数关系式。
②如图,在对称轴右边 1m 处,桥洞离水面的高是多少?
6、商场销售一批衬衫,每天可售出 20 件,每件盈利 40
元,为了扩大销售,减少库存,决定采取适
当的降价措施,经调查发现,如果一件衬衫每降价 1 元,每天可多售出 2 件。
① 设每件降价 x 元,每天盈利 y 元,列出 y 与 x 之间的函数关系式;
② 若商场每天要盈利 1200 元,每件应降价多少元?
③ 每件降价多少元时,商场每天的盈利达到最大?盈利最大是多少元?
O