电容在电路中各种作用的基本常识
- 格式:doc
- 大小:53.00 KB
- 文档页数:6
电路中的电解电容有什么作用电容是电路中常见的一种被动元件,电解电容是其中的一种类型。
电解电容是一种极有用途的电子元件,广泛应用于各种电子设备和电路中。
本文将重点讨论电解电容在电路中的作用。
1. 存储和释放电荷电解电容是一种能够存储和释放电荷的元件。
当电解电容器连接到直流电压源时,电解液中的离子会在极板之间移动,使得电荷储存在电容中。
当电解电容器与电路中的负载相连时,存储的电荷会被释放,为负载提供能量。
2. 平滑电源信号电解电容在电源滤波电路中发挥着重要的作用。
电解电容器能够平滑直流电源信号,减少电压的纹波。
在电源中,电解电容会存储电荷,当电源波动时,电解电容器会释放电荷来平衡电压的变化,确保电压的稳定性。
3. 信号耦合和阻隔电解电容在信号处理电路中也被广泛应用。
它可以实现信号耦合和阻隔的功能。
通过将电解电容连接到放大器的输入和输出端之间,可以实现信号的耦合和传输。
同时,电解电容还可以阻隔直流信号的传输,只允许交流信号通过,实现信号的分离和滤波。
4. 频率选择和滤波电解电容可以用作频率选择和滤波电路的重要组成部分。
通过合理选择电解电容的参数,可以实现对特定频率的信号进行选择性传输和滤波。
这在音频放大器和收音机等设备中非常重要。
5. 电路保护电解电容还可以用于保护电路免受过电压和尖峰电压的损害。
通过连接适当的电解电容到电路中,可以吸收和缓冲来自电网和其他外部源的过电压或突发电压脉冲,以保护电路和其他元件的安全运行。
6. 充电和放电控制电解电容是电路中用于控制充电和放电过程的重要元件。
通过改变电解电容的充放电速度,可以实现对电路性能的精确控制,包括信号延迟、频率响应调节等。
结论综上所述,电解电容在电路中具有多种作用。
它能够存储和释放电荷,并平滑电源信号,实现信号耦合和阻隔,实现频率选择和滤波,同时也能保护电路免受过电压和尖峰电压的损害。
电解电容在各种电子设备和电路中都扮演着重要的角色,对电路的性能和稳定性有着重要影响。
电容在电路中的作用
电容是一种重要的电子元件,它在电路中扮演着重要的角色。
它不但能将电路中的电能储存起来,而且又能迅速的将电能释放出来,这样就能满足电路的各种需求。
因此,电容在电路中是至关重要的。
在一般的电路中,电容的作用主要有四个:
首先,电容可以作为一个储能器使用,它可以在一定的电压作用下,将电能进行蓄存,当电压降至某一定值时,它将电能释放出来,从而满足电路的需求。
其次,电容可以作为一个滤波器使用,它可以将一些不需要的频率从电路中滤出来,使电路中仅传输有用的信号,从而提高信号的信噪比,这样电路的精度就更高。
第三,电容可以作为一个调节器使用,它可以通过它的容量调节电路中的电压大小。
最后,电容也可以作为一个抑制器使用,它可以抑制一些有害的电路干扰,保证电路的正常运转。
除此之外,电容还可以用于实现一些特殊的功能,例如用于稳压、控制脉冲宽度以及稳定功率等。
电容在电路中的作用可以说是非常重要的,它能切实的满足电路的需求,保证电路的正常运转。
前文已经提到的,电容的作用主要有四个,它作为一个储能器能将电能进行蓄存和释放,作为滤波器可以过滤不需要的频率,作为调节器能调整电路的电压大小,作
为抑制器可以抑制一些有害的电路干扰,这样就能确保电路正常运转。
电容器的作用是什么电容器
电容器是一种电容元件,可以存储和释放电能,在电路中起着重要作用。
它存在于各种电子设备中,可以用来抗干扰、稳定高频电源、控制脉
冲宽度和电压、改变电流的方向,以及抑制正弦波电流中的波动。
电容器的原理是通过在两个导体之间吸收和释放电子来完成能量传输。
当电容器的两侧施加一个电压时,就会在两个导体表面形成电场,使气体
中的电子被物质吸收,即电荷正负电子在两个导体之间吸收聚集。
当电压
从一端转移到另一端时,这些电子就会从另一端排出,从而完成能量传输。
电容器的基本结构是由两个电介质圆板或其他形状电介质的物体组成,中间通常有一个电介质空气层或其他绝缘材料层,外面包裹有一层绝缘纸
膜或塑料外壳。
电容器用在电子电路中方法多种多样,它的用途繁多,包括:
一、抗交流干扰:在频率较低的交流电路中,由于交流电压的波动,
电路中可能会形成电容,因此需要电容器来抵消电容的影响,从而减少交
流干扰。
二、限制电流:在高频电路中,由于电感和电容的叠加,会影响电路
灵活性,而电容器可以抵消电感的影响,使电路更加稳定。
三、滤波:在电子电路中,电容器可以用来抑制正弦波电流中的频率波动。
电容归纳总结1. 电容的基本概念电容是电路中常见的被动元件,它储存电荷。
电容的基本单位是法拉(F),它表示一定电势差下所储存的电荷量。
电容可以存储电荷,并根据电压的变化来释放或吸收电荷。
2. 电容的结构和原理电容由两个导体板之间的绝缘介质组成。
导体板通常是金属,而绝缘介质可以是空气、塑料或陶瓷。
当电容上施加电压时,正极板上的电荷会被排斥到负极板上,导致两个板之间的电位差增加。
这样,电容器就会储存电荷。
绝缘介质的介电常数决定了电容器的储存能力。
3. 电容的符号表示方法电容的符号表示方法是两个平行的线段,之间有一个短的直线链接。
这个符号代表了两个导体板之间的电场。
4. 电容的参数及其计量单位电容的参数包括电容值、电压和极性。
电容值通常用法拉(F)作为单位。
电压是电容器两个极板之间的电压差,而极性表示了电容器在充电或放电过程中正负极板之间的关系。
5. 电容的用途•电容器广泛应用于电子电路中,用来滤波、耦合和储能。
•在电力系统中,电容器用于提高功因和稳定电压。
•电容器还可用于电动机的启动、保护和相位调整。
6. 电容的充放电特性当电容器充电时,电荷从电源流向电容器,导致电容器极板间的电压逐渐增加。
充电过程中,电容器呈现高阻抗状态。
当电容器放电时,储存在电容器上的电荷被释放到外部电路中,电压逐渐下降。
放电过程中,电容器呈现低阻抗状态。
7. 电容器的串并联电容器可以串联或并联连接。
串联电容器的总电容等于各个电容器电容值的倒数之和。
而并联电容器的总电容等于各个电容器电容值的总和。
8. 电容与直流电路、交流电路的应用在直流电路中,电容器的主要应用是滤波和耦合。
电容器可以滤除电路中的直流分量,使信号更加纯净。
它们还可用于将信号从一个电路耦合到另一个电路。
在交流电路中,电容器的主要应用是阻抗匹配和相位移。
它们可以将电路中的阻抗调整到最佳匹配,并引入所需的相位移。
9. 电容器的选择和安装注意事项在选择电容器时,需要考虑电容值、电压和极性等参数。
理想的电容,本来是没有极性的。
但是在实际中,为了获得大容量,就使用了某些特殊的材料和结构,这就导致了实际的电容有些是有极性的。
常见的有极性电容有铝电解电容,钽电解电容等。
电解电容一般是容量相对比较大的。
如果要做一个大容量的无极性电容,就没那么容易了,体积会变得很大。
这就是为什么在实际的电路中,为什么会有那么多的有极性电容了——因为它体积比较小,同时又因为这样的电路中电压只有一个方向,所以有极性的电容就能派上用场。
我们使用有极性的电容,就是避开它的缺点,利用它的优点。
我们可以这样来理解:有极性的电容实际上是一个只能按一个电压方向使用的电容。
而无极性的电容,则两个电压方向都能使用。
因此,单从电压方向这一点上来说,无极性的电容是比有极性的电容要好的。
从上面的分析可以看出来,使用无极性容代替有极性的电容是完全可以的——只要容量、工作电压、体的电积等能满足要求即可替换。
有极性电容是指电解电容一类的电容,它是由阳极的铝箔和阴极的电解液分别形成两个电极,由阳极铝箔上产生的一层氧化铝膜做为电介质的电容.由于这种结构,使其具有极性,当电容正接的时候,氧化铝膜会由于电化反应而保持稳定,当反接的时候,氧化铝层会变薄,使电容容易被击穿损坏.所以电解电容在电路中必须注意极性.普通的电容是无极性的,也可以把两个电解电容阳极或阴极相对串连形成无极性电解电容.1、原理上相同。
(1)都是存储电荷和释放电荷;(2)极板上的电压(这里把电荷积累的电动势叫电压)不能突变。
(3)区别在于介质的不同、性能不同、容量不同、结构不同致使用环境和用途也不同。
反过来讲,人们根据生产实践需要,实验制造了各种功能的电容器来满足各种电器的正常运行和新设备的运转。
随着科学技术的发展和新材料的发掘,更优质、多样化的电容器会不断涌现。
2、介质不同。
介质是什么东西?说穿了就是电容器两极板之间的物质。
有极性电容大多采用电解质做介质材料,通常同体积的电容有极性电容容量大。
1.电容器主要用于交流电路及脉冲电路中,在直流电路中电容器一般起隔断直流的作用。
2.电容既不产生也不消耗能量,是储能元件。
3.电容器在电力系统中是提高功率因数的重要器件;在电子电路中是获得振荡、滤波、相移、旁路、耦合等作用的主要元件。
4.因为在工业上使用的负载主要是电动机感性负载,所以要并电容这容性负载才能使电网平衡.5.在接地线上,为什么有的也要通过电容后再接地咧?答:在直流电路中是抗干扰,把干扰脉冲通过电容接地(在这次要作用是隔直——电路中的电位关系);交流电路中也有这样通过电容接地的,一般容量较小,也是抗干扰和电位隔离作用.6.电容补尝功率因数是怎么回事?答:因为在电容上建立电压首先需要有个充电过程,随着充电过程,电容上的电压逐步提高,这样就会先有电流,后建立电压的过程,通常我们叫电流超前电压90度(电容电流回路中无电阻和电感元件时,叫纯电容电路)。
电动机、变压器等有线圈的电感电路,因通过电感的电流不能突变的原因,它与电容正好相反,需要先在线圈两端建立电压,后才有电流(电感电流回路中无电阻和电容时,叫纯电感电路),纯电感电路的电流滞后电压90度。
由于功率是电压乘以电流,当电压与电流不同时产生时(如:当电容器上的电压最大时,电已充满,电流为0;电感上先有电压时,电感电流也为0),这样,得到的乘积(功率)也为0!这就是无功。
那么,电容的电压与电流之间的关系正好与电感的电压与电流的关系相反,就用电容来补偿电感产生的无功,这就是无功补偿的原理。
很多电子产品中,电容器都是必不可少的电子元器件,它在电子设备中充当整流器的平滑滤波、电源和退耦、交流信号的旁路、交直流电路的交流耦合等。
由于电容器的类型和结构种类比较多,因此,使用者不仅需要了解各类电容器的性能指标和一般特性,而且还必须了解在给定用途下各种元件的优缺点、机械或环境的限制条件等。
下文介绍电容器的主要参数及应用,可供读者选择电容器种类时用。
1、标称电容量(CR):电容器产品标出的电容量值。
电容基础知识讲解电容由两块金属板或箔片组成,之间通常会填充电介质,如空气、聚乙烯或氧化铝。
这两块金属板具有等量的正负电荷,在不同电位差之间产生电场,导致两块金属板之间产生电压。
当电容器接入电路中时,它可以存储电荷和释放电荷,从而形成电压和电流的变化。
电容的大小用法方程C=Q/V表示,其中C代表电容的大小,单位为法拉(F),Q代表电容器存储的电荷量,单位为库仑(C),V代表电容器的电压,单位为伏特(V)。
在电路中,电容通常用来稳定电压、滤波、延时、耦合和换能等作用。
它可以在直流和交流电路中起到不同的作用,是电子电路中不可或缺的重要元件之一。
总的来说,电容是一种用来存储电荷并在电路中实现储能、调节和控制的元件,其原理简单而作用广泛,在电子领域中应用非常广泛。
电容是一种广泛应用于电子电路中的passives 元件,具有便携、轻便、价格低廉等优点,因此在各种电子设备中被广泛应用,如电源电路、放大器、滤波器、振荡器等领域。
电容有两种基本类型:极性电容和非极性电容。
极性电容必须正确连接在电路中,以确保正极连接到正电压,负极连接到负电压。
而非极性电容则没有方向性。
电容的大小可以从几皮法到几百或几千法拉不等,取决于电路的需求。
在不同的电路中,需要使用不同类型和容量的电容来实现所需的功能。
在电子电路中,电容器的主要功能如下:1. 电容充电和放电:当电容器连接到电压源时,会充电直至达到与电压源相同的电压,并且可以在断开电压源后保存并释放电荷。
2. 滤波器:电容可以在电路中用作滤波器,去除电源中的高频噪声或稳定电压,使电子设备工作更加稳定。
3. 时延器:电容还可以用作时延器,通过结合电阻和电容的RC电路,使得电路在特定时间内产生响应,适用于一些需要延时激活的情况。
4. 耦合电容:在放大器电路中,耦合电容被用于将交流信号耦合到下一个阶段,同时阻隔直流偏置电压。
在实际应用中,选择合适的电容器对于电子设备的性能和稳定性至关重要。
大小电容在电路中的各种作用及分类较详细的介绍电容在电容中的各种作用及电容分类电容在电路中的作用胡振宇电容器的基本作用就是充电与放电,但由这种基本充放电作用所延伸出来的许多电路现象,使得电容器有着种种不同的用途,例如在电动马达中,我们用它来产生相移在照相闪光灯中,用它来产生高能量的瞬间放电等等而在电子电路中,电容器不同性质的用途尤多,这许多不同的用途,虽然也有截然不同之处,但因其作用均来自充电与放电。
下面是一些电容的作用列表:耦合电容:用在耦合电路中的电容称为耦合电容,在阻容耦合放大器和其他电容耦合电路中大量使用这种电容电路,在交流信号处理电路中,用于连接信号源和信号处理电路或者作为两放大器的级间连接,用于隔断直流,让交流信号或脉冲信号通过,使前后级放大电路的直流工作点互不影响。
起隔直流通交流作用。
耦合电容的容量一般在0.1μF~1μF 之间,以使用云母、丙烯、陶瓷等损耗较小的电容滤波电容:用在滤波电路中的电容器称为滤波电容,在电源滤波和各种滤波器电路中使用这种电容电路,滤波电容将一定频段内的信号从总信号中去除。
必须使用电解电容,滤波电容用于功率放大器时,其值应为10000μF 以上,用于前置放大器时,容量为1000μF 左右即可同时也应并联几个薄膜电容,在大电容旁以抑制高频阻抗的上升退耦电容:用在退耦电路中的电容器称为退耦电容,并接于放大电路的电源正负极之间,防止由电源内阻形成的正反馈而引起的寄生振荡。
在多级放大器的直流电压供给电路中使用这种电容电路,退耦电容消除每级放大器之间的有害低频交连。
高频消振电容:用在高频消振电路中的电容称为高频消振电容,在音频负反馈放大器中,为了消振可能出现的高频自激,采用这种电容电路,以消除放大器可能出现的高频啸叫。
谐振电容:用在LC谐振电路中的电容器称为谐振电容,连接在谐振电路的振荡线圈两端,起到选择振荡频率的作用。
LC并联和串联谐振电路中都需这种电容电路。
衬垫电容:与谐振电路主电容串联的辅助性电容,调整它可使振荡信号频率范围变小,并能显著地提高低频端的振荡频率。
电容在电路中起什么作⽤?电容在电⼦电路中起着重要的作⽤。
很多⼈可能还模糊差点呢。
它的主要作⽤就是去耦,旁路,储能,滤波这四个。
今天给⼤家分享⼀下,各种电容的作⽤及其应⽤详细说明⼀下电容的种类先说说电容的种类,⼀般我们⽤到的常见电容有电解电容,陶瓷电容这两类电解电容电解电容有铝电解电容,钽电解电容之分。
铝电解电容采⽤铝箔做正极,正极表⾯⽣成的氧化铝为介质,电解质为负极。
它的优点是电容量很⼤,但体积也⽐较⼤,故⼀般做储能电容来⽤。
插件式贴⽚式的钽电解电容优点就是体积⼩,电容量⼤,对于⾼密度的线路板来说,空间很重要。
它也耐⾼温,湿差范围长时间在-50℃~100℃之间能正常⼯作。
⽽且它适合贴⽚⽣产⼯艺陶瓷电容陶瓷电容是由陶瓷为介质制成的⼀种电容,它⼜分⾼频陶瓷电容,低频陶瓷电容。
⾼频陶瓷电容体积⼩、损耗低,电容对频率、温度稳定性都较⾼。
⼀般⽤于电源旁路电容。
各种电容在电路中的作⽤电容的作⽤就是隔直通交,直流电阻断,交流电能顺利通过。
⼀般在应⽤中有旁路,去耦,滤波,储能这四个。
去耦去耦就是在输出信号中放⼀个电容,去除掉输出信号的⾼频谐波噪声,使输出信号⼲净。
跟电感的耦合是相反的,变压器的初,次级之间就是耦合,初级与次级之间会相互影响。
去耦就是把输出与输⼊之间不产⽣影响。
旁路旁路就是把输⼊信号中⼀些⾼次谐波通过设计好的电容给直接通地,从⽽有效抗谐波⼲扰,这就是每⼀个芯⽚的电源脚边上都要放⼀个0.1uF的电容的原因,它就是起到旁路作⽤,把⾼次谐波直接通地,不让它进⼊系统内。
去耦与旁路,其实是差不多的作⽤,区别就是位置上有些不同,旁路是去除输⼊信号的⾼频,把外界的谐波去除。
去耦是把输出端的⾼频谐波信号去除,使输出信号⼲净。
下图就很能说明问题储能储能这个就是跟UPS(不间断供电系统)⼀样的,它就是通电的时候,电容会充电,⽽当电关闭以后,电路不会⽴即就断电,通过储能电容的放电,电路还能⼯作⼀段时间。
这就是电容的储能作⽤。
A、电压源正负端接了一个电容(与电路并联),用于整流电路时,具有很好的滤波作用,当电压交变时,由于电容的充电作用,两端的电压不能突变,就保证了电压的平稳。 当用于电池电源时,具有交流通路的作用,这样就等于把电池的交流信号短路,避免了由于电池电压下降,电池内阻变大,电路产生寄生震荡。 B、比如说什么样的电路中 串或者并个电容可以达到耦合的作用,不放电容和放电容有什么区别? 在交流多级放大电路中,因个级增益及功率不同.各级的直流工作偏值就不同!若级间直接藕合则会使各级工作偏值通混无法正常工作!利用电容的通交隔直特性既解决了级间交流的藕合,又隔绝了级间偏值通混,一举两得! C、基本放大电路中的两个耦合电容,电容+极和直流+极相接,起到通交隔直的作用,接反的话会怎么样,会不会也起到通交隔直的作用,为什么要那接呀! 接反的话电解电容会漏电,改变了电路的直流工作点,使放大电路异常或不能工作 D、阻容耦合放大电路中,电容的作用是什么?? 隔离直流信号,使得相邻放大电路的静态工作点相互独立,互不影响。 E、模拟电路放大器不用耦合电容行么,照样可以放大啊? 书上放大器在变压器副线圈和三极管之间加个耦合电容,解释是通交流阻直流,将前一级输出变成下一级输入,使前后级不影响,前一级是交流电,后一级也是交流电,怎么会相互影响啊,我实在想不通加个电容不是多此一举啊 你犯了个错误。前一级确实是交流电,但后一级是交流叠加直流。三极管是需要直流偏置的。如果没有电容隔直,则变压器的线圈会把三极管的直流偏置给旁路掉(因为电感是通直流的) F、基本放大电路耦合电容,其中耦合电容可以用无极性的吗 在基本放大电路中,耦合电容要视频率而定,当频率较高时,需用无极电容,特点是比较稳定,耐压可以做得比较高,体积相对小,但容量做不大。其最大的用途是可以通过交流电,隔断直流电,广泛用于高频交流通路、旁路、谐振等电路。(简单理解为高频通路) 当频率较低时,无极电容因为容量较低,容抗相对增大,就要用有极性的电解电容了,由于其内部加有电解液,可以把容量做得很大,让低频交流电通过,隔断直流电。但由于内部两极中间是有机介质的,所以耐压受限,多用于低频交流通路、滤波、退耦、旁路等电路。(简单理解为低频通路) G、请电路高手告知耦合电容起什么作用 在放大电路中,利用耦合电容通交隔直的作用,使高频交流信号可以顺利通过电路,被一级一级地放大,而直流量被阻断在每一级的内部. H、请问用电池供电的电路中,电容为什么会充放电,起到延时的作用?高手指点谢谢. 电容是聚集电荷的,你可把它想象成个水杯,充放电就是充放水。在充电过程中,电压是慢慢的上升的,放电反之。你只需检测电容两端电压就能实现延时。如充电,开始时,电容两端电压为零,随着充电时间延长,电压逐渐上升到你设定的电压就能控制电路的开关。当然,也可反过来利用放电。延时时间与电容容量、电容漏电,充电电阻,及电压有关,有时还要把负载电阻考虑进去。 I、阻容耦合,是利用电容的通交隔直特性,防止前、后级之间的直流成分引起串扰,造成工作点的不稳定。 J、阻容耦合放大电路只能放大交流信号,不能放大直流信号,对还是错 对.电容是一种隔直流阻交流的电子元件.所以阻容耦合放大电路只能放大交流信号.放大直流信号用直接耦合放大电路. K、放大电路中耦合电容和旁路电容如何判别? 耦合电容负极不接地,而是接下一级的输入端,旁路电容负极接地。 L、运放的多级交流放大电路如何选用电容耦合? 其实很间单,一般瓷片电容就可搞定!要效果好的话可选用钽电容。按照你输入信号的频率范围高频的可选用103,104容值的电容,对于较低频率的交流信号可选用22uF左右的电解电容。 M、放大电路采用直接耦合,反馈网络为纯电阻网络,为什么电路只可能产生高频振荡? 振荡来源于闭环的相移达到180度并且此时的环路增益是大于零的。采用纯电阻网络作为反馈网络是一定不会引入相移的,所以呢全部的相移是来自于放大器的开环电路。采用直接耦合的开环放大器在级之间是不会有电容元件引起相移的,那么能够引起相移的便是晶体管或MOS管内部的电容,这些电容都是fF,最大pF级的电容,这些电容与电路等效电阻构成的电路的谐振频率是相当高的。所以放大器采用直接耦合,反馈网络为纯阻网络只可能产生高频振荡。 N、阻容耦合放大电路的频带宽度是指(上限截至频率与下限截至频率之差)阻容耦合放大电路的上限截止频率是指(随着频率升高使放大倍数下降到原来的0.707倍,即-3dB时的频率)阻容耦合放大电路的下限截止频率是指(随着频率降低使放大倍数下降到原来的0.707倍,即-3dB时的频率)。阻容耦合放大电路的上限截止频率主要受(晶体管结电容,电路的分布电容)的影响,阻容耦合放大电路的下限截止频率主要受(隔直电容与旁路)电容的影响 O、运放的多级交流放大电路如何选用电容耦合? 其实很间单,一般瓷片电容就可搞定!要效果好的话可选用钽电容。按照你输入信号的频率范围高频的可选用103,104容值的电容,对于较低频率的交流信号可选用22uF左右的电解电容。 P、在多级放大电路里面电解电容是怎么耦合到下一级的呢 在电容里面的特性不是隔直的吗,它是怎么传送过去的呢。还有为电容要通过三极管的集电极来接呢,发射机为什么不可以呢?电解电容都是在交流放大器里面工作,而交流的电流方向呈周期性变化,三极管能正常导通吗。 还有NPN型的三极管的集电极不是从C到B的吗,那它的电流是怎么通过流到下一级的三极管的基极的呢 用电解电容做耦合的放大器,都是交流放大器。电解电容在这里作“通交隔直”用。由三极管的哪个极输出,是电路形式的问题,两者都有。 Q、1.怎样估算第一级放大器的输出电阻和第二级放大器的输入电阻,2当信号源的幅度过大,在两级放大器的输出端分别会出现什么情况 3.用手在放大器的输入端晃动,观察放大器的输出端,看是否出现了什么?原因是什么? 1.第二级放大器的输入电阻就是第一级放大器的输出电阻。2 失真。3 杂波,人体感应 R、电容可以起到耦合作用?比如说什么样的电路中 串或者并个电容可以达到耦合的作用,不放电容和放电容有什么区别? 在交流多级放大电路中,因个级增益及功率不同.各级的直流工作偏值就不同!若级间直接藕合则会使各级工作偏值通混无法正常工作!利用电容的通交隔直特性既解决了级间交流的藕合,又隔绝了级间偏值通混,一举两得! S、怎么利用电容的充放电,理解滤波,去耦,旁路..... 电容就是充放电。那怎么利用电容的充放电,去理解滤波,去耦,旁路..... 答:电容隔直流通交流,隔直流好理解,通交流不好理解,只要理解了通交流就理解了滤波、去耦和旁路。 电容就是充放电,不错。但交流电的方向,正反向交替变化。振幅的大小也做周期性变化。整个变化的图像就是一条正弦曲线。 电容器接在交流电路中,由于交流电压的周期性变化,它也在周期性的充放电变化。线路中存在充放电电流,这种充放电电流,除相位比电压超前90度外,形状完全和电压一样,这就相当于交流通过了电容器。 和交流电通过电阻是不同,交流电通过电阻,要在电阻上消耗电能(发热)。而通过电容器只是与电源做能量交换,充电时电源将能量送给电容器,放电时电容器又将电能返还给电源,所以这里的电压乘电流所产生的功率叫无功功率。 需要明确的是,电容器接在交流电路中,流动的电子(电流)并没有真正的冲过绝缘层,却在电路中产生了电流。这是因为在线路中,反向放电和正向充电是同一个方向,而正向放电和反向充电是同一个方向,就象接力赛跑,一个团队跑完交流电的正半周,另一个团队接过接力棒继续跑完交流电的负半周。 理解了电容器通交流,那么,交流成份旁路到地,完成滤波也就可以理解了。 T、旁路电容和滤波电容,去耦电容分别怎么用?,可以举一些实例说明 答:这三种叫法的电容,其实都是滤波的,只是应用在不同的电路中,叫法和用法不一样。 滤波电容,这是我们通常用在电源整流以后的电容,它是把整流电路交流整流成脉动直流,通过充放电加以平滑的电容,这种电容一般都是电解电容,而且容量较大,在微法级。 旁路电容,是把输入信号中的高频成份加以滤除,主要是用于滤除高频杂波的,通常用瓷质电容、涤纶电容,容量较小,在皮法级。 去耦电容,是把输出信号的干扰作为滤除对象,去耦电容相当于电池,利用其充放电,使得放大后的信号不会因电流的突变而受干扰。它的容量根据信号的频率、抑制波纹程度而定。 U、什么是耦合电容,去耦电容,有什么特点和作用 耦合电容是传递交流信号的,接在线路中。去耦电容是将无用交流信号去除的,一段接在线路中、一端接地。 V、关于电容有几作用,在什么情况才电容耦合,在什么情况才电容滤波? 答:电容器在电路里的十八般武艺归根到底就是两个!充电荷!放电荷! 其特性就是通交流!隔直流!电容两端加上交变电压后会随电流交变频率而不断的充放电!此时电路里就有同频率的交变电流通过!这就是电容的通交特性! 在频率合适的情况下电容对电路可视为通路!前级交流输出经电容就可传至后级电路! 而对直流来说它却是隔绝的! 因为两端电压充至与电路电压相等时就不会再有充电电流了! 作用于前后级交流信号的传递时就是藕合! 作用于滤除波动成份及无用交流成分时就是滤波! W、大家都知道,整流电路的电容滤波是利用其充放电;但是有时候滤波是利用电容对不通频率信号的容抗不同,比如旁路电容。所以分析电容滤波时到底用哪个角度分析啊? 其实不论是哪种说法都是一个道理,利用充放电的理论较笼统一些,利用容抗的的理论则更深入一些,电容的作用就是利用了其充放电的特性,看你想滤除什么成份,滤低频用大电容,滤高频用小电容,在理论上低频整流电路中的滤波和高频中的旁路是相同的都是利用了容抗的不同。 X、电容如何实现充放电、整流、滤波的功能 电容的充电,放电,整流和滤波甚至包括它的移相,电抗等功能,都 是电容的存储功能在起作用。电容之所以能够存储电荷,是利用了正负电荷之间有较强的互相吸引的特性来实现的。在给电容充电时,人们通过电源将正电荷引入正极板,负电荷引入到电容的负极板。