全国通用高考数学大一轮复习第九章平面解析几何9.9圆锥曲线的综合问题第2课时学案
- 格式:doc
- 大小:229.50 KB
- 文档页数:17
课时1 直线与圆锥曲线题型一 直线与圆锥曲线的位置关系例1 (1)过双曲线C :x 24-y 29=1的左焦点作倾斜角为π6的直线l ,则直线l 与双曲线C 的交点情况是________(填序号). ①没有交点; ②只有一个交点;③有两个交点且都在左支上; ④有两个交点分别在左、右两支上.(2)(2014·湖北改编)设a ,b 是关于t 的方程t 2cos θ+t sin θ=0的两个不等实根,则过A (a ,a 2),B (b ,b 2)两点的直线与双曲线x 2cos 2θ-y 2sin 2θ=1的公共点的个数为________. 答案 (1)④ (2)0解析 (1)直线l 的方程为y =33(x +13),代入C :x 24-y 29=1,整理得23x 2-813x -160=0,Δ=(-813)2+4×23×160>0,所以直线l 与双曲线C 有两个交点,由一元二次方程根与系数的关系得两个交点横坐标符号不同,故两个交点分别在左、右支上.(2)关于t 的方程t 2cos θ+t sin θ=0的两个不等实根为0,-tan θ(tan θ≠0),则过A ,B 两点的直线方程为y =-x tan θ,双曲线x 2cos 2θ-y 2sin 2θ=1的渐近线方程为y =±x tan θ,所以直线y =-x tan θ与双曲线没有公共点.(3)在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上.①求椭圆C 1的方程;②设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程.解 ①根据椭圆的左焦点为F 1(-1,0),知a 2-b 2=1,又根据点P (0,1)在椭圆上,知b =1,所以a =2,所以椭圆C 1的方程为x 22+y 2=1.②因为直线l 与椭圆C 1和抛物线C 2都相切, 所以其斜率存在且不为0,设直线l 的方程为y =kx +m (k ≠0), 代入椭圆方程得x 22+(kx +m )2=1,即⎝ ⎛⎭⎪⎫12+k 2x 2+2kmx +m 2-1=0,由题意可知此方程有唯一解,此时Δ=4k 2m 2-4⎝ ⎛⎭⎪⎫12+k 2(m 2-1)=0,即m 2=2k 2+1.①把y =kx +m (k ≠0)代入抛物线方程得k4y 2-y +m =0,由题意可知此方程有唯一解,此时Δ=1-mk =0, 即mk =1.②联立①②得⎩⎪⎨⎪⎧m 2=2k 2+1,mk =1,解得k 2=12,所以⎩⎪⎨⎪⎧k =22,m =2,或⎩⎪⎨⎪⎧k =-22,m =-2,所以直线l 的方程为y =22x +2或y =-22x - 2. 思维升华 研究直线和圆锥曲线的位置关系,一般转化为研究直线方程与圆锥曲线方程组成的方程组解的个数.对于填空题,常充分利用几何条件,利用数形结合的方法求解.已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.解 将直线l 的方程与椭圆C 的方程联立,得方程组⎩⎪⎨⎪⎧y =2x +m , ①x 24+y22=1, ②将①代入②,整理得9x 2+8mx +2m 2-4=0.③方程③根的判别式Δ=(8m )2-4×9×(2m 2-4)=-8m 2+144.(1)当Δ>0,即-32<m <32时,方程③有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个不重合的公共点.(2)当Δ=0,即m =±32时,方程③有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l 与椭圆C 有两个互相重合的公共点,即直线l 与椭圆C 有且只有一个公共点. (3)当Δ<0,即m <-32或m >32时,方程③没有实数根,可知原方程组没有实数解.这时直线l 与椭圆C 没有公共点. 题型二 弦长问题例2已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (2,0),离心率为22.直线y =k (x -1)与椭圆C交于不同的两点M ,N . (1)求椭圆C 的方程; (2)当△AMN 的面积为103时,求k 的值. 解 (1)由题意得⎩⎪⎨⎪⎧a =2,c a =22,a 2=b 2+c 2,解得b =2,所以椭圆C 的方程为x 24+y 22=1.(2)由⎩⎪⎨⎪⎧y =k x -1,x 24+y22=1,得(1+2k 2)x 2-4k 2x +2k 2-4=0.设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2), 则y 1=k (x 1-1),y 2=k (x 2-1), x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-41+2k 2,所以MN =x 2-x 12+y 2-y 12=1+k2[x 1+x 22-4x 1x 2]=21+k 24+6k21+2k2又因为点A (2,0)到直线y =k (x -1)的距离d =|k |1+k2,所以△AMN 的面积为S =12MN ·d =|k |4+6k21+2k 2, 由|k |4+6k 21+2k 2=103,解得k =±1. 思维升华 有关圆锥曲线弦长问题的求解方法:涉及弦长的问题中, 应熟练的利用根与系数的关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数的关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.(2015·湖南)已知抛物线C 1 :x 2=4y 的焦点F 也是椭圆C 2:y 2a 2+x 2b2=1(a >b >0)的一个焦点.C 1 与C 2的公共弦的长为2 6.过点F 的直线l 与C 1相交于A ,B 两点,与C 2相交于C ,D 两点,且AC →与BD →同向. (1)求C 2的方程;(2)若AC =BD ,求直线l 的斜率.解 (1)由C 1:x 2=4y 知其焦点F 的坐标为(0,1). 因为F 也是椭圆C 2的一个焦点,所以a 2-b 2=1.①又C 1与C 2的公共弦的长为26,C 1与C 2都关于y 轴对称,且C 1的方程为x 2=4y ,由此易知C 1与C 2的公共点的坐标为⎝ ⎛⎭⎪⎫±6,32,所以94a 2+6b 2=1.② 联立①②,得a 2=9,b 2=8. 故C 2的方程为y 29+x 28=1.(2)如图,设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4).因AC →与BD →同向,且AC =BD ,所以AC →=BD →,从而x 3-x 1=x 4-x 2,即x 1-x 2=x 3-x 4, 于是(x 1+x 2)2-4x 1x 2=(x 3+x 4)2-4x 3x 4.③ 设直线l 的斜率为k ,则l 的方程为y =kx +1.由⎩⎪⎨⎪⎧y =kx +1,x 2=4y 得x 2-4kx -4=0.而x 1,x 2是这个方程的两根, 所以x 1+x 2=4k ,x 1x 2=-4.④由⎩⎪⎨⎪⎧y =kx +1,x 28+y29=1得(9+8k 2)x 2+16kx -64=0.而x 3,x 4是这个方程的两根,所以x 3+x 4=-16k 9+8k 2,x 3x 4=-649+8k 2,⑤将④⑤代入③,得16(k 2+1)=162k29+8k22+4×649+8k2, 即16(k 2+1)=162×9k 2+19+8k22, 所以(9+8k 2)2=16×9,解得k =±64, 即直线l 的斜率为±64. 题型三 中点弦问题例3 (1)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为____________.(2)已知双曲线x 2-y 23=1上存在两点M ,N 关于直线y =x +m 对称,且MN 的中点在抛物线y2=18x 上,则实数m 的值为________. 答案 (1)x 218+y 29=1 (2)0或-8解析 (1)因为直线AB 过点F (3,0)和点(1,-1),所以直线AB 的方程为y =12(x -3),代入椭圆方程x 2a 2+y 2b 2=1消去y ,得⎝ ⎛⎭⎪⎫a 24+b 2x 2-32a 2x +94a 2-a 2b 2=0,所以AB 的中点的横坐标为32a 22⎝ ⎛⎭⎪⎫a24+b 2=1,即a 2=2b 2,又a 2=b 2+c 2,所以b =c =3,a =3 2.所以E 的方程为x 218+y 29=1.(2)设M (x 1,y 1),N (x 2,y 2),MN 的中点P (x 0,y 0),则⎩⎪⎨⎪⎧x 21-y 213=1, ①x 22-y223=1, ②x 1+x 2=2x 0, ③y 1+y 2=2y 0, ④由②-①得(x 2-x 1)(x 2+x 1)=13(y 2-y 1)(y 2+y 1),显然x 1≠x 2.∴y 2-y 1x 2-x 1·y 2+y 1x 2+x 1=3,即k MN ·y 0x 0=3,∵M ,N 关于直线y =x +m 对称,∴k MN =-1, ∴y 0=-3x 0.又∵y 0=x 0+m ,∴P ⎝ ⎛⎭⎪⎫-m 4,3m 4, 代入抛物线方程得916m 2=18·⎝ ⎛⎭⎪⎫-m 4, 解得m =0或-8,经检验都符合.思维升华 处理中点弦问题常用的求解方法(1)点差法:即设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相减,式中含有x 1+x 2,y 1+y 2,y 1-y 2x 1-x 2三个未知量,这样就直接联系了中点和直线的斜率,借用中点公式即可求得斜率.(2)根与系数的关系:即联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后,由根与系数的关系求解.设抛物线过定点A (-1,0),且以直线x =1为准线.(1)求抛物线顶点的轨迹C 的方程;(2)若直线l 与轨迹C 交于不同的两点M ,N ,且线段MN 恰被直线x =-12平分,设弦MN 的垂直平分线的方程为y =kx +m ,试求m 的取值范围. 解 (1)设抛物线顶点为P (x ,y ),则焦点F (2x -1,y ). 再根据抛物线的定义得AF =2,即(2x )2+y 2=4, 所以轨迹C 的方程为x 2+y 24=1.(2)设弦MN 的中点为P ⎝ ⎛⎭⎪⎫-12,y 0,M (x M ,y M ),N (x N ,y N ),则由点M ,N 为椭圆C 上的点, 可知⎩⎪⎨⎪⎧4x 2M +y 2M =4,4x 2N +y 2N =4.两式相减,得4(x M -x N )(x M +x N )+(y M -y N )(y M +y N )=0,将x M +x N =2×⎝ ⎛⎭⎪⎫-12=-1,y M +y N =2y 0,y M -y N x M -x N =-1k 代入上式得k =-y 02.又点P ⎝ ⎛⎭⎪⎫-12,y 0在弦MN 的垂直平分线上, 所以y 0=-12k +m .所以m =y 0+12k =34y 0.由点P (-12,y 0)在线段BB ′上(B ′,B 为直线x =-12与椭圆的交点,如图所示),所以y B ′<y 0<y B ,也即-3<y 0< 3. 所以-334<m <334,且m ≠0.[方法与技巧] 1.有关弦的三个问题涉及弦长的问题,应熟练地利用根与系数的关系,设而不求计算弦长;涉及垂直关系往往也是利用根与系数的关系设而不求简化运算;涉及过焦点的弦的问题,可考虑利用圆锥曲线的定义求解.2.求解与弦有关问题的两种方法(1)方程组法:联立直线方程和圆锥曲线方程,消元(x 或y )成为二次方程之后,结合根与系数的关系,建立等式关系或不等式关系.(2)点差法:在求解圆锥曲线且题目中已有直线与圆锥曲线相交和被截线段的中点坐标时,设出直线和圆锥曲线的两个交点坐标,代入圆锥曲线的方程并作差,从而求出直线的斜率,然后利用中点求出直线方程.“点差法”的常见题型有:求中点弦方程、求(过定点、平行弦)弦中点轨迹、垂直平分线问题.必须提醒的是“点差法”具有不等价性,即要考虑判别式Δ是否为正数. [失误与防范]判断直线与圆锥曲线位置关系时的注意点(1)直线与双曲线交于一点时,易误认为直线与双曲线相切,事实上不一定相切,当直线与双曲线的渐近线平行时,直线与双曲线相交于一点.(2)直线与抛物线交于一点时,除直线与抛物线相切外,易忽视直线与对称轴平行时也相交于一点.A 组 专项基础训练 (时间:40分钟)1.若直线mx +ny =4与⊙O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数是________. 答案 2 解析 由题意知:4m 2+n2>2,即m 2+n 2<2,∴点P (m ,n )在椭圆x 29+y 24=1的内部,故所求交点个数是2.2.直线y =b a x +3与双曲线x 2a 2-y 2b2=1的交点个数是________.答案 1解析 因为直线y =ba x +3与双曲线的渐近线y =b ax 平行,所以它与双曲线只有1个交点.3.已知椭圆C 的方程为x 216+y 2m 2=1(m >0),如果直线y =22x 与椭圆的一个交点M 在x 轴上的射影恰好是椭圆的右焦点F ,则m 的值为________. 答案 2 2解析 根据已知条件得c =16-m 2,则点(16-m 2,2216-m 2)在椭圆x 216+y 2m2=1(m >0)上,∴16-m 216+16-m22m2=1,可得m =2 2.4.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则AB 的最大值为________.答案4105解析 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2), 直线l 的方程为y =x +t ,由⎩⎪⎨⎪⎧x 2+4y 2=4,y =x +t 消去y ,得5x 2+8tx +4(t 2-1)=0, 则x 1+x 2=-85t ,x 1x 2=4t 2-15.∴AB =1+k 2|x 1-x 2| =1+k 2·x 1+x 22-4x 1x 2=2·⎝ ⎛⎭⎪⎫-85t 2-4×4t 2-15 =425·5-t 2, 当t =0时,AB max =4105.5.过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A ,B 两点,它们到直线x =-2的距离之和等于5,则这样的直线有________条. 答案 0解析 抛物线y 2=4x 的焦点坐标为(1,0),准线方程为x =-1,设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),则A ,B 到直线x =-1的距离之和为x 1+x 2+2.设直线方程为x =my +1,代入抛物线y 2=4x , 则y 2=4(my +1),即y 2-4my -4=0, ∴x 1+x 2=m (y 1+y 2)+2=4m 2+2. ∴x 1+x 2+2=4m 2+4≥4.∴A ,B 到直线x =-2的距离之和x 1+x 2+2+2≥6>5. ∴满足题意的直线不存在.6.过双曲线x 2-y 22=1的右焦点作直线l 交双曲线于A 、B 两点,若使得AB =λ的直线l 恰有3条,则λ=________. 答案 4解析 ∵使得AB =λ的直线l 恰有3条. ∴根据对称性,其中有一条直线与实轴垂直.此时A ,B 的横坐标为3,代入双曲线方程,可得y =±2,故AB =4. ∵双曲线的两个顶点之间的距离是2,小于4,∴过双曲线的焦点一定有两条直线使得交点之间的距离等于4, 综上可知,AB =4时,有3条直线满足题意. ∴λ=4.7.在抛物线y =x 2上关于直线y =x +3对称的两点M ,N 的坐标分别为______________. 答案 (-2,4),(1,1)解析 设直线MN 的方程为y =-x +b , 代入y =x 2中,整理得x 2+x -b =0,令Δ=1+4b >0, ∴b >-14.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-1,y 1+y 22=-x 1+x 22+b =12+b ,由⎝ ⎛⎭⎪⎫-12,12+b 在直线y =x +3上, 即12+b =-12+3,解得b =2, 联立得⎩⎪⎨⎪⎧y =-x +2,y =x 2,解得⎩⎪⎨⎪⎧x 1=-2,y 1=4,⎩⎪⎨⎪⎧x 2=1,y 2=1.8.过椭圆x 216+y 24=1内一点P (3,1),且被这点平分的弦所在直线的方程是____________.答案 3x +4y -13=0解析 设直线与椭圆交于A (x 1,y 1)、B (x 2,y 2)两点, 由于A 、B 两点均在椭圆上, 故x 2116+y 214=1,x 2216+y 224=1, 两式相减得x 1+x 2x 1-x 216+y 1+y 2y 1-y 24=0.又∵P 是A 、B 的中点,∴x 1+x 2=6,y 1+y 2=2, ∴k AB =y 1-y 2x 1-x 2=-34. ∴直线AB 的方程为y -1=-34(x -3).即3x +4y -13=0. 9.如图,点F 1(-c ,0),F 2(c,0)分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,过点F 1作x 轴的垂线,交椭圆C 的上半部分于点P ,过点F 2作直线PF 2的垂线交直线x =a 2c于点Q ,连结PQ .(1)如果点Q 的坐标为(4,4),求椭圆C 的方程;(2)试判断直线PQ 与椭圆C 的公共点个数,并证明你的结论.解 (1)方法一 由条件知,P ⎝⎛⎭⎪⎫-c ,b 2a ,故直线PF 2的斜率为kPF 2=b 2a -0-c -c =-b 22ac .因为PF 2⊥F 2Q ,所以直线F 2Q 的方程为y =2ac b 2x -2ac 2b2,故Q ⎝ ⎛⎭⎪⎫a 2c ,2a .由题设知,a 2c=4,2a =4,解得a =2,c =1.故椭圆C 的方程为x 24+y 23=1.方法二 设直线x =a 2c 与x 轴交于点M .由条件知,P ⎝⎛⎭⎪⎫-c ,b 2a . 因为△PF 1F 2∽△F 2MQ ,所以PF 1F 2M =F 1F 2MQ, 即b 2aa 2c-c =2cMQ ,解得MQ =2a .所以⎩⎪⎨⎪⎧a 2c=4,2a =4,解得⎩⎪⎨⎪⎧a =2,c =1.故椭圆方程为x 24+y 23=1.(2)∵点Q 的坐标为⎝ ⎛⎭⎪⎫a 2c ,2a ,点P 的坐标为⎝⎛⎭⎪⎫-c ,b 2a ,∴k PQ =2a -b 2a a 2c--c =c 2a 2-b 2a a 2+c 2=c a, ∴PQ 的方程为y -2a =c a ⎝ ⎛⎭⎪⎫x -a 2c ,即y =cax +a .将PQ 的方程代入椭圆C 的方程,得b 2x 2+a 2⎝ ⎛⎭⎪⎫cax +a 2=a 2b 2,∴(b 2+c 2)x 2+2a 2cx +a 4-a 2b 2=0,而a 2=b 2+c 2,上式可化为a 2x 2+2a 2cx +a 2c 2=0, 解得x =-c ,∴直线PQ 与椭圆C 只有一个公共点.10.(2014·湖北)在平面直角坐标系xOy 中,点M 到点F (1,0)的距离比它到y 轴的距离多1.记点M 的轨迹为C . (1)求轨迹C 的方程;(2)设斜率为k 的直线l 过定点P (-2,1),求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围. 解 (1)设点M (x ,y ),依题意得MF =|x |+1, 即x -12+y 2=|x |+1,化简整理得y 2=2(|x |+x ). 故点M 的轨迹C 的方程为y2=⎩⎪⎨⎪⎧4x ,x >0,0,x ≤0.(2)在点M 的轨迹C 中,记C 1:y 2=4x (x >0),C 2:y =0(x <0).依题意,可设直线l 的方程为y -1=k (x +2).由方程组⎩⎪⎨⎪⎧y -1=kx +2,y 2=4x ,可得ky 2-4y +4(2k +1)=0.(*1) ①当k =0时,此时y =1.把y =1代入轨迹C 的方程,得x =14.故此时直线l :y =1与轨迹C 恰好有一个公共点(14,1).②当k ≠0时,方程(*1)根的判别式为Δ=-16(2k 2+k -1).(*2) 设直线l 与x 轴的交点为(x 0,0),则由y -1=k (x +2),令y =0,得x 0=-2k +1k.(*3)(ⅰ)若⎩⎪⎨⎪⎧Δ<0,x 0<0,由(*2)(*3)解得k <-1或k >12.即当k ∈(-∞,-1)∪(12,+∞)时,直线l 与C 1没有公共点,与C 2有一个公共点,故此时直线l 与轨迹C 恰好有一个公共点.(ⅱ)若⎩⎪⎨⎪⎧Δ=0,x 0<0,或⎩⎪⎨⎪⎧Δ>0,x 0≥0,由(*2)(*3)解得k ∈{-1,12},或-12≤k <0.即当x ∈{-1,12}时,直线l 与C 1只有一个公共点,与C 2有一个公共点.当k ∈[-12,0)时,直线l 与C 1有两个公共点,与C 2没有公共点.故当k ∈[-12,0)∪{-1,12}时,直线l 与轨迹C 恰好有两个公共点.(ⅲ)若⎩⎪⎨⎪⎧Δ>0,x 0<0,由(*2)(*3)解得-1<k <-12或0<k <12.即当k ∈(-1,-12)∪(0,12)时,直线l 与C 1有两个公共点,与C 2有一个公共点,故此时直线l 与轨迹C 恰好有三个公共点.综合①②可知,当k ∈(-∞,-1)∪(12,+∞)∪{0}时,直线l 与轨迹C 恰好有一个公共点;当k ∈[-12,0)∪{-1,12}时,直线l 与轨迹C 恰好有两个公共点;当k ∈(-1,-12)∪(0,12)时,直线l 与轨迹C 恰好有三个公共点. B 组 专项能力提升 (时间:25分钟)11.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,PA ⊥l ,A 为垂足.如果直线AF 的斜率为-3,那么PF =________.答案 8解析 直线AF 的方程为y =-3(x -2),联立⎩⎨⎧y =-3x +23,x =-2,得y =43,所以P (6,43).由抛物线的性质可知PF =6+2=8.12.已知双曲线C :y 2a 2-x 2b2=1 (a >0,b >0),P 为x 轴上一动点,经过点P 的直线y =2x +m (m ≠0)与双曲线C 有且只有一个交点,则双曲线C 的离心率为________. 答案52解析 由双曲线的方程可知:渐近线方程为y =±abx .∵经过点P 的直线y =2x +m (m ≠0)与双曲线C 有且只有一个交点,∴此直线与渐近线y =a bx 平行,∴a b=2. ∴e =c a=1+⎝ ⎛⎭⎪⎫b a2=52. 13.过抛物线y 2=2px (p >0)焦点F 的直线l 与抛物线交于B ,C 两点,l 与抛物线准线交于点A ,且AF =6,AF →=2FB →,则BC =________.答案 92解析 不妨设直线l 的倾斜角为θ,其中0<θ<π2,点B (x 1,y 1),C (x 2,y 2),则点B 在x 轴的上方,过点B 作该抛物线的准线的垂线,垂足为B 1,于是有BF =BB 1=3,AF AB =pBB 1,由此得p =2,抛物线方程是y 2=4x ,焦点F (1,0),cos θ=p AF =p 6=26=13,sin θ=1-cos 2θ=223,tan θ=sin θcos θ=22,直线l :y =22(x -1).由⎩⎨⎧y =22x -1,y 2=4x消去y ,得2x 2-5x +2=0,x 1+x 2=52,BC =x 1+x 2+p =52+2=92.14.已知F 是抛物线C :y 2=4x 的焦点,直线l :y =k (x +1)与抛物线C 交于A ,B 两点,记直线FA ,FB 的斜率分别为k 1,k 2,则k 1+k 2=________. 答案 0解析 由y 2=4x ,得抛物线焦点F (1,0), 联立⎩⎪⎨⎪⎧y =k x +1,y 2=4x ,得k 2x 2+(2k 2-4)x +k 2=0,设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=4-2k2k2,x 1x 2=1.k 1+k 2=y 1x 1-1+y 2x 2-1=k x 1+1x 2-1+k x 2+1x 1-1x 1-1x 2-1=2k x 1x 2-1x 1-1x 2-1=2k 1-1x 1-1x 2-1=0.15.已知椭圆C 1:y 2a 2+x 2b2=1(a >b >0)的右顶点为A (1,0),过C 1的焦点且垂直长轴的弦长为1.(1)求椭圆C 1的方程;(2)设点P 在抛物线C 2:y =x 2+h (h ∈R )上,C 2在点P 处的切线与C 1交于点M ,N .当线段AP 的中点与MN 的中点的横坐标相等时,求h 的最小值.解 (1)由题意,得⎩⎪⎨⎪⎧b =1,2·b 2a=1.从而⎩⎪⎨⎪⎧a =2,b =1.因此,所求的椭圆C 1的方程为y 24+x 2=1.(2)如图,设M (x 1,y 1),N (x 2,y 2),P (t ,t 2+h ),则抛物线C 2在点P 处的切线斜率为y ′| x =t =2t . 直线MN 的方程为y =2tx -t 2+h .将上式代入椭圆C 1的方程中,得4x 2+(2tx -t 2+h )2-4=0, 即4(1+t 2)x 2-4t (t 2-h )x +(t 2-h )2-4=0. ①因为直线MN 与椭圆C 1有两个不同的交点, 所以①式中的Δ1=16[-t 4+2(h +2)t 2-h 2+4]>0.②设线段MN 的中点的横坐标是x 3,则x 3=x 1+x 22=t t 2-h 21+t2. 设线段PA 的中点的横坐标是x 4,则x 4=t +12.由题意,得x3=x4,即t2+(1+h)t+1=0. ③由③式中的Δ2=(1+h)2-4≥0,得h≥1,或h≤-3.当h≤-3时,h+2<0,4-h2<0,则不等式②不成立,所以h≥1.当h=1时,代入方程③得t=-1,将h=1,t=-1代入不等式②,检验成立.所以,h的最小值为1.。
第2课时 直线与椭圆题型一 直线与椭圆的位置关系1.若直线y =kx +1与椭圆x 25+y 2m =1总有公共点,则m 的取值范围是________.答案 m ≥1且m ≠5解析 方法一 由于直线y =kx +1恒过点(0,1), 所以点(0,1)必在椭圆内或椭圆上, 则0<1m ≤1且m ≠5,故m ≥1且m ≠5.方法二 由⎩⎪⎨⎪⎧y =kx +1,mx 2+5y 2-5m =0, 消去y 整理得(5k 2+m )x 2+10kx +5(1-m )=0.由题意知Δ=100k 2-20(1-m )(5k 2+m )≥0对一切k ∈R 恒成立, 即5mk 2+m 2-m ≥0对一切k ∈R 恒成立, 由于m >0且m ≠5,∴m ≥1且m ≠5.2.已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.解 将直线l 的方程与椭圆C 的方程联立,得方程组⎩⎪⎨⎪⎧y =2x +m , ①x 24+y 22=1, ②将①代入②,整理得9x 2+8mx +2m 2-4=0.③方程③根的判别式Δ=(8m )2-4×9×(2m 2-4)=-8m 2+144.(1)当Δ>0,即-32<m <32时,方程③有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个不重合的公共点.(2)当Δ=0,即m =±32时,方程③有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l 与椭圆C 有两个互相重合的公共点,即直线l 与椭圆C 有且只有一个公共点. (3)当Δ<0,即m <-32或m >32时,方程③没有实数根,可知原方程组没有实数解.这时直线l 与椭圆C 没有公共点.思维升华 研究直线与圆锥曲线位置关系的方法(1)研究直线和圆锥曲线的位置关系,一般转化为研究其直线方程与圆锥曲线方程组成的方程组解的个数.(2)对于过定点的直线,也可以通过定点在椭圆内部或椭圆上判定直线和椭圆有交点.题型二 弦长及弦中点问题命题点1 弦长问题典例 斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则AB 的最大值为________.答案4105解析 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2), 直线l 的方程为y =x +t ,由⎩⎪⎨⎪⎧x 2+4y 2=4,y =x +t ,消去y ,得5x 2+8tx +4(t 2-1)=0, 则x 1+x 2=-85t ,x 1x 2=4(t 2-1)5.∴AB =(x 1-x 2)2+(y 1-y 2)2 =1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2=2·⎝⎛⎭⎫-85t 2-4×4(t 2-1)5=425·5-t 2, 当t =0时,AB max =4105. 命题点2 弦中点问题典例 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为________. 答案 x 218+y 29=1解析 设A (x 1,y 1),B (x 2,y 2),所以⎩⎨⎧x 21a 2+y 21b2=1,x 22a 2+y22b 2=1,运用点差法,所以直线AB 的斜率为k =b 2a2,设直线方程为y =b 2a 2(x -3),联立直线与椭圆的方程得 (a 2+b 2)x 2-6b 2x +9b 2-a 4=0, 所以x 1+x 2=6b 2a 2+b 2=2,又因为a 2-b 2=9,解得b 2=9,a 2=18. 命题点3 椭圆与向量等知识的综合典例 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),e =12,其中F 是椭圆的右焦点,焦距为2,直线l 与椭圆C 交于点A ,B ,线段AB 的中点横坐标为14,且AF →=λFB →(其中λ>1).(1)求椭圆C 的标准方程; (2)求实数λ的值.解 (1)由椭圆的焦距为2,知c =1,又e =12,∴a =2,故b 2=a 2-c 2=3,∴椭圆C 的标准方程为x 24+y 23=1.(2)由AF →=λFB →,可知A ,B ,F 三点共线, 设点A (x 1,y 1),点B (x 2,y 2).若直线AB ⊥x 轴,则x 1=x 2=1,不符合题意; 当AB 所在直线l 的斜率k 存在时, 设l 的方程为y =k (x -1). 由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1,消去y 得(3+4k 2)x 2-8k 2x +4k 2-12=0.① ①的判别式Δ=64k 4-4(4k 2+3)(4k 2-12) =144(k 2+1)>0.∵⎩⎪⎨⎪⎧x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3,∴x 1+x 2=8k 24k 2+3=2×14=12,∴k 2=14.将k 2=14代入方程①,得4x 2-2x -11=0,解得x =1±354.又AF →=(1-x 1,-y 1),FB →=(x 2-1,y 2),AF →=λFB →, 即1-x 1=λ(x 2-1),λ=1-x 1x 2-1,又λ>1,∴λ=3+52.思维升华 (1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,应用根与系数的关系,解决相关问题.涉及弦中点的问题时用“点差法”解决,往往会更简单.(2)设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),则AB =(1+k 2)[(x 1+x 2)2-4x 1x 2] =⎝⎛⎭⎫1+1k 2[(y 1+y 2)2-4y 1y 2](k 为直线斜率).(3)利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式. 跟踪训练 已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为B (0,4),离心率e =55,直线l 交椭圆于M ,N 两点.(1)若直线l 的方程为y =x -4,求弦MN 的长;(2)如果△BMN 的重心恰好为椭圆的右焦点F ,求直线l 方程的一般式. 解 (1)由已知得b =4,且c a =55,即c 2a 2=15,∴a 2-b 2a 2=15, 解得a 2=20,∴椭圆方程为x 220+y 216=1.设M (x 1,y 1),N (x 2,y 2), 将4x 2+5y 2=80与y =x -4联立, 消去y 得9x 2-40x =0,∴x 1=0,x 2=409,y 1=-4,y 2=49,∴所求弦长MN =(x 1-x 2)2+(y 1-y 2)2=4029. (2)椭圆右焦点F 的坐标为(2,0),设线段MN 的中点为Q (x 0,y 0),由三角形重心的性质知BF →=2FQ →, 又B (0,4),∴(2,-4)=2(x 0-2,y 0),即⎩⎪⎨⎪⎧2=2(x 0-2),-4=2y 0,故得x 0=3,y 0=-2, 即Q 的坐标为(3,-2). 设M (x 1,y 1),N (x 2,y 2), 则x 1+x 2=6,y 1+y 2=-4,且x 2120+y 2116=1,x 2220+y 2216=1, 以上两式相减得(x 1+x 2)(x 1-x 2)20+(y 1+y 2)(y 1-y 2)16=0,∴k MN =y 1-y 2x 1-x 2=-45·x 1+x 2y 1+y 2=-45×6-4=65,故直线MN 的方程为y +2=65(x -3),即6x -5y -28=0.高考中求椭圆的离心率问题考点分析 离心率是椭圆的重要几何性质,是高考重点考查的一个知识点,这类问题一般有两类:一类是根据一定的条件求椭圆的离心率;另一类是根据一定的条件求离心率的取值范围,无论是哪类问题,其难点都是建立关于a ,b ,c 的关系式(等式或不等式),并且最后要把其中的b 用a ,c 表示,转化为关于离心率e 的关系式,这是化解有关椭圆的离心率问题难点的根本方法.典例1 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x-4y =0交椭圆E 于A ,B 两点.若AF +BF =4,点M 到直线l 的距离不小于45,则椭圆E的离心率的取值范围是________.解析 设左焦点为F 0,连接F 0A ,F 0B ,则四边形AFBF 0为平行四边形.∵AF +BF =4,∴AF +AF 0=4, ∴a =2.设M (0,b ),则M 到直线l 的距离d =4b 5≥45,∴1≤b <2. 离心率e =ca =c 2a 2= a 2-b 2a 2= 4-b 24∈⎝⎛⎦⎤0,32. 答案 ⎝⎛⎦⎤0,32典例2 (16分)如图,设椭圆方程为x 2a2+y 2=1(a >1).(1)求直线y =kx +1被椭圆截得的线段长(用a ,k 表示);(2)若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围. 规范解答解 (1)设直线y =kx +1被椭圆截得的线段为AM ,A (x 1,y 1),M (x 2,y 2), 由⎩⎪⎨⎪⎧y =kx +1,x 2a 2+y 2=1, 得(1+a 2k 2)x 2+2a 2kx =0,[2分] 故x 1=0,x 2=-2a 2k 1+a 2k 2,y 1=1,y 2=1-a 2k 21+a 2k 2,因此AM =(x 1-x 2)2+(y 1-y 2)2 =2a 2|k |1+a 2k2·1+k 2.[4分] (2)假设圆与椭圆的公共点有4个,由对称性可设y 轴左侧的椭圆上有两个不同的点P ,Q ,满足AP =AQ .记直线AP ,AQ 的斜率分别为k 1,k 2, 且k 1>0,k 2>0,k 1≠k 2.[6分] 由(1)知AP =2a 2|k 1|1+k 211+a 2k 21, AQ =2a 2|k 2|1+k 221+a 2k 22,故2a 2|k 1|1+k 211+a 2k 21=2a 2|k 2|1+k 221+a 2k 22,所以(k 21-k 22)[1+k 21+k 22+a 2(2-a 2)k 21k 22]=0.[10分] 由k 1≠k 2,k 1>0,k 2>0得1+k 21+k 22+a 2(2-a 2)k 21k 22=0,因此⎝⎛⎭⎫1k 21+1⎝⎛⎭⎫1k 22+1=1+a 2(a 2-2),① 因为①式关于k 1,k 2的方程有解的充要条件是1+a 2(a 2-2)>1,所以a > 2.因此,任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1<a ≤2,[14分] 由e =c a=a 2-1a 2= 1-1a 2,得0<e ≤22. 所以离心率的取值范围是⎝⎛⎦⎤0,22.[16分]1.若直线mx +ny =4与⊙O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数是________. 答案 2解析 由题意知,4m 2+n2>2,即m 2+n 2<2, ∴点P (m ,n )在椭圆x 29+y 24=1的内部,故所求交点个数是2.2.过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为________. 答案 53解析 由题意知椭圆的右焦点F 的坐标为(1,0),则直线AB 的方程为y =2x -2. 联立⎩⎪⎨⎪⎧x 25+y 24=1,y =2x -2,解得交点坐标为(0,-2),⎝⎛⎭⎫53,43,不妨设A 点的纵坐标y A =-2,B 点的纵坐标y B =43,∴S △OAB =12·OF ·|y A -y B |=12×1×⎪⎪⎪⎪-2-43=53.3.中心为(0,0),一个焦点为F (0,52)的椭圆,截直线y =3x -2所得弦中点的横坐标为12,则该椭圆方程是________. 答案 x 225+y 275=1解析 c =52,设椭圆方程为x 2a 2-50+y2a2=1,联立方程得⎩⎪⎨⎪⎧x 2a 2-50+y 2a 2=1,y =3x -2,消去y ,整理得(10a 2-450)x 2-12(a 2-50)x +4(a 2-50)-a 2(a 2-50)=0,由根与系数的关系得x 1+x 2=12(a 2-50)10a 2-450=1,解得a 2=75,所以椭圆方程为x 225+y 275=1.4.已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 的直线与椭圆C 交于A ,B 两点,且AB =3,则C 的方程为________________. 答案 x 24+y 23=1解析 设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),则c =1.因为过F 2且垂直于x 轴的直线与椭圆交于A ,B 两点,且AB =3,所以b 2a =32,b 2=a 2-c 2,所以a 2=4,b 2=a 2-c 2=4-1=3,椭圆的方程为x 24+y 23=1.5.从椭圆x 2a 2+y 2b 2=1(a >b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是________. 答案22解析 由题意可设P (-c ,y 0)(c 为半焦距), k OP =-y 0c ,k AB =-ba ,由于OP ∥AB ,∴-y 0c =-b a ,y 0=bca,把P ⎝⎛⎭⎫-c ,bc a 代入椭圆方程得(-c )2a 2+⎝⎛⎭⎫bc a 2b 2=1, ∴⎝⎛⎭⎫c a 2=12,∴e =c a =22. 6.已知椭圆E 的左、右焦点分别为F 1、F 2,过F 1且斜率为2的直线交椭圆E 于P ,Q 两点,若△PF 1F 2为直角三角形,则椭圆E 的离心率为________.答案53解析 由题意可知,∠F 1PF 2是直角,且tan ∠PF 1F 2=2,∴PF 2PF 1=2,又PF 1+PF 2=2a , ∴PF 1=2a 3,PF 2=4a3.根据勾股定理得⎝⎛⎭⎫2a 32+⎝⎛⎭⎫4a 32=(2c )2, 所以离心率e =c a =53.7.设F 1,F 2分别是椭圆x 24+y 2=1的左、右焦点,若椭圆上存在一点P ,使(OP →+OF 2→)·PF 2→=0(O 为坐标原点),则△F 1PF 2的面积是________. 答案 1解析 ∵(OP →+OF 2→)·PF 2→=(OP →+F 1O →)·PF 2→=F 1P →·PF 2→=0, ∴PF 1⊥PF 2,∠F 1PF 2=90°. 设PF 1=m ,PF 2=n ,则m +n =4,m 2+n 2=12,2mn =4,mn =2, ∴12F PF S=12mn =1. 8.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,椭圆C 与过原点的直线相交于A ,B 两点,连接AF ,BF ,若AB =10,AF =6,cos ∠ABF =45,则椭圆C 的离心率e =________.答案 57解析 设椭圆的右焦点为F 1,在△ABF 中,由余弦定理可解得BF =8,所以△ABF 为直角三角形,且∠AFB =90°,又因为斜边AB 的中点为O ,所以OF =c =5,连结AF 1,因为A ,B 关于原点对称,所以BF =AF 1=8,所以2a =14,a =7,所以离心率e =57.9.P 为椭圆x 29+y 28=1上的任意一点,AB 为圆C :(x -1)2+y 2=1的任一条直径,则P A →·PB →的取值范围是______. 答案 [3,15]解析 圆心C (1,0)为椭圆的右焦点, P A →·PB →=(PC →+CA →)·(PC →+CB →) =(PC →+CA →)·(PC →-CA →) =PC →2-CA →2=|PC →|2-1, 显然|PC →|∈[a -c ,a +c ]=[2,4], 所以P A →·PB →=|PC →|2-1∈[3,15].10.如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,其右准线与x 轴的交点为A ,在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是________.答案 ⎣⎡⎭⎫12,1解析 方法一 由题意知,椭圆上存在点P ,使得线段AP 的垂直平分线过点F ,所以PF =F A ,而F A =a 2c -c ,PF ≤a +c ,所以a 2c -c ≤a +c ,即a 2≤ac +2c 2.又e =ca ,所以2e 2+e ≥1,所以2e 2+e -1≥0, 即(2e -1)(e +1)≥0. 又0<e <1,所以12≤e <1.方法二 设点P (x ,y ).由题意,椭圆上存在点P ,使得线段AP 的垂直平分线过点F ,所以PF =F A , 由椭圆的第二定义,得PFa 2c -x =e ,所以PF =a 2c e -ex =a -ex ,而F A =a 2c -c ,所以a -ex =a 2c -c ,解得x =1e⎝⎛⎭⎫a +c -a 2c .由于-a ≤x ≤a ,所以-a ≤1e⎝⎛⎭⎫a +c -a 2c ≤a . 又e =c a,所以2e 2+e -1≥0,即(2e -1)(e +1)≥0. 又0<e <1,所以12≤e <1. 11.(2015·江苏)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC =2AB ,求直线AB 的方程.解 (1)由题意,得c a =22且c +a 2c=3,解得a =2,c =1,则b =1,所以椭圆的标准方程为x 22+y 2=1. (2)当AB ⊥x 轴时,AB =2,又CP =3,不合题意.当AB 与x 轴不垂直时,设直线AB 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2), 将AB 的方程代入椭圆方程,得(1+2k 2)x 2-4k 2x +2(k 2-1)=0,则x 1,2=2k 2±2(1+k 2)1+2k 2, C 的坐标为⎝ ⎛⎭⎪⎫2k 21+2k 2,-k 1+2k 2,且 AB =(x 2-x 1)2+(y 2-y 1)2=(1+k 2)(x 2-x 1)2=22(1+k 2)1+2k 2. 若k =0,则线段AB 的垂直平分线为y 轴,与左准线平行,不合题意.从而k ≠0,故直线PC 的方程为y +k 1+2k 2=-1k ⎝⎛⎭⎫x -2k 21+2k 2, 则P 点的坐标为⎝ ⎛⎭⎪⎫-2,5k 2+2k (1+2k 2), 从而PC =2(3k 2+1)1+k 2|k |(1+2k 2). 因为PC =2AB ,所以2(3k 2+1)1+k 2|k |(1+2k 2)=42(1+k 2)1+2k 2, 解得k =±1.此时直线AB 的方程为x -y -1=0或x +y -1=0.12.设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(1)证明EA +EB 为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.解 (1)因为AD =AC ,EB ∥AC ,故∠EBD =∠ACD =∠ADC ,所以EB =ED ,故EA +EB =EA +ED =AD .又圆A 的标准方程为(x +1)2+y 2=16,从而AD =4,所以EA +EB =4.由题设得A (-1,0),B (1,0),AB =2,由椭圆定义可得点E 的轨迹方程为x 24+y 23=1(y ≠0). (2)当l 与x 轴不垂直时,设l 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1,得(4k 2+3)x 2-8k 2x +4k 2-12=0. 点(1,0)在椭圆内部,故直线l 与椭圆必有两交点.则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3, 所以MN =(x 1-x 2)2+(y 1-y 2)2=12(k 2+1)4k 2+3. 过点B (1,0)且与l 垂直的直线m :y =-1k(x -1), 点A 到m 的距离为2k 2+1, 所以PQ =242-⎝ ⎛⎭⎪⎫2k 2+12=44k 2+3k 2+1. 故四边形MPNQ 的面积S =12MN ·PQ =121+14k 2+3. 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为(12,83).当l 与x 轴垂直时,其方程为x =1,MN =3,PQ =8,四边形MPNQ 的面积为12. 综上,四边形MPNQ 面积的取值范围为[12,83).13.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F 2,O 为坐标原点,M 为y 轴上一点,点A 是直线MF 2与椭圆C 的一个交点,且OA =OF 2=2OM ,则椭圆C 的离心率为________. 答案 53解析 方法一 ∵OA =OF 2=2OM ,∴M 在椭圆C 的短轴上,设椭圆C 的左焦点为F 1,连结AF 1,∵OA =OF 2,∴OA =12·F 1F 2, ∴AF 1⊥AF 2,从而△AF 1F 2∽△OMF 2,∴AF 1AF 2=OM OF 2=12, 又AF 21+AF 22=(2c )2, ∴AF 1=255c ,AF 2=455c , 又∵AF 1+AF 2=2a ,∴655c =2a ,即c a =53.方法二 ∵OA =OF 2=2OM ,∴M 在椭圆C 的短轴上,在Rt △MOF 2中,tan ∠MF 2O =OM OF 2=12,设椭圆C 的左焦点为F 1,连结AF 1, ∵OA =OF 2,∴OA =12F 1F 2, ∴AF 1⊥AF 2,∴tan ∠AF 2F 1=AF 1AF 2=12, 设AF 1=x (x >0),则AF 2=2x ,∴F 1F 2=5x ,∴e =2c 2a =F 1F 2AF 1+AF 2=5x x +2x =53.14.已知椭圆x 2a 2+y 2b 2=1(a >b >0)短轴的端点为P (0,b ),Q (0,-b ),长轴的一个端点为M ,AB 为经过椭圆中心且不在坐标轴上的一条弦,若P A ,PB 的斜率之积等于-14,则点P 到直线QM 的距离为________.答案 455b 解析 设A (x 0,y 0),则B 点坐标为(-x 0,-y 0),则y 0-b x 0·-y 0-b -x 0=-14,即y 20-b 2x 20=-14, 由于x 20a 2+y 20b 2=1,则y 20-b 2x 20=-b 2a2, 故-b 2a 2=-14,则b a =12,不妨取M (a,0),则直线QM 的方程为bx -ay -ab =0,则点P 到直线QM 的距离为d =|2ab |a 2+b 2=2·b1+⎝⎛⎭⎫b a 2=455b .15.已知F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,若椭圆C 上存在点P 使∠F 1PF 2为钝角,则椭圆C 的离心率的取值范围是________.答案 ⎝⎛⎭⎫22,1 解析 设P (x 0,y 0),F 1(-c,0),F 2(c,0),由题易知|x 0|<a ,因为存在点P ,使∠F 1PF 2为钝角,所以PF 1→·PF 2→<0有解,即c 2>x 20+y 20有解,即c 2>(x 20+y 20)min ,又y 20=b 2-b 2a 2x 20,b 2+c 2=a 2,x 20<a 2,故x 20+y 20=b 2+c 2a2x 20∈[b 2,a 2),所以(x 20+y 20)min =b 2,故c 2>b 2,所以e 2=c 2a 2>12,又0<e <1,所以22<e <1,故椭圆C 的离心率的取值范围是⎝⎛⎭⎫22,1. 16.过椭圆y 2a 2+x 2b 2=1(a >b >0)上的动点M 作圆x 2+y 2=b 22的两条切线,切点分别为P 和Q ,直线PQ 与x 轴和y 轴的交点分别为E 和F ,则△EOF 面积的最小值是________.答案 b 34a解析 设M (x 0,y 0),P (x 1,y 1),Q (x 2,y 2),则直线MP 和MQ 的方程分别为x 1x +y 1y =b 22,x 2x +y 2y =b 22.因为点M 在MP 和MQ 上,所以有x 1x 0+y 1y 0=b 22,x 2x 0+y 2y 0=b 22,则P ,Q 两点的坐标满足方程x 0x +y 0y =b 22,所以直线PQ 的方程为x 0x +y 0y =b 22,可得E ⎝⎛⎭⎫b 22x 0,0和F ⎝⎛⎭⎫0,b 22y 0, 所以S △EOF =12·OE ·OF =b 48|x 0y 0|, 因为b 2y 20+a 2x 20=a 2b 2,b 2y 20+a 2x 20≥2ab |x 0y 0|,所以|x 0y 0|≤ab 2,所以S △EOF =b 48|x 0y 0|≥b 34a, 当且仅当b 2y 20=a 2x 20=a 2b 22时取“=”, 故△EOF 面积的最小值为b 34a.。
基础巩固题组 (建议用时:40分钟)一、选择题1.过抛物线y 2=2x 的焦点作一条直线与抛物线交于A ,B 两点,它们的横坐标之和等于2,则这样的直线( ) A.有且只有一条 B.有且只有两条 C.有且只有三条D.有且只有四条解析 ∵通径2p =2,又|AB |=x 1+x 2+p ,∴|AB |=3>2p ,故这样的直线有且只有两条. 答案 B2.直线y =b a x +3与双曲线x 2a 2-y 2b2=1(a >0,b >0)的交点个数是( )A.1B.2C.1或2D.0解析 因为直线y =ba x +3与双曲线的渐近线y =b ax 平行,所以它与双曲线只有1个交点. 答案 A3.经过椭圆x 22+y 2=1的一个焦点作倾斜角为45°的直线l ,交椭圆于A ,B 两点,设O 为坐标原点,则OA →·OB →等于( ) A.-3B.-13C.-13或-3D.±13解析 依题意,当直线l 经过椭圆的右焦点(1,0)时,其方程为y -0=tan 45°(x -1),即y =x -1,代入椭圆方程x 22+y 2=1并整理得3x 2-4x =0,解得x =0或x =43,所以两个交点坐标分别为(0,-1),⎝ ⎛⎭⎪⎫43,13,∴OA →·OB →=-13,同理,直线l 经过椭圆的左焦点时,也可得OA →·OB →=-13.答案 B4.抛物线y =x 2到直线x -y -2=0的最短距离为( ) A. 2B.728C.2 2D.526解析 设抛物线上一点的坐标为(x ,y ),则d =|x -y -2|2=|-x 2+x -2|2=⎪⎪⎪⎪⎪⎪-⎝ ⎛⎭⎪⎫x -122-742,∴x =12时,d min =728.答案 B5.已知A ,B ,P 是双曲线x 2a 2-y 2b2=1(a >0,b >0)上不同的三点,且A ,B 连线经过坐标原点,若直线PA ,PB 的斜率乘积k PA ·k PB =23,则该双曲线的离心率为( )A.52B.62C. 2D.153解析 设A (x 1,y 1),P (x 2,y 2)根据对称性,得B 点坐标为 (-x 1,-y 1),因为A ,P 在双曲线上,所以⎩⎪⎨⎪⎧x 21a 2-y 21b2=1,x 22a 2-y 22b 2=1,两式相减,得k PAkPB =b 2a 2=23,所以e 2=a 2+b 2a 2=53,故e =153.答案 D 二、填空题6.已知椭圆C :x 2a 2+y 2b2=1(a >b >0),F (2,0)为其右焦点,过F 且垂直于x 轴的直线与椭圆相交所得的弦长为2.则椭圆C 的方程为________.解析 由题意得⎩⎪⎨⎪⎧c =2,b 2a =1,a 2=b 2+c 2,解得⎩⎨⎧a =2,b =2,∴椭圆C 的方程为x 24+y22=1.答案x 24+y 22=1 7.已知抛物线y =ax 2(a >0)的焦点到准线的距离为2,则直线y =x +1截抛物线所得的弦长等于________.解析 由题设知p =12a =2,∴a =14.抛物线方程为y =14x 2,焦点为F (0,1),准线为y =-1.联立⎩⎪⎨⎪⎧y =14x 2,y =x +1,消去x ,整理得y 2-6y +1=0,∴y 1+y 2=6,∵直线过焦点F ,∴所得弦|AB |=|AF |+|BF |=y 1+1+y 2+1=8. 答案 88.(2017·金华月考)过椭圆x 216+y 24=1内一点P (3,1),且被这点平分的弦所在直线的方程是________;此弦的长为________.解析 设直线与椭圆交于A (x 1,y 1),B (x 2,y 2)两点, 由于A ,B 两点均在椭圆上,故x 2116+y 214=1,x 2216+y 224=1,两式相减得(x 1+x 2)(x 1-x 2)16+(y 1+y 2)(y 1-y 2)4=0.又∵P 是A ,B 的中点,∴x 1+x 2=6,y 1+y 2=2, ∴k AB =y 1-y 2x 1-x 2=-34. ∴直线AB 的方程为y -1=-34(x -3).即3x +4y -13=0.由⎩⎪⎨⎪⎧3x +4y -13=0,x 216+y 24=1,消去y 整理得13x 2-78x +105=0,x 1+x 2=6,x 1x 2=10513,|AB |=1+k 2|x 1-x 2|=1+k 2(x 1+x 2)2-4x 1x 2=1+⎝ ⎛⎭⎪⎫-342·62-4×10513=53913. 答案 3x +4y -13=0 53913三、解答题9.设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过F 1且斜率为1的直线l 与E相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列. (1)求E 的离心率;(2)设点P (0,-1)满足|PA |=|PB |,求E 的方程. 解 (1)由椭圆定义知|AF 2|+|BF 2|+|AB |=4a , 又2|AB |=|AF 2|+|BF 2|,得|AB |=43a ,l 的方程为y =x +c ,其中c =a 2-b 2.设A (x 1,y 1),B (x 2,y 2),则A ,B 两点的坐标满足方程组⎩⎪⎨⎪⎧y =x +c ,x 2a 2+y 2b2=1,消去y ,化简得(a 2+b 2)x2+2a 2cx +a 2(c 2-b 2)=0,则x 1+x 2=-2a 2c a 2+b 2,x 1x 2=a 2(c 2-b 2)a 2+b 2.因为直线AB 的斜率为1,所以|AB |=2|x 2-x 1|=2[(x 1+x 2)2-4x 1x 2],即43a =4ab2a 2+b2,故a 2=2b 2,所以E 的离心率e =c a =a 2-b 2a =22.(2)设AB 的中点为N (x 0,y 0),由(1)知x 0=x 1+x 22=-a 2c a 2+b 2=-2c 3,y 0=x 0+c =c3. 由|PA |=|PB |,得k PN =-1,即y 0+1x 0=-1, 得c =3,从而a =32,b =3.故椭圆E 的方程为x 218+y 29=1.10.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (2,0),离心率为22.直线y =k (x -1)与椭圆C 交于不同的两点M ,N . (1)求椭圆C 的方程; (2)当△AMN 的面积为103时,求k 的值. 解 (1)由题意得⎩⎪⎨⎪⎧a =2,c a =22,a 2=b 2+c 2.解得b =2,所以椭圆C 的方程为x 24+y 22=1.(2)由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 22=1,得(1+2k 2)x 2-4k 2x +2k 2-4=0.设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2), 则y 1=k (x 1-1),y 2=k (x 2-1), x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-41+2k 2,所以|MN |=(x 2-x 1)2+(y 2-y 1)2=(1+k 2)[(x 1+x 2)2-4x 1x 2]=2(1+k 2)(4+6k 2)1+2k2又因为点A (2,0)到直线y =k (x -1)的距离d =|k |1+k2,所以△AMN 的面积为S =12|MN |·d =|k |4+6k 21+2k 2,由|k |4+6k 21+2k 2=103,解得k =±1. 能力提升题组 (建议用时:30分钟)11.已知椭圆x 24+y 2b2=1(0<b <2)的左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是( ) A.1B. 2C.32D. 3解析 由椭圆的方程,可知长半轴长为a =2,由椭圆的定义,可知|AF 2|+|BF 2|+|AB |=4a =8,所以|AB |=8-(|AF 2|+|BF 2|)≥3.由椭圆的性质,可知过椭圆焦点的弦中,通径最短,即2b 2a=3,可求得b 2=3,即b = 3.答案 D12.抛物线C 1:y =12p x 2(p >0)的焦点与双曲线C 2:x 23-y 2=1的右焦点的连线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p =( ) A.316B.38C.233D.433解析 ∵双曲线C 2:x 23-y 2=1,∴右焦点为F (2,0),渐近线方程为y =±33x . 抛物线C 1:y =12p x 2(p >0),焦点为F ′⎝ ⎛⎭⎪⎫0,p 2.设M (x 0,y 0),则y 0=12p x 20. ∵k MF ′=k FF ′,∴12p x 20-p 2x 0=p 2-2.①又∵y ′=1p x ,∴y ′|x =x 0=1p x0=33.②由①②得p =433.答案 D13.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,PA ⊥l ,A 为垂足.如果直线AF 的斜率为-3,那么|PF |=________.解析 直线AF 的方程为y =-3(x -2),联立⎩⎨⎧y =-3x +23,x =-2,得y =43,所以P (6,43).由抛物线的性质可知|PF |=6+2=8. 答案 814.(2015·全国Ⅰ卷)在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点,(1)当k =0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由. 解 (1)由题设可得M (2a ,a ),N (-2a ,a ), 或M (-2a ,a ),N (2a ,a ).又y ′=x 2,故y =x 24在x =2a 处的导数值为a ,C 在点(2a ,a )处的切线方程为y -a =a (x-2a ), 即ax -y -a =0.y =x 24在x =-2a 处的导数值为-a ,C 在点(-2a ,a )处的切线方程为y -a =-a (x +2a ),即ax +y +a =0.故所求切线方程为ax -y -a =0和ax +y +a =0. (2)存在符合题意的点,证明如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为k 1,k 2. 将y =kx +a 代入C 的方程得x 2-4kx -4a =0. 故x 1+x 2=4k ,x 1x 2=-4a .从而k 1+k 2=y 1-b x 1+y 2-bx 2=2kx 1x 2+(a -b )(x 1+x 2)x 1x 2=k (a +b )a.当b =-a 时,有k 1+k 2=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM =∠OPN ,所以点P (0,-a )符合题意.15.已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF |=54|PQ |.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l ′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.解 (1)设Q (x 0,4),代入y 2=2px 得x 0=8p.所以|PQ |=8p ,|QF |=p 2+x 0=p 2+8p.由题设得p 2+8p =54×8p,解得p =-2(舍去)或p =2.所以C 的方程为y 2=4x .(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m ≠0).代入y 2=4x 得y 2-4my -4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4. 故AB 的中点为D (2m 2+1,2m ), |AB |=m 2+1|y 1-y 2|=4(m 2+1).又l ′的斜率为-m ,所以l ′的方程为x =-1my +2m 2+3.将上式代入y 2=4x ,并整理得y 2+4my -4(2m 2+3)=0.设M (x 3,y 3),N (x 4,y 4),则y 3+y 4=-4m,y 3y 4=-4(2m 2+3).故MN 的中点为E ⎝ ⎛⎭⎪⎫2m 2+2m 2+3,-2m ,|MN |=1+1m 2|y 3-y 4|=4(m 2+1)2m 2+1m2. 由于MN 垂直平分AB ,故A ,M ,B ,N 四点在同一圆上等价于|AE |=|BE |=12|MN |,从而14|AB |2+|DE |2=14|MN |2,即4(m 2+1)2+⎝ ⎛⎭⎪⎫2m +2m 2+⎝ ⎛⎭⎪⎫2m 2+22=4(m 2+1)2(2m 2+1)m4. 化简得m 2-1=0,解得m =1或m =-1. 所求直线l 的方程为x -y -1=0或x +y -1=0.第2课时 定点、定值、范围、最值问题考点一 定点问题【例1】 (2017·枣庄模拟)已知椭圆x 2a 2+y 2b2=1(a >0,b >0)过点(0,1),其长轴、焦距和短轴的长的平方依次成等差数列.直线l 与x 轴正半轴和y 轴分别交于Q ,P ,与椭圆分别交于点M ,N ,各点均不重合且满足PM →=λ1MQ →,PN →=λ2NQ →.(1)求椭圆的标准方程;(2)若λ1+λ2=-3,试证明:直线l 过定点并求此定点.解 (1)设椭圆的焦距为2c ,由题意知b =1,且(2a )2+(2b )2=2(2c )2,又a 2=b 2+c 2,所以a 2=3.所以椭圆的方程为x 23+y 2=1.(2)由题意设P (0,m ),Q (x 0,0),M (x 1,y 1),N (x 2,y 2), 设l 方程为x =t (y -m ),由PM →=λ1MQ →知(x 1,y 1-m )=λ1(x 0-x 1,-y 1), ∴y 1-m =-y 1λ1,由题意y 1≠0,∴λ1=m y 1-1.同理由PN →=λ2NQ →知λ2=m y 2-1.∵λ1+λ2=-3,∴y 1y 2+m (y 1+y 2)=0,①联立⎩⎪⎨⎪⎧x 2+3y 2=3,x =t (y -m )得(t 2+3)y 2-2mt 2y +t 2m 2-3=0,∴由题意知Δ=4m 2t 4-4(t 2+3)(t 2m 2-3)>0,② 且有y 1+y 2=2mt 2t 2+3,y 1y 2=t 2m 2-3t 2+3,③将③代入①得t 2m 2-3+2m 2t 2=0, ∴(mt )2=1.由题意mt <0,∴mt =-1,满足②,得l 方程为x =ty +1,过定点(1,0),即Q 为定点. 规律方法 圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法,根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.【训练1】 (2017·杭州七校联考)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的两焦点在x 轴上,且两焦点与短轴的一个顶点的连线构成斜边长为2的等腰直角三角形.(1)求椭圆的方程;(2)过点S ⎝⎛⎭⎪⎫0,-13的动直线l 交椭圆C 于A ,B 两点,试问:在坐标平面上是否存在一个定点Q ,使得以线段AB 为直径的圆恒过点Q ?若存在,求出点Q 的坐标;若不存在,请说明理由.解 (1)∵椭圆两焦点与短轴的一个端点的连线构成等腰直角三角形,∴b =c .又斜边长为2,即2c =2,故c =b =1,a =2,椭圆方程为x 22+y 2=1.(2)当l 与x 轴平行时,以线段AB 为直径的圆的方程为x 2+⎝ ⎛⎭⎪⎫y +132=169;当l 与y 轴平行时,以线段AB 为直径的圆的方程为x 2+y 2=1. 由⎩⎨⎧x 2+⎝ ⎛⎭⎪⎫y +132=169,x 2+y 2=1,得⎩⎪⎨⎪⎧x =0,y =1,故若存在定点Q ,则Q 的坐标只可能为Q (0,1). 下面证明Q (0,1)为所求:若直线l 的斜率不存在,上述已经证明. 若直线l 的斜率存在,设直线l :y =kx -13,A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx -13,x 2+2y 2-2=0,得(9+18k 2)x 2-12kx -16=0,Δ=144k 2+64(9+18k 2)>0,x 1+x 2=12k 18k 2+9,x 1x 2=-1618k 2+9, QA →=(x 1,y 1-1),QB →=(x 2,y 2-1),QA →·QB →=x 1x 2+(y 1-1)(y 2-1) =(1+k 2)x 1x 2-4k 3(x 1+x 2)+169=(1+k 2)·-169+18k 2-4k 3·12k 9+18k 2+169=0, ∴QA →⊥QB →,即以线段AB 为直径的圆恒过点Q (0,1).考点二 定值问题【例2】 (2016·山东卷)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的长轴长为4,焦距为2 2. (1)求椭圆C 的方程;(2)过动点M (0,m )(m >0)的直线交x 轴于点N ,交C 于点A ,P (P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长QM 交C 于点B .①设直线PM ,QM 的斜率分别为k ,k ′,证明k ′k为定值. ②求直线AB 的斜率的最小值. (1)解 设椭圆的半焦距为c .由题意知2a =4,2c =2 2.所以a =2,b =a 2-c 2= 2. 所以椭圆C 的方程为x 24+y 22=1.(2)①证明 设P (x 0,y 0)(x 0>0,y 0>0). 由M (0,m ),可得P (x 0,2m ),Q (x 0,-2m ). 所以直线PM 的斜率k =2m -m x 0=mx 0.直线QM 的斜率k ′=-2m -m x 0=-3mx 0.此时k ′k =-3.所以k ′k为定值-3. ②解 设A (x 1,y 1),B (x 2,y 2). 由①知直线PA 的方程为y =kx +m .则直线QB 的方程为y =-3kx +m .联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y 22=1,整理得(2k 2+1)x 2+4mkx +2m 2-4=0, 由x 0x 1=2m 2-42k 2+1,可得x 1=2(m 2-2)(2k 2+1)x 0, 所以y 1=kx 1+m =2k (m 2-2)(2k 2+1)x 0+m . 同理x 2=2(m 2-2)(18k 2+1)x 0,y 2=-6k (m 2-2)(18k 2+1)x 0+m . 所以x 2-x 1=2(m 2-2)(18k 2+1)x 0-2(m 2-2)(2k 2+1)x 0 =-32k 2(m 2-2)(18k 2+1)(2k 2+1)x 0,y 2-y 1=-6k (m 2-2)(18k 2+1)x 0+m -2k (m 2-2)(2k 2+1)x 0-m =-8k (6k 2+1)(m 2-2)(18k 2+1)(2k 2+1)x 0, 所以k AB =y 2-y 1x 2-x 1=6k 2+14k =14⎝ ⎛⎭⎪⎫6k +1k ,由m >0,x 0>0,可知k >0,所以6k +1k ≥26,当且仅当k =66时取“=”.故此时2m -m4-8m 2-0=66,即m =147,符合题意. 所以直线AB 的斜率的最小值为62. 规律方法 圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入代数式,化简即可得出定值;(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得;(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.【训练2】 (2016·北京卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a ,0),B (0,b ),O (0,0),△OAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |·|BM |为定值. (1)解 由已知ca =32,12ab =1. 又a 2=b 2+c 2,解得a =2,b =1,c = 3. 所以椭圆方程为x 24+y 2=1.(2)证明 由(1)知,A (2,0),B (0,1). 设椭圆上一点P (x 0,y 0),则x 204+y 20=1.当x 0≠0时,直线PA 方程为y =y 0x 0-2(x -2),令x =0得y M =-2y 0x 0-2.从而|BM |=|1-y M |=⎪⎪⎪⎪⎪⎪1+2y 0x 0-2. 直线PB 方程为y =y 0-1x 0x +1. 令y =0得x N =-x 0y 0-1.∴|AN |=|2-x N |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1.∴|AN |·|BM |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1·⎪⎪⎪⎪⎪⎪1+2y 0x 0-2 =⎪⎪⎪⎪⎪⎪x 0+2y 0-2x 0-2·⎪⎪⎪⎪⎪⎪x 0+2y 0-2y 0-1=⎪⎪⎪⎪⎪⎪x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2 =⎪⎪⎪⎪⎪⎪4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2=4.当x 0=0时,y 0=-1,|BM |=2,|AN |=2, 所以|AN |·|BM |=4.故|AN |·|BM |为定值. 考点三 范围问题【例3】 (2016·天津卷)设椭圆x 2a 2+y 23=1(a >3)的右焦点为F ,右顶点为A .已知1|OF |+1|OA |=3e|FA |,其中O 为原点,e 为椭圆的离心率. (1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若BF ⊥HF ,且∠MOA ≤∠MAO ,求直线l 的斜率的取值范围. 解 (1)设F (c ,0),由1|OF |+1|OA |=3e|FA |,即1c +1a=3c a (a -c ),可得a 2-c 2=3c 2.又a 2-c 2=b 2=3,所以c 2=1,因此a 2=4. 所以椭圆的方程为x 24+y 23=1.(2)设直线l 的斜率为k (k ≠0),则直线l 的方程为y =k (x -2).设B (x B ,y B ),由方程组⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -2)消去y ,整理得(4k 2+3)x 2-16k 2x +16k 2-12=0.解得x=2或x =8k 2-64k 2+3.由题意得x B =8k 2-64k 2+3,从而y B =-12k4k 2+3.由(1)知F (1,0),设H (0,y H ), 有FH →=(-1,y H ),BF →=⎝ ⎛⎭⎪⎫9-4k24k 2+3,12k 4k 2+3.由BF ⊥HF ,得BF →·FH →=0,所以4k 2-94k 2+3+12ky H 4k 2+3=0,解得y H =9-4k 212k .因为直线MH 的方程为y =-1k x +9-4k 212k.设M (x M ,y M ),由方程组⎩⎪⎨⎪⎧y =k (x -2),y =-1k x +9-4k 212k 消去y ,解得x M =20k 2+912(k 2+1). 在△MAO 中,∠MOA ≤∠MAO ⇔|MA |≤|MO |,即(x M -2)2+y 2M ≤x 2M +y 2M ,化简得x M ≥1,即20k 2+912(k 2+1)≥1, 解得k ≤-64或k ≥64. 所以直线l 的斜率的取值范围为⎝ ⎛⎦⎥⎤-∞,-64或⎣⎢⎡⎭⎪⎫64,+∞. 规律方法 解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围; (4)利用已知的不等关系构造不等式,从而求出参数的取值范围;(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.【训练3】 (2017·威海模拟)已知圆x 2+y 2=1过椭圆x 2a 2+y 2b2=1(a >b >0)的两焦点,与椭圆有且仅有两个公共点,直线l :y =kx +m 与圆x 2+y 2=1相切,与椭圆x 2a 2+y 2b2=1相交于A ,B两点.记λ=OA →·OB →,且23≤λ≤34.(1)求椭圆的方程; (2)求k 的取值范围;(3)求△OAB 的面积S 的取值范围. 解 (1)由题意知2c =2,所以c =1. 因为圆与椭圆有且只有两个公共点,从而b =1,故a =2,所以所求椭圆方程为x 22+y 2=1.(2)因为直线l :y =kx +m 与圆x 2+y 2=1相切, 所以原点O 到直线l 的距离为|m |12+k2=1,即m 2=k 2+1.由⎩⎪⎨⎪⎧y =kx +m ,x 22+y 2=1,得(1+2k 2)x 2+4kmx +2m 2-2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-21+2k2.λ=OA →·OB →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+km (x 1+x 2)+m 2=k 2+11+2k 2,由23≤λ≤34,得12≤k 2≤1,即k 的取值范围是⎣⎢⎡⎦⎥⎤-1,-22∪⎣⎢⎡⎦⎥⎤22,1. (3)|AB |2=(x 1-x 2)2+(y 1-y 2)2=(1+k 2)[(x 1+x 2)2-4x 1x 2]=2-2(2k 2+1)2,由12≤k 2≤1,得62≤|AB |≤43. 设△OAB 的AB 边上的高为d ,则S =12|AB |d =12|AB |,所以64≤S ≤23.即△OAB 的面积S 的取值范围是⎣⎢⎡⎦⎥⎤64,23. 考点四 最值问题【例4】 (2015·浙江卷)已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点). 解 (1)由题意知m ≠0,可设直线AB 的方程为y =-1mx +b .由⎩⎪⎨⎪⎧x 22+y 2=1,y =-1m x +b消去y ,得⎝ ⎛⎭⎪⎫12+1m 2x 2-2b m x +b 2-1=0.因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m2>0,①将AB 中点M ⎝ ⎛⎭⎪⎫2mbm 2+2,m 2b m 2+2代入直线方程y =mx +12解得b =-m 2+22m 2②由①②得m <-63或m >63. (2)令t =1m ∈⎝ ⎛⎭⎪⎫-62,0∪⎝⎛⎭⎪⎫0,62,则|AB |=t 2+1·-2t 4+2t 2+32t 2+12.且O 到直线AB 的距离为d =t 2+12t 2+1.设△AOB 的面积为S (t ), 所以S (t )=12|AB |·d =12-2⎝⎛⎭⎪⎫t 2-122+2≤22. 当且仅当t 2=12时,等号成立.故△AOB 面积的最大值为22. 规律方法 处理圆锥曲线最值问题的求解方法圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解. 【训练4】 已知椭圆C :x 2+2y 2=4. (1)求椭圆C 的离心率;(2)设O 为原点.若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段AB 长度的最小值.解 (1)由题意,椭圆C 的标准方程为x 24+y 22=1.所以a 2=4,b 2=2, 从而c 2=a 2-b 2=2.因此a =2,c = 2.故椭圆C 的离心率e =c a =22. (2)设点A ,B 的坐标分别为(t ,2),(x 0,y 0),其中x 0≠0. 因为OA ⊥OB ,所以OA →·OB →=0, 即tx 0+2y 0=0,解得t =-2y 0x 0.又x 20+2y 20=4,所以|AB |2=(x 0-t )2+(y 0-2)2=(x 0+2y 0x 0)2+(y 0-2)2=x 20+y 20+4y 20x 20+4=x 2+4-x 202+2(4-x 20)x 20+4=x 202+8x 20+4(0<x 20≤4). 因为x 202+8x 20≥4(0<x 20≤4),当且仅当x 20=4时等号成立, 所以|AB |2≥8.故线段AB 长度的最小值为2 2.[思想方法]1.求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 2.定点的探索与证明问题(1)探索直线过定点时,可设出直线方程为y =kx +b ,然后利用条件建立b 、k 等量关系进行消元,借助于直线系的思想找出定点.(2)从特殊情况入手,先探求定点,再证明与变量无关. 3.求解范围问题的方法求范围问题的关键是建立求解关于某个变量的目标函数,通过求这个函数的值域确定目标的范围,要特别注意变量的取值范围.4.圆锥曲线中常见最值的解题方法(1)几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决; (2)代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法、配方法及导数法求解. [易错防范]1.求范围问题要注意变量自身的范围.2.利用几何意义求最值时,要注意“相切”与“公共点唯一”的不等价关系.注意特殊关系,特殊位置的应用.3.在解决直线与抛物线的位置关系时,要特别注意直线与抛物线的对称轴平行的特殊情况.4.解决定值、定点问题,不要忘记特值法.基础巩固题组 (建议用时:40分钟)一、选择题1.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A.⎣⎢⎡⎦⎥⎤-12,12 B.[-2,2] C.[-1,1]D.[-4,4]解析 Q (-2,0),设直线l 的方程为y =k (x +2),代入抛物线方程,消去y 整理得k 2x 2+(4k 2-8)x +4k 2=0,由Δ=(4k 2-8)2-4k 2·4k 2=64(1-k 2)≥0,解得-1≤k ≤1. 答案 C2.(2017·石家庄模拟)已知P 为双曲线C :x 29-y 216=1上的点,点M 满足|OM →|=1,且OM →·PM →=0,则当|PM →|取得最小值时点P 到双曲线C 的渐近线的距离为( ) A.95B.125C.4D.5解析 由OM →·PM →=0,得OM ⊥PM ,根据勾股定理,求|MP |的最小值可以转化为求|OP |的最小值,当|OP |取得最小值时,点P 的位置为双曲线的顶点(±3,0),而双曲线的渐近线为4x ±3y =0,∴所求的距离d =125,故选B.答案 B3.已知椭圆C 的方程为x 216+y 2m 2=1(m >0),如果直线y =22x 与椭圆的一个交点M 在x 轴上的射影恰好是椭圆的右焦点F ,则m 的值为( )A.2B.2 2C.8D.2 3解析 根据已知条件得c =16-m 2,则点(16-m 2,2216-m 2)在椭圆x 216+y 2m 2=1(m >0)上,∴16-m 216+16-m22m 2=1,可得m =2 2.答案 B4.若双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线与抛物线y =x 2+2有公共点,则此双曲线的离心率的取值范围是( ) A.[3,+∞) B.(3,+∞) C.(1,3]D.(1,3)解析 依题意可知双曲线渐近线方程为y =±b ax ,与抛物线方程联立消去y 得x 2±b ax +2=0. ∵渐近线与抛物线有交点,∴Δ=b 2a2-8≥0,求得b 2≥8a 2,∴c =a 2+b 2≥3a ,∴e =c a≥3. 答案 A5.(2017·丽水调研)斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为( ) A.2B.455C.4105D.8105解析 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),直线l 的方程为y =x +t ,由⎩⎪⎨⎪⎧x 2+4y 2=4,y =x +t 消去y ,得5x 2+8tx +4(t 2-1)=0, 则x 1+x 2=-85t ,x 1x 2=4(t 2-1)5.∴|AB |=1+k 2|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 =2·⎝ ⎛⎭⎪⎫-85t 2-4×4(t 2-1)5 =425·5-t 2,当t =0时,|AB |max =4105.答案 C 二、填空题6.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点与抛物线y2=16x 的焦点相同,则双曲线的方程为________. 解析 由条件知双曲线的焦点为(4,0),所以⎩⎪⎨⎪⎧a 2+b 2=16,b a=3,解得a =2,b =23,故双曲线方程为x 24-y 212=1.答案x 24-y 212=1 7.已知动点P (x ,y )在椭圆x 225+y 216=1上,若A 点坐标为(3,0),|AM →|=1,且PM →·AM →=0,则|PM →|的最小值是________. 解析 ∵PM →·AM →=0,∴AM →⊥PM →. ∴|PM →|2=|AP →|2-|AM →|2=|AP →|2-1, ∵椭圆右顶点到右焦点A 的距离最小, 故|AP →|min =2,∴|PM →|min = 3. 答案38.(2017·杭州调研)若双曲线x 2-y 2b2=1(b >0)的一条渐近线与圆x 2+(y -2)2=1至多有一个公共点,则双曲线离心率的取值范围是________;与圆相切时渐近线的方程为________. 解析 双曲线的渐近线方程为y =±bx ,则有|0-2|1+b2≥1,解得b 2≤3,则e 2=1+b 2≤4,∵e >1,∴1<e ≤2.当渐近线与圆相切时,b 2=3,a 2=1,∴渐近线方程为y =±3x . 答案 (1,2] y =±3x 三、解答题9.如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是22,点P (0,1)在短轴CD上,且PC →·PD →=-1.(1)求椭圆E 的方程;(2)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA →·OB →+λPA →·PB →为定值?若存在,求λ的值;若不存在,请说明理由. 解 (1)由已知,点C ,D 的坐标分别为(0,-b ),(0,b ). 又点P 的坐标为(0,1),且PC →·PD →=-1,于是⎩⎪⎨⎪⎧1-b 2=-1,c a =22,a 2-b 2=c 2.解得a =2,b = 2.所以椭圆E 方程为x 24+y 22=1.(2)当直线AB 的斜率存在时, 设直线AB 的方程为y =kx +1,A ,B 的坐标分别为(x 1,y 1),(x 2,y 2). 联立⎩⎪⎨⎪⎧x 24+y 22=1,y =kx +1,得(2k 2+1)x 2+4kx -2=0.其判别式Δ=(4k )2+8(2k 2+1)>0, 所以,x 1+x 2=-4k 2k 2+1,x 1x 2=-22k 2+1.从而,OA →·OB →+λPA →·PB →=x 1x 2+y 1y 2 +λ[x 1x 2+(y 1-1)(y 2-1)] =(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1=(-2λ-4)k 2+(-2λ-1)2k 2+1=-λ-12k 2+1-λ-2. 所以,当λ=1时,-λ-12k 2+1-λ-2=-3.此时,OA →·OB →+λPA →·PB →=-3为定值. 当直线AB 斜率不存在时,直线AB 即为直线CD , 此时OA →·OB →+λPA →·PB →=OC →·OD →+PC →·PD →= -2-1=-3, 故存在常数λ=1,使得OA →·OB →+λPA →·PB →为定值-3.10.(2016·浙江卷)如图,设椭圆x 2a2+y 2=1(a >1).(1)求直线y =kx +1被椭圆截得的线段长(用a ,k 表示);(2)若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.解 (1)设直线y =kx +1被椭圆截得的线段为AM ,由⎩⎪⎨⎪⎧y =kx +1,x 2a2+y 2=1,得(1+a 2k 2)x 2+2a 2kx =0. 故x 1=0,x 2=-2a 2k1+a 2k2,因此|AM |=1+k 2|x 1-x 2|=2a 2|k |1+a 2k2·1+k 2. (2)假设圆与椭圆的公共点有4个,由对称性可设y 轴左侧的椭圆上有两个不同的点P ,Q ,满足|AP |=|AQ |.记直线AP ,AQ 的斜率分别为k 1,k 2,且k 1,k 2>0,k 1≠k 2. 由(1)知|AP |=2a 2|k 1|1+k 211+a 2k 21,|AQ |=2a 2|k 2|1+k 221+a 2k 22, 故2a 2|k 1|1+k 211+a 2k 21=2a 2|k 2|1+k 221+a 2k 22, 所以(k 21-k 22)[1+k 21+k 22+a 2(2-a 2)k 21k 22]=0.由于k 1≠k 2,k 1,k 2>0得1+k 21+k 22+a 2(2-a 2)k 21k 22=0,因此⎝ ⎛⎭⎪⎫1k 21+1⎝ ⎛⎭⎪⎫1k 22+1=1+a 2(a 2-2),①因为①式关于k 1,k 2的方程有解的充要条件是1+a 2(a 2-2)>1,所以a > 2.因此,任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1<a ≤2,由e =c a =a 2-1a 得,所求离心率的取值范围是⎝⎛⎭⎪⎫0,22.能力提升题组 (建议用时:30分钟)11.(2017·浙大附中月考)设双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线与抛物线y 2=x的一个交点的横坐标为x 0,若x 0>1,则双曲线C 的离心率e 的取值范围是( ) A.⎝ ⎛⎭⎪⎫1,62 B.(2,+∞) C.(1,2)D.⎝⎛⎭⎪⎫62,+∞ 解析 不妨联立y =b a x 与y 2=x 的方程,消去y 得b 2a 2x 2=x ,由x 0>1知b 2a 2<1,即c 2-a 2a2<1,故e 2<2,又e >1,所以1<e <2,故选C.答案 C12.(2017·河南省八市质检)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为2,它的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O 为坐标原点.若△AOB 的面积为3,则抛物线的准线方程为( ) A.x =-2 B.x =2 C.x =1D.x =-1解析 因为e =c a=2,所以c =2a ,b =3a ,双曲线的渐近线方程为y =±3x ,又抛物线的准线方程为x =-p 2,联立双曲线的渐近线方程和抛物线的准线方程得A ⎝ ⎛⎭⎪⎫-p2,3p 2,B ⎝ ⎛⎭⎪⎫-p2,-3p 2,在△AOB 中,|AB |=3p ,点O 到AB 的距离为p 2,所以12·3p ·p 2=3,所以p =2,所以抛物线的准线方程为x =-1,故选D. 答案 D13.(2017·浙江五校联考)若点O 和点F 分别为椭圆x 29+y 28=1的中点和左焦点,点P 为椭圆上的任一点,则OP →·FP →的最小值为________.解析 点P 为椭圆x 29+y 28=1上的任意一点,设P (x ,y )(-3≤x ≤3,-22≤y ≤22),依题意得左焦点F (-1,0),∴OP →=(x ,y ),FP →=(x +1,y ),∴OP →·FP →=x (x +1)+y 2=x 2+x +72-8x 29=19⎝ ⎛⎭⎪⎫x +922+234.∵-3≤x ≤3,∴32≤x +92≤152,∴94≤⎝ ⎛⎭⎪⎫x +922≤2254, ∴14≤19⎝ ⎛⎭⎪⎫x +922≤22536,∴6≤19⎝ ⎛⎭⎪⎫x +922+234≤12,即6≤OP →·FP →≤12,故最小值为6. 答案 614.(2017·衡水中学高三联考)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)短轴的两个顶点与右焦点的连线构成等边三角形,直线3x +4y +6=0与圆x 2+(y -b )2=a 2相切. (1)求椭圆C 的方程;(2)已知过椭圆C 的左顶点A 的两条直线l 1,l 2分别交椭圆C 于M ,N 两点,且l 1⊥l 2,求证:直线MN 过定点,并求出定点坐标; (3)在(2)的条件下求△AMN 面积的最大值.解 (1)由题意,得⎩⎪⎨⎪⎧a =2b ,|4b +6|5=a ,∴⎩⎪⎨⎪⎧a =2,b =1,即C :x 24+y 2=1.(2)由题意得直线l 1,l 2的斜率存在且不为0. ∵A (-2,0),设l 1:x =my -2,l 2:x =-1my -2,由⎩⎪⎨⎪⎧x =my -2,x 2+4y 2-4=0,得(m 2+4)y 2-4my =0, ∴M ⎝ ⎛⎭⎪⎫2m 2-8m 2+4,4m m 2+4.同理,N ⎝ ⎛⎭⎪⎫2-8m 24m 2+1,-4m 4m 2+1. ①m ≠±1时,k MN =5m4(m 2-1), l MN :y =5m 4(m 2-1)⎝ ⎛⎭⎪⎫x +65.此时过定点⎝ ⎛⎭⎪⎫-65,0. ②m =±1时,l MN :x =-65,过点⎝ ⎛⎭⎪⎫-65,0. ∴l MN 恒过定点⎝ ⎛⎭⎪⎫-65,0.(3)由(2)知S △AMN =12×45|y M -y N |=25⎪⎪⎪⎪⎪⎪4m m 2+4+4m 4m 2+1=8⎪⎪⎪⎪⎪⎪m 3+m 4m 4+17m 2+4=8⎪⎪⎪⎪⎪⎪m +1m 4⎝ ⎛⎭⎪⎫m +1m 2+9=84⎪⎪⎪⎪⎪⎪m +1m +9⎪⎪⎪⎪⎪⎪m +1m . 令t =⎪⎪⎪⎪⎪⎪m +1m ≥2,当且仅当m =±1时取等号, ∴S △AMN ≤1625,且当m =±1时取等号.∴(S △AMN )max =1625.15.(2017·宁波模拟)如图,中心在坐标原点,焦点分别在x 轴和y 轴上的椭圆T 1,T 2都过点M (0,-2),且椭圆T 1与T 2的离心率均为22. (1)求椭圆T 1与椭圆T 2的标准方程;(2)过点M 引两条斜率分别为k ,k ′的直线分别交T 1,T 2于点P ,Q ,当k ′=4k 时,问直线PQ 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.解 (1)由题意知,椭圆T 1和椭圆T 2的方程分别为x 24+y 22=1,y 22+x 2=1;(2)直线MP 的方程为y =kx -2,联立椭圆方程得:⎩⎪⎨⎪⎧x 24+y 22=1,y =kx -2,消去y 得(2k 2+1)x 2-42kx =0,则x P =42k 2k 2+1,则点P 的坐标为P ⎝ ⎛⎭⎪⎫42k 2k 2+1,22k 2-22k 2+1 同理可得点Q 的坐标为:Q ⎝ ⎛⎭⎪⎫22k ′k ′2+2,2k ′2-22k ′2+2,又k ′=4k ,则点Q 为:⎝ ⎛⎭⎪⎫42k 8k 2+1,82k 2-28k 2+1, k PQ =82k 2-28k 2+1-22k 2-22k 2+142k 8k 2+1-42k2k 2+1=-12k ,则直线PQ 的方程为:y -22k 2-22k 2+1=-12k ⎝ ⎛⎭⎪⎫x -42k 2k 2+1, 化简得y -2=-12k x ,故直线PQ 过定点(0,2).。
【2019最新】精选高考数学大一轮复习第九章平面解析几何9-9圆锥曲线的综合问题第1课时圆锥曲线的综合问题教师用书1.直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c=0(或ay2+by+c=0).(1)若a≠0,可考虑一元二次方程的判别式Δ,有①Δ>0⇔直线与圆锥曲线相交;②Δ=0⇔直线与圆锥曲线相切;③Δ<0⇔直线与圆锥曲线相离.(2)若a=0,b≠0,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点,①若E为双曲线,则直线l与双曲线的渐近线的位置关系是平行;②若E为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则|AB|=|x2-x1|=|y2-y1|.【知识拓展】过一点的直线与圆锥曲线的位置关系(1)过椭圆外一点总有两条直线与椭圆相切;过椭圆上一点有且只有一条直线与椭圆相切;过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.(3)过双曲线外不在渐近线上的一点总有四条直线与双曲线有且只有一个交点:两条切线和两条与渐近线平行的直线;过双曲线上一点总有三条直线与双曲线有且只有一个交点:一条切线和两条与渐近线平行的直线;过双曲线内一点总有两条直线与双曲线有且只有一个交点:两条与渐近线平行的直线.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)直线l与抛物线y2=2px只有一个公共点,则l与抛物线相切.( ×)(2)直线y=kx(k≠0)与双曲线x2-y2=1一定相交.( ×)(3)与双曲线的渐近线平行的直线与双曲线有且只有一个交点.( √)(4)直线与椭圆只有一个交点⇔直线与椭圆相切.( √ )(5)过点(2,4)的直线与椭圆+y2=1只有一条切线.( × )(6)满足“直线y =ax +2与双曲线x2-y2=4只有一个公共点”的a 的值有4个.( √ )1.(2017·杭州高级中学月考)在同一平面直角坐标系中,方程a2x2+b2y2=1与ax +by2=0(a>b>0)表示的曲线大致是( )答案 D解析 将方程a2x2+b2y2=1变形为+=1,∵a>b>0,∴<,∴椭圆焦点在y 轴上.将方程ax +by2=0变形为y2=-x ,∵a>b>0,∴-<0,∴抛物线焦点在x 轴负半轴上,开口向左.2.(2016·青岛模拟)直线y =kx -k +1与椭圆+=1的位置关系为( )A .相交B .相切C .相离D .不确定 答案 A解析 直线y =kx -k +1=k(x -1)+1恒过定点(1,1),又点(1,1)在椭圆内部,故直线与椭圆相交.3.若直线y =kx 与双曲线-=1相交,则k 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,23B.⎝ ⎛⎭⎪⎫-23,0 C.⎝ ⎛⎭⎪⎫-23,23 D.∪⎝ ⎛⎭⎪⎫23,+∞ 答案 C解析 双曲线-=1的渐近线方程为y =±x,若直线与双曲线相交,数形结合,得k∈.4.(教材改编)已知与向量v =(1,0)平行的直线l 与双曲线-y2=1相交于A ,B 两点,则|AB|的最小值为________.答案 4解析 由题意可设直线l 的方程为y =m ,代入-y2=1得x2=4(1+m2),所以x1==2,x2=-2,所以|AB|=|x1-x2|=4,所以|AB|=4≥4,即当m =0时,|AB|有最小值4.第1课时 直线与圆锥曲线题型一 直线与圆锥曲线的位置关系例1 (2016·烟台模拟)已知直线l :y =2x +m ,椭圆C :+=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点;(2)有且只有一个公共点;(3)没有公共点.解 将直线l 的方程与椭圆C 的方程联立,得方程组⎩⎪⎨⎪⎧ y =2x +m ,①x24+y22=1,②将①代入②,整理得9x2+8mx +2m2-4=0.③方程③根的判别式Δ=(8m)2-4×9×(2m2-4)=-8m2+144.(1)当Δ>0,即-3<m<3时,方程③有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个不重合的公共点.(2)当Δ=0,即m =±3时,方程③有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l 与椭圆C 有两个互相重合的公共点,即直线l 与椭圆C 有且只有一个公共点.(3)当Δ<0,即m<-3或m>3时,方程③没有实数根,可知原方程组没有实数解.这时直线l 与椭圆C 没有公共点.思维升华 (1)判断直线与圆锥曲线的交点个数时,可直接求解相应方程组得到交点坐标,也可利用消元后的一元二次方程根的判别式来确定,需注意利用判别式的前提是二次项系数不为0.(2)依据直线与圆锥曲线的交点个数求参数时,联立方程并消元,得到一元方程,此时注意观察方程的二次项系数是否为0,若为0,则方程为一次方程;若不为0,则将方程解的个数转化为判别式与0的大小关系求解.(2016·全国乙卷)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连接ON并延长交C于点H.(1)求;(2)除H以外,直线MH与C是否有其它公共点?说明理由.解(1)由已知得M(0,t),P,又N为M关于点P的对称点,故N,ON的方程为y=x,代入y2=2px 整理得px2-2t2x=0,解得x1=0,x2=,因此H.所以N为OH的中点,即=2.(2)直线MH与C除H以外没有其它公共点,理由如下:直线MH的方程为y-t=x,即x=(y-t).代入y2=2px得y2-4ty+4t2=0,解得y1=y2=2t,即直线MH与C只有一个公共点,所以除H以外直线MH与C没有其它公共点.题型二弦长问题例2 (2016·全国甲卷)已知A是椭圆E:+=1的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(1)当|AM|=|AN|时,求△AMN的面积.(2)当2|AM|=|AN|时,证明:<k<2.(1)解设M(x1,y1),则由题意知y1>0,由|AM|=|AN|及椭圆的对称性知,直线AM的倾斜角为.又A(-2,0),因此直线AM的方程为y=x+2.将x=y-2代入+=1得7y2-12y=0,解得y=0或y=,所以y1=.因此△AMN的面积S△AMN=2×××=.(2)证明将直线AM的方程y=k(x+2)(k>0)代入+=1得(3+4k2)x2+16k2x+16k2-12=0,由x1·(-2)=得x1=,故|AM|=|x1+2|=.由题设,直线AN的方程为y=-(x+2),故同理可得|AN|=.由2|AM|=|AN|,得=,即4k3-6k2+3k-8=0,设f(t)=4t3-6t2+3t-8,则k是f(t)的零点,f′(t)=12t2-12t +3=3(2t-1)2≥0,所以f(t)在(0,+∞)上单调递增,又f()=15-26<0,f(2)=6>0,因此f(t)在(0,+∞)有唯一的零点,且零点k 在(,2)内,所以<k<2.思维升华有关圆锥曲线弦长问题的求解方法涉及弦长的问题中,应熟练的利用根与系数的关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数的关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.设F1,F2分别是椭圆E:+=1(a>b>0)的左,右焦点,过F1且斜率为1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,-1)满足|PA|=|PB|,求E的方程.解(1)由椭圆定义知|AF2|+|BF2|+|AB|=4a,又2|AB|=|AF2|+|BF2|,得|AB|=a,l的方程为y=x+c,其中c=.设A(x1,y1),B(x2,y2),则A,B两点的坐标满足方程组消去y,化简得(a2+b2)x2+2a2cx+a2(c2-b2)=0,则x1+x2=,x1x2=.因为直线AB的斜率为1,所以|AB|=|x2-x1|=,即a=,故a2=2b2,所以E的离心率e===.(2)设AB的中点为N(x0,y0),由(1)知x0===-,y0=x0+c=.由|PA|=|PB|,得kPN=-1,即=-1,得c=3,从而a=3,b=3.故椭圆E的方程为+=1.题型三中点弦问题命题点1 利用中点弦确定直线或曲线方程例3 (1)已知椭圆E:+=1(a>b>0)的右焦点为F(3,0),过点F的直线交E于A,B两点.若AB的中点坐标为(1,-1),则E的方程为( )A.+=1B.+=1C.+=1D.+=1(2)已知(4,2)是直线l被椭圆+=1所截得的线段的中点,则l的方程是________________.答案(1)D (2)x+2y-8=0解析 (1)因为直线AB 过点F(3,0)和点(1,-1),所以直线AB 的方程为y =(x -3),代入椭圆方程+=1消去y ,得x2-a2x +a2-a2b2=0,所以AB 的中点的横坐标为=1,即a2=2b2,又a2=b2+c2,所以b =c =3,a =3,选D.(2)设直线l 与椭圆相交于A(x1,y1),B(x2,y2),则+=1,且+=1,两式相减得=-.又x1+x2=8,y1+y2=4,所以=-,故直线l 的方程为y -2=-(x -4),即x +2y -8=0.命题点2 由中点弦解决对称问题例4 (2015·浙江)已知椭圆+y2=1上两个不同的点A ,B 关于直线y =mx +对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点).解 (1)由题意知m≠0,可设直线AB 的方程为y =-x +b.由⎩⎪⎨⎪⎧ x22+y2=1,y =-1m x +b ,消去y ,得x2-x +b2-1=0.因为直线y =-x +b 与椭圆+y2=1有两个不同的交点,所以Δ=-2b2+2+>0,①将AB中点M代入直线方程y=mx+,解得b=-②由①②得m<-或m>.(2)令t=∈∪,则|AB|=·.且O到直线AB的距离为d=.设△AOB的面积为S(t),所以S(t)=|AB|·d=≤.当且仅当t2=时,等号成立.故△AOB面积的最大值为.思维升华处理中点弦问题常用的求解方法(1)点差法:即设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相减,式中含有x1+x2,y1+y2,三个未知量,这样就直接联系了中点和直线的斜率,借用中点公式即可求得斜率.(2)根与系数的关系:即联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后,由根与系数的关系求解.(3)解决对称问题除掌握解决中点弦问题的方法外,还要注意:如果点A,B关于直线l对称,则l垂直直线AB且A,B的中点在直线l 上的应用.已知双曲线x2-=1上存在两点M,N关于直线y=x+m对称,且MN的中点在抛物线y2=18x上,则实数m的值为________.答案0或-8解析设M(x1,y1),N(x2,y2),MN的中点P(x0,y0),则⎩⎪⎨⎪⎧x21-y213=1,①x22-y223=1,②x1+x2=2x0, ③y1+y2=2y0, ④由②-①得(x2-x1)(x2+x1)=(y2-y1)(y2+y1),显然x1≠x2.∴·=3,即kMN·=3, ∵M,N 关于直线y =x +m 对称, ∴kMN=-1, ∴y0=-3x0.又∵y0=x0+m ,∴P,代入抛物线方程得m2=18·, 解得m =0或-8,经检验都符合.1.(2016·泰安模拟)斜率为的直线与双曲线-=1恒有两个公共点,则双曲线离心率的取值范围是( ) A .[2,+∞) B .(2,+∞) C .(1,) D .(,+∞)答案 B解析 要使直线与双曲线恒有两个公共点, 则渐近线的斜率的绝对值应大于, 所以||>,∴e= >2, 即e∈(2,+∞),故选B.2.(2016·青岛模拟)已知抛物线y2=2px(p>0)与直线ax +y -4=0相交于A,B两点,其中A点的坐标是(1,2).如果抛物线的焦点为F,那么|FA|+|FB|等于( )A.5 B.6 C.3 D.7答案D解析把点A的坐标(1,2)分别代入抛物线y2=2px与直线方程ax+y-4=0,得p=2,a=2,由消去y,得x2-5x+4=0,则xA+xB=5.由抛物线定义得|FA|+|FB|=xA+xB+p=7,故选D.3.(2016·丽水一模)斜率为1的直线l与椭圆+y2=1相交于A,B 两点,则|AB|的最大值为( )A.2 B. C. D.8105答案C解析设A,B两点的坐标分别为(x1,y1),(x2,y2),直线l的方程为y=x+t,由消去y,得5x2+8tx+4(t2-1)=0,则x1+x2=-t,x1x2=.∴|AB|=|x1-x2|=·+-4x1x2=·-85-4×-5=·,当t=0时,|AB|max=.4.(2016·天津模拟)直线y=x+3与双曲线-=1的交点个数是( )A.1 B.2 C.1或2 D.0答案A解析因为直线y=x+3与双曲线的渐近线y=x平行,所以它与双曲线只有1个交点,故选A.5.设双曲线-=1(a>0,b>0)的一条渐近线与抛物线y=x2+1只有一个公共点,则双曲线的离心率为( )A. B.5 C. D. 5答案D解析双曲线-=1的一条渐近线为y=x,由方程组消去y,得x2-x+1=0有唯一解,所以Δ=()2-4=0,=2,e==== .6.过抛物线y2=4x的焦点作一条直线与抛物线相交于A,B两点,它们到直线x=-2的距离之和等于5,则这样的直线( )A.有且仅有一条B.有且仅有两条C.有无穷多条D.不存在答案D解析抛物线y2=4x的焦点坐标为(1,0),准线方程为x=-1,设A,B的坐标分别为(x1,y1),(x2,y2),则A,B到直线x=-1的距离之和为x1+x2+2.设直线方程为x=my+1,代入抛物线y2=4x,则y2=4(my+1),即y2-4my-4=0,∴x1+x2=m(y1+y2)+2=4m2+2.∴x1+x2+2=4m2+4≥4.∴A,B到直线x=-2的距离之和为x1+x2+2+2≥6>5.∴满足题意的直线不存在.7.已知抛物线y2=4x的弦AB的中点的横坐标为2,则|AB|的最大值为________.答案6解析设A(x1,y1),B(x2,y2),则x1+x2=4,那么|AF|+|BF|=x1+x2+2,又|AF|+|BF|≥|AB|⇒|AB|≤6,当AB过焦点F时取得最大值6. 8.过椭圆+=1内一点P(3,1),且被这点平分的弦所在直线的方程是____________.答案3x+4y-13=0解析设直线与椭圆交于A(x1,y1),B(x2,y2)两点,由于A,B两点均在椭圆上,故+=1,+=1,两式相减得+-+=0.16又∵P是A,B的中点,∴x1+x2=6,y1+y2=2,∴kAB==-.∴直线AB 的方程为y -1=-(x -3). 即3x +4y -13=0.9.已知F1,F2分别是椭圆C :+=1(a>b>0)的左,右焦点,A 是其上顶点,且△AF1F2是等腰直角三角形,延长AF2与椭圆C 交于另一点B ,若△AF1B 的面积为6,则椭圆C 的方程为________. 答案 +=1解析 因为△AF1F2为等腰直角三角形, 所以b =c ,a =c ,设|BF2|=x ,则由椭圆的定义可知|BF1|=2c -x ,在△BF1F2中,由余弦定理可知(2c -x)2=x2+4c2-2x·2c·cos, 解得x =,所以=+=×2c×c+×2c×c×sin=6,1AF BS 12AF F S12BF F S解得c2=,所以b2=,a2=9, 则椭圆的方程为+=1.10.已知双曲线C :x2-=1,直线y =-2x +m 与双曲线C 的右支交于A ,B 两点(A 在B 的上方),且与y 轴交于点M ,则的取值范围为________. 答案 (1,7+4)解析 由可得x2-4mx +m2+3=0,由题意得方程在[1,+∞)上有两个不相等的实根, 设f(x)=x2-4mx +m2+3,则得m>1,设A(x1,y1),B(x2,y2)(x1<x2), 得x1=2m -,x2=2m +, 所以==2m +-2m --=-1+,由m>1得,的取值范围为(1,7+4).11.(2016·郑州模拟)已知椭圆的中心在原点,焦点在x 轴上,离心率为,且椭圆经过圆C :x2+y2-4x +2y =0的圆心. (1)求椭圆的方程;(2)设直线l 过椭圆的焦点且与圆C 相切,求直线l 的方程. 解 (1)圆C 方程化为(x -2)2+(y +)2=6, 圆心C(2,-),半径r =. 设椭圆的方程为+=1(a>b>0),则⇒⎩⎪⎨⎪⎧a2=8,b2=4.∴所求的椭圆方程是+=1.(2)由(1)得到椭圆的左,右焦点分别是F1(-2,0),F2(2,0),|F2C|==<.∴F2在C 内,故过F2没有圆C 的切线,设l 的方程为y =k(x +2),即kx -y +2k =0.点C(2,-)到直线l 的距离d =, 由d =,得=. 解得k =或k =-,故l的方程为x-5y+2=0或x+y+2=0.12.(2015·课标全国Ⅱ)已知椭圆C:+=1(a>b>0)的离心率为,点(2,)在C上.(1)求C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M,证明:直线OM的斜率与直线l的斜率的乘积为定值.(1)解由题意得=,+=1,解得a2=8,b2=4.所以C的方程为+=1.(2)证明设直线l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(xM,yM).将y=kx+b代入+=1,得(2k2+1)x2+4kbx+2b2-8=0.故xM==,yM=k·xM+b=.于是直线OM的斜率kOM==-,即kOM·k=-.所以直线OM的斜率与直线l的斜率的乘积为定值.*13.(2016·广州联考)已知点P是圆O:x2+y2=1上任意一点,过点P作PQ⊥y轴于点Q,延长QP到点M,使=.(1)求点M的轨迹E的方程;(2)过点C(m,0)作圆O的切线l,交(1)中曲线E于A,B两点,求△AOB 面积的最大值.解 (1)设点M(x ,y),∵=,∴P 为QM 的中点,又PQ⊥y 轴,∴P(,y). ∵点P 是圆O :x2+y2=1上的点, ∴()2+y2=1,即点M 的轨迹E 的方程为+y2=1. (2)由题意可知直线l 不与y 轴垂直, 故可设l :x =ty +m ,t∈R,A(x1,y1),B(x2,y2).∵l 与圆O :x2+y2=1相切, ∴=1,即m2=t2+1. ①联立消去x ,得(t2+4)y2+2mty +m2-4=0. 其中Δ=(2mt)2-4(t2+4)(m2-4) =16(t2-m2)+64=48>0. ∴y1+y2=-,y1y2=. ②∴|AB|=-+-=-+-=.将①②代入上式得 |AB|=4m2t2+--t2+4=,|m|≥1, ∴S△AOB=|AB|·1=×43|m|m2+3=≤=1,当且仅当|m|=,即m=±时,等号成立.∴(S△AOB)max=1.。
1 / 17 第2课时 定点、定值、探索性问题 题型一 定点问题
典例 (2017·全国Ⅰ)已知椭圆C:x2a2+y2b2=1(a>b>0),四点P1(1,1),P2(0,1),P3-1,32,P41,32中恰有三点在椭圆C上.
(1)求C的方程; (2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为-1,证明:l过定点. (1)解 由于P3,P4两点关于y轴对称,故由题设知椭圆C经过P3,P4两点.
又由1a2+1b2>1a2+34b2知,椭圆C不经过点P1, 所以点P2在椭圆C上.
因此 1b2=1,1a2+34b2=1,解得 a2=4,b2=1. 故椭圆C的方程为x24+y2=1. (2)证明 设直线P2A与直线P2B的斜率分别为k1,k2. 如果l与x轴垂直,设l:x=t,由题设知t≠0,且|t|<2,可得A,B的坐标分别为t,4-t22,
t,-
4-t2
2,则k1+k2=4-t2-22t-4-t2+22t=-1,得t=2,不符合题设.从而可设
l:y=kx+m(m≠1).
将y=kx+m代入x24+y2=1, 得(4k2+1)x2+8kmx+4m2-4=0. 由题设可知Δ=16(4k2-m2+1)>0. 设A(x1,y1),B(x2,y2),
则x1+x2=-8km4k2+1,x1x2=4m2-44k2+1.
而k1+k2=y1-1x1+y2-1x2 2 / 17
=kx1+m-1x1+kx2+m-1x2 =2kx1x2+m-1x1+x2x1x2. 由题设知k1+k2=-1, 故(2k+1)x1x2+(m-1)(x1+x2)=0.
即(2k+1)·4m2-44k2+1+(m-1)·-8km4k2+1=0,
解得k=-m+12. 当且仅当m>-1时,Δ>0, 于是l:y=-m+12x+m,
即y+1=-m+12(x-2), 所以l过定点(2,-1). 思维升华 圆锥曲线中定点问题的两种解法 (1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点. (2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.
跟踪训练 (2017·长沙联考)已知椭圆x2a2+y2b2=1(a>0,b>0)过点(0,1),其长轴、焦距和短轴的长的平方依次成等差数列.直线l与x轴正半轴和y轴分别交于点Q,P,与椭圆分别交于点M,N,各点均不重合且满足PM→=λ1MQ→,PN→=λ2NQ→. (1)求椭圆的标准方程; (2)若λ1+λ2=-3,试证明:直线l过定点并求此定点. (1)解 设椭圆的焦距为2c,由题意知b=1, 且(2a)2+(2b)2=2(2c)2, 又a2=b2+c2,∴a2=3.
∴椭圆的方程为x23+y2=1. (2)证明 由题意设P(0,m),Q(x0,0),M(x1,y1), N(x2,y2),设l方程为x=t(y-m),
由PM→=λ1MQ→知(x1,y1-m)=λ1(x0-x1,-y1), ∴y1-m=-y1λ1,由题意y1≠0,∴λ1=my1-1. 3 / 17
同理由PN→=λ2NQ→知λ2=my2-1. ∵λ1+λ2=-3,∴y1y2+m(y1+y2)=0,① 联立 x2+3y2=3,x=ty-m,得(t2+3)y2-2mt2y+t2m2-3=0, ∴由题意知Δ=4m2t4-4(t2+3)(t2m2-3)>0,② 且有y1+y2=2mt2t2+3,y1y2=t2m2-3t2+3,③ ③代入①得t2m2-3+2m2t2=0, ∴(mt)2=1, 由题意mt<0,∴mt=-1,满足②, 得直线l方程为x=ty+1,过定点(1,0),即Q为定点.
题型二 定值问题
典例 (2017·广州市综合测试)已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为32,且过点A(2,1). (1)求椭圆C的方程; (2)若P,Q是椭圆C上的两个动点,且使∠PAQ的角平分线总垂直于x轴,试判断直线PQ的斜率是否为定值?若是,求出该值;若不是,请说明理由.
解 (1)因为椭圆C的离心率为32,且过点A(2,1),
所以4a2+1b2=1,ca=32, 又a2=b2+c2,所以a2=8,b2=2, 所以椭圆C的方程为x28+y22=1. (2)方法一 因为∠PAQ的角平分线总垂直于x轴, 所以PA与AQ所在的直线关于直线x=2对称. 设直线PA的斜率为k,则直线AQ的斜率为-k. 所以直线PA的方程为y-1=k(x-2), 直线AQ的方程为y-1=-k(x-2).
设点P(xP,yP),Q(xQ,yQ),由 y-1=kx-2,x28+y22=1, 4 / 17
得(1+4k2)x2-(16k2-8k)x+16k2-16k-4=0.① 因为点A(2,1)在椭圆C上,所以x=2是方程①的一个根,则2xP=16k2-16k-41+4k2,
所以xP=8k2-8k-21+4k2. 同理xQ=8k2+8k-21+4k2. 所以xP-xQ=-16k1+4k2,xP+xQ=16k2-41+4k2. 又yP-yQ=k(xP+xQ-4)=-8k1+4k2, 所以直线PQ的斜率kPQ=yP-yQxP-xQ=12, 所以直线PQ的斜率为定值,该值为12. 方法二 设直线PQ的方程为y=kx+b, 点P(x1,y1),Q(x2,y2), 则y1=kx1+b,y2=kx2+b,
直线PA的斜率kPA=y1-1x1-2,
直线QA的斜率kQA=y2-1x2-2. 因为∠PAQ的角平分线总垂直于x轴,所以PA与AQ所在的直线关于直线x=2对称, 所以kPA=-kQA,即y1-1x1-2=-y2-1x2-2, 化简得x1y2+x2y1-(x1+x2)-2(y1+y2)+4=0. 把y1=kx1+b,y2=kx2+b代入上式,化简得 2kx1x2+(b-1-2k)(x1+x2)-4b+4=0.①
由 y=kx+b,x28+y22=1, 得(4k2+1)x2+8kbx+4b2-8=0,② 则x1+x2=-8kb4k2+1,x1x2=4b2-84k2+1,
代入①,得2k4b2-84k2+1-8kbb-1-2k4k2+1-4b+4=0, 整理得(2k-1)(b+2k-1)=0, 5 / 17
所以k=12或b=1-2k. 若b=1-2k,可得方程②的一个根为2,不符合题意. 所以直线PQ的斜率为定值,该值为12. 思维升华 圆锥曲线中的定值问题的常见类型及解题策略 (1)求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值. (2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得. (3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.
跟踪训练 如图,在平面直角坐标系xOy中,点F12,0,直线l:x=-12,点P在直线l上移动,R是线段PF与y轴的交点,RQ⊥FP,PQ⊥l. (1)求动点Q的轨迹C的方程; (2)设圆M过A(1,0),且圆心M在曲线C上,TS是圆M在y轴上截得的弦,当M运动时,弦长|TS|是否为定值?请说明理由. 解 (1)依题意知,点R是线段FP的中点,且RQ⊥FP, ∴RQ是线段FP的垂直平分线. ∵点Q在线段FP的垂直平分线上,∴|PQ|=|QF|, 又|PQ|是点Q到直线l的距离, 故动点Q的轨迹是以F为焦点,l为准线的抛物线,其方程为y2=2x(x>0). (2)弦长|TS|为定值.理由如下: 取曲线C上点M(x0,y0),M到y轴的距离为d=|x0|=x0,圆的半径r=|MA|=x0-12+y20, 则|TS|=2r2-d2=2y20-2x0+1,
∵点M在曲线C上,∴x0=y202, ∴|TS|=2y20-y20+1=2,是定值.
题型三 探索性问题 典例 在平面直角坐标系xOy中,曲线C:y=x24与直线l:y=kx+a(a>0)交于M,N两点, (1)当k=0时,分别求C在点M和N处的切线方程; 6 / 17
(2)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?说明理由. 解 (1)由题设可得M(2a,a),N(-2a,a), 或M(-2a,a),N(2a,a).
又y′=x2,故y=x24在x=2a处的导数值为a, C在点(2a,a)处的切线方程为y-a=a(x-2a),
即ax-y-a=0.
y=x24在x=-2a处的导数值为-a,
C在点(-2a,a)处的切线方程为y-a=-a(x+2a),
即ax+y+a=0. 故所求切线方程为ax-y-a=0和ax+y+a=0. (2)存在符合题意的点,证明如下: 设P(0,b)为符合题意的点,M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为k1,k2. 将y=kx+a代入C的方程得x2-4kx-4a=0. 故x1+x2=4k,x1x2=-4a.
从而k1+k2=y1-bx1+y2-bx2
=2kx1x2+a-bx1+x2x1x2 =ka+ba. 当b=-a时,有k1+k2=0, 则直线PM的倾斜角与直线PN的倾斜角互补, 故∠OPM=∠OPN,所以点p(0,-a)符合题意. 思维升华 解决探索性问题的注意事项 探索性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在. (1)当条件和结论不唯一时要分类讨论; (2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件; (3)当条件和结论都不知,按常规方法解题很难时,要开放思维,采取另外合适的方法.
跟踪训练 (2018·唐山模拟)已知椭圆E:x2a2+y2b2=1的右焦点为F(c,0)且a>b>c>0,设短轴
的一个端点为D,原点O到直线DF的距离为32,过原点和x轴不重合的直线与椭圆E相交于C,G两点,且|GF→|+|CF→|=4.