1、一元二次方程的解法
- 格式:doc
- 大小:2.27 MB
- 文档页数:2
一元二次方程归纳总结1、一元二次方程的一般式:20 (0)ax bx c a ++=≠,a 为二次项系数,b 为一次项系数,c 为常数项。
2、一元二次方程的解法(1)直接开平方法 (也可以使用因式分解法) ①2(0)xa a =≥解为:x = ②2()(0)x a b b +=≥解为:x a += ③2()(0)ax b c c +=≥解为:ax b += ④22()()()ax b cx d a c +=+≠ 解为:()ax b cx d +=±+(2)因式分解法:提公因式分,平方公式,平方差,十字相乘法(3)公式法:一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+= ①当240b ac ∆=->时,右端是正数.因此,方程有两个不相等的实根:1,22b x a-=② 当240b ac ∆=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a=-③ 当240bac ∆=-<时,右端是负数.因此,方程没有实根。
注意:虽然所有的一元二次都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用。
备注:公式法解方程的步骤:①把方程化成一般形式:一元二次方程的一般式:20 (0)ax bx c a ++=≠,并确定出a 、b 、c②求出24bac ∆=-,并判断方程解的情况。
③代公式:1,2x =3、一元二次方程的根与系数的关系法1:一元二次方程20 (0)axbx c a ++=≠的两个根为:1222b b x x a a-+-==所以:12bx x a+=+=-,221222()422(2)4b b b ac cx x a a a a a-+----⋅=⋅===定理:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ,那么:1212,b cx x x x a a+=-=法2:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ;那么2120()()0ax bx c a x x x x ++=⇔--= 两边同时除于a ,展开后可得:2212120()0b c x x x x x x x x a a++=⇔-++= 12b x x a ⇒+=-;12cx x a •=法3:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ;那么21122200ax bx c ax bx c ⎧++=⎪⎨++=⎪⎩①-②得:12bx x a+=-(余下略) 常用变形:222121212()2x x x x x x +=+-,12121211x x x x x x ++=,22121212()()4x x x x x x -=+-,12||x x -=2212121212()x x x x x x x x +=+,22111212121222212()4x x x x x x x x x x x x x x ++-+==等 练习:【练习1】若12,x x 是方程2220070xx +-=的两个根,试求下列各式的值:(1)2212x x +;(2)1211x x +;(3)12(5)(5)x x --;(4)12||x x -.【练习2】已知关于x 的方程221(1)104xk x k -+++=,根据下列条件,分别求出k 的值.(1) 方程两实根的积为5; (2) 方程的两实根12,x x 满足12||x x =.【练习3】已知12,x x 是一元二次方程24410kxkx k -++=的两个实数根.(1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在, 请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值. 4、应用题(1)平均增长率的问题:(1)n a x b += 其中:a 为基数,x 为增长率,n 表示连续增长的次数,①②b 表示增长后的数量。
一元二次方程归纳总结1、一元二次方程的一般式:20 (0)ax bx c a ++=≠,a 为二次项系数,b 为一次项系数,c 为常数项。
2、一元二次方程的解法(1)直接开平方法 (也可以使用因式分解法) ①2(0)xa a =≥解为:x = ②2()(0)x a b b +=≥解为:x a += ③2()(0)ax b c c +=≥解为:ax b += ④22()()()ax b cx d a c +=+≠ 解为:()ax b cx d +=±+(2)因式分解法:提公因式分,平方公式,平方差,十字相乘法(3)公式法:一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+= ①当240b ac ∆=->时,右端是正数.因此,方程有两个不相等的实根:1,22b x a-=② 当240b ac ∆=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a=-③ 当240bac ∆=-<时,右端是负数.因此,方程没有实根。
注意:虽然所有的一元二次都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用。
备注:公式法解方程的步骤:①把方程化成一般形式:一元二次方程的一般式:20 (0)ax bx c a ++=≠,并确定出a 、b 、c②求出24bac ∆=-,并判断方程解的情况。
③代公式:1,2x =3、一元二次方程的根与系数的关系法1:一元二次方程20 (0)axbx c a ++=≠的两个根为:1222b b x x a a-+-==所以:12bx x a+=+=-,221222()422(2)4b b b ac cx x a a a a a-+----⋅=⋅===定理:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ,那么:1212,b cx x x x a a+=-=法2:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ;那么2120()()0ax bx c a x x x x ++=⇔--= 两边同时除于a ,展开后可得:2212120()0b c x x x x x x x x a a++=⇔-++= 12b x x a ⇒+=-;12cx x a •=法3:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ;那么21122200ax bx c ax bx c ⎧++=⎪⎨++=⎪⎩①-②得:12bx x a+=-(余下略) 常用变形:222121212()2x x x x x x +=+-,12121211x x x x x x ++=,22121212()()4x x x x x x -=+-,12||x x -=2212121212()x x x x x x x x +=+,22111212121222212()4x x x x x x x x x x x x x x ++-+==等 练习:【练习1】若12,x x 是方程2220070xx +-=的两个根,试求下列各式的值:(1)2212x x +;(2)1211x x +;(3)12(5)(5)x x --;(4)12||x x -.【练习2】已知关于x 的方程221(1)104xk x k -+++=,根据下列条件,分别求出k 的值.(1) 方程两实根的积为5; (2) 方程的两实根12,x x 满足12||x x =.【练习3】已知12,x x 是一元二次方程24410kxkx k -++=的两个实数根.(1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在, 请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值. 4、应用题(1)平均增长率的问题:(1)n a x b += 其中:a 为基数,x 为增长率,n 表示连续增长的次数,①②b 表示增长后的数量。
一元二次方程的求解方法一元二次方程是一种常见的数学问题,它的解法有多种。
本文将介绍三种常用的求解一元二次方程的方法:因式分解法、配方法和求根公式法。
通过这些方法,我们可以轻松解决一元二次方程,并找到它们的根。
1. 因式分解法一元二次方程一般形式为:ax²+ bx + c = 0。
当我们将方程化简后,可以尝试使用因式分解法求解。
例如,对于方程x² + 5x + 6 = 0,我们可以尝试将其因式分解为(x + 2)(x + 3) = 0。
这样,我们就可以得到两个根分别为x = -2和x = -3。
2. 配方法如果无法通过因式分解法求解一元二次方程,我们可以尝试使用配方法。
该方法的核心思想是通过添加一个适当的常数使方程能够进行因式分解。
以方程x² + bx + c = 0为例,我们可以通过添加一个常数m,使得方程变为x² + bx + c + m = (x + p)² = 0的形式。
然后,我们可以通过p = b/2和p² = c + m的关系求解出m的值,并将其带入方程中求解x的值。
3. 求根公式法求根公式法是一元二次方程求解的基本方法之一。
一元二次方程ax² + bx + c = 0的两个根可通过求根公式得到。
求根公式为:x = (-b ± √(b² - 4ac)) / (2a)根据方程的三个系数a、b和c,我们可以直接将求根公式带入计算,找到方程的根。
总结:通过因式分解法、配方法和求根公式法,我们可以解决一元二次方程,并找到它们的根。
当方程可以通过因式分解法求解时,我们可以直接因式分解得到方程的根。
当无法因式分解时,我们可以尝试使用配方法,通过添加适当的常数来进行求解。
而求根公式法是一种基本的求解方法,适用于所有的一元二次方程。
根据方程的系数,我们可以直接带入求根公式,求得方程的根。
以上就是三种常见的求解一元二次方程的方法。
一元二次方程的解法一元二次方程是指形如ax^2 + bx + c = 0的方程,其中a、b、c为已知常数,而x为未知数。
解一元二次方程的方法有多种,下面将介绍两种常用的解法:因式分解法和配方法。
一、因式分解法因式分解法是指将一元二次方程分解成两个一次因式的乘积,再令每个一次因式等于零,解得方程的两个根。
例如,解方程x^2 - 5x + 6 = 0:首先,找到两个数的乘积等于常数项c,且和等于中间项b的相反数。
在本例中,c为6,b为-5,可以将6拆解为-2和-3,-2与-3的和为-5,符合要求。
然后,将方程分解为(x - 2)(x - 3) = 0。
接下来,令每个一次因式等于零,即(x - 2) = 0和(x - 3) = 0。
最后,解得x = 2和x = 3,这两个值分别为方程的两个根。
二、配方法配方法是指通过将一元二次方程移项,并用一个常数将方程的两边补全为一个完全平方的形式,从而将一元二次方程转化为一个平方差的形式,进而求解方程。
例如,解方程x^2 + 4x - 5 = 0:首先,将方程移项,得到x^2 + 4x = 5。
然后,通过添加一个与方程中一次项的系数一半相等的常数的平方,使得方程的左边成为一个完全平方。
在本例中,一次项的系数为4,可以添加(4/2)^2 = 4的平方,得到x^2 + 4x + 4 = 5 + 4,即(x + 2)^2 = 9。
接下来,令要解的方程的平方项等于右边的常数,即(x + 2)^2 = 9。
最后,开方,解得x + 2 = ±3,即x = 1和x = -5,这两个值分别为方程的两个根。
总结起来,一元二次方程的解法包括因式分解法和配方法。
通过运用这两种解法,可以求得一元二次方程的根,从而解决实际问题。
一元二次方程的解法及应用一元二次方程是数学中常见的二次多项式方程,其一般形式为ax²+bx+c=0,其中a、b、c为实数且a≠0。
解一元二次方程的方法通常有因式分解法、配方法和求根公式法等。
本文将依次介绍这几种解法,并探讨一元二次方程在实际生活中的应用。
一、因式分解法对于一元二次方程ax²+bx+c=0,当其可以因式分解成两个一次因式的乘积时,可以直接利用因式分解法求解。
具体步骤如下:1. 将方程转化为标准形式,即将方程两边移项合并同类项,使等式右边为0;2. 对方程进行因式分解,将二次项拆分为两个一次项的乘积;3. 令得到的每个一次项等于0,解出方程;4. 检查解是否满足原方程,若满足则为方程的解,若不满足则舍去。
例如,对于方程3x²+7x+2=0,可以进行因式分解得到(3x+1)(x+2)=0,解得x=-1/3和x=-2。
二、配方法配方法是通过变形将一元二次方程转化为一个完全平方的形式,进而求解方程。
其主要步骤如下:1. 将方程转化为标准形式;2. 将方程的一次项系数b通过添加或减去一个适当的常数c/2a使其成为一个完全平方;3. 将方程的左边转化为一个完全平方,即将一次项的系数与1/2a相乘后平方;4. 将方程的两边开平方,解出方程。
例如,对于方程x²+4x-3=0,可以通过配方法将其变形为(x+2)²-7=0,进而解得x=-2+√7和x=-2-√7。
三、求根公式法求根公式法也称为根号公式法,适用于任何一元二次方程的解法。
一元二次方程ax²+bx+c=0的解可通过求根公式x=(-b±√(b²-4ac))/2a得到。
具体步骤如下:1. 将方程的系数代入求根公式,并计算出方程的两个解;2. 验证解是否满足原方程,若满足则为方程的解,若不满足则舍去。
例如,对于方程2x²-5x+2=0,代入求根公式得到x=1和x=2/2。
一元二次方程的三种主要解法一元二次方程是数学中常见的方程形式,其一般形式为ax2+bx+c=0,其中a≠0。
解这类方程主要有三种方法:因式分解法、公式法和配方法。
下面分别介绍这三种方法:1. 因式分解法因式分解法适用于那些可以容易地分解为两个一次因式乘积的二次方程。
具体步骤是:1.将方程ax2+bx+c=0 的左侧进行因式分解,得到(px+q)(rx+s)=0 的形式。
2.根据“两式乘积为0,则至少有一个因式为0”的原则,得到两个一元一次方程:px+q=0 和rx+s=0。
3.分别解这两个一元一次方程,得到x1 和x2。
示例解方程x2−5x+6=0●因式分解得:(x−2)(x−3)=0●解得:x1=2,x2=32. 公式法对于一般形式的一元二次方程ax2+bx+c=0,当不易直接因式分解时,可以使用求根公式求解。
求根公式为:x=−b±√(b2−4ac)/2a其中,Δ=b2−4ac 称为判别式。
●当Δ>0时,方程有两个不相等的实根。
●当Δ=0时,方程有两个相等的实根(即一个实根)。
●当Δ<0时,方程无实根,但在复数范围内有两个根。
示例解方程2x2+3x−2=0●计算判别式:Δ=32−4×2×(−2)=9+16=25●使用求根公式:x=(−3±√25)/2×2=(−3±5)/4●解得:x1=21,x2=−23. 配方法配方法是通过将二次方程转化为完全平方的形式来求解。
具体步骤是:1.将方程ax2+bx+c=0 的常数项移到等号右边,得到ax2+bx=−c。
2.方程两边同时除以a,得到x2+bx/a=−c/a。
3.方程两边同时加上(b/2a)2,使左边成为完全平方,得到(x+b/2a)2=(b2−4ac)/4a2。
4.开方求解x。
示例解方程x2+4x+3=0 •移项得:x2+4x=−3 •配方得:(x+2)2=1 •开方得:x+2=±1•解得:x1=−1,x2=−3。
一元2次方程4种解法
标题:四种解法揭示一元二次方程的奥秘
引言:一元二次方程是数学中的重要概念,它可以用来解决很多实际问题。
本文将介绍四种不同的解法,帮助读者更好地理解和应用一元二次方程。
第一种解法:因式分解法
当一元二次方程可以被因式分解为两个一次因子时,我们可以通过将方程两边因式分解后,令每个因子等于零来求解方程。
这种解法适用于一元二次方程的解为整数或分数的情况。
第二种解法:配方法
对于一元二次方程,如果无法直接因式分解,我们可以采用配方法。
通过将方程两边用合适的常数进行配方,将方程转化为完全平方的形式,从而求解方程。
这种解法适用于无理数根的情况。
第三种解法:求根公式法
一元二次方程的求根公式是解决方程的重要工具。
该公式是通过将方程转化为标准形式后,利用公式计算出方程的根。
这种解法适用于无法通过因式分解或配方法求解的复杂方程。
第四种解法:图像法
通过绘制一元二次方程的图像,我们可以直观地看出方程的解。
根据图像的形状和位置,我们可以判断方程有几个解,以及解的范围。
这种解法适用于对方程的整体特征有较好了解的情况。
结论:通过以上四种解法,我们可以更全面地理解和应用一元二次方程。
无论是因式分解法、配方法、求根公式法还是图像法,都可以帮助我们解决不同类型的一元二次方程。
掌握这些解法,可以提高我们解决实际问题的能力,并在数学学习中更加得心应手。
一元二次方程的解法一元二次方程是数学中非常重要的一个概念,它可以用来描述很多实际问题。
在解一元二次方程时,我们需要运用一些特定的方法和技巧。
本文将介绍一些常见的解一元二次方程的方法,并探讨它们的应用。
首先,我们来回顾一下一元二次方程的一般形式:ax^2 + bx + c = 0。
其中,a、b、c是已知的实数,且a不等于0。
解一元二次方程的关键在于求出方程的根,即方程的解。
下面将介绍几种常见的解法。
一、因式分解法当一元二次方程可以因式分解时,我们可以通过因式分解的方式求解。
例如,对于方程x^2 - 5x + 6 = 0,我们可以将其因式分解为(x - 2)(x - 3) = 0。
根据因式分解的性质,我们知道当两个因子中的任意一个为0时,方程成立。
因此,我们得到两个根x = 2和x = 3。
二、配方法当一元二次方程无法直接因式分解时,我们可以通过配方法求解。
配方法的基本思想是通过添加一个适当的常数,将方程转化为一个可以因式分解的形式。
例如,对于方程x^2 + 6x + 8 = 0,我们可以通过添加一个常数使其变为(x + 3)^2 - 1 = 0。
然后,我们可以将其分解为(x + 3 + 1)(x + 3 - 1) = 0,得到两个根x = -4和x = -2。
三、求根公式求根公式是解一元二次方程的一种常用方法。
根据求根公式,一元二次方程ax^2 + bx + c = 0的根可以通过以下公式计算:x = (-b ± √(b^2 - 4ac)) / (2a)。
例如,对于方程x^2 - 4x + 4 = 0,我们可以代入a = 1,b = -4,c = 4,然后使用求根公式计算得到两个根x = 2和x = 2。
需要注意的是,当方程的判别式b^2 - 4ac小于0时,方程没有实数根,只有复数根。
四、图像法图像法是一种直观的解一元二次方程的方法。
我们可以通过绘制方程的图像来观察方程的根。
当方程的图像与x轴相交时,对应的x值即为方程的根。
一元二次方程的基本概念和解法一元二次方程是代数学中的重要概念,由一次项、二次项和常数项构成,其一般形式为 ax² + bx + c = 0,其中a、b、c为实数且a ≠ 0。
本文将介绍一元二次方程的基本概念及其解法。
一、基本概念一元二次方程是一种含有未知数的方程,其最高次项为二次项。
方程中的未知数通常用x表示,而系数a、b、c则为已知的实数。
二、求解一元二次方程的步骤要求解一元二次方程,首先需要将方程化为标准形式,即将方程中的项按幂次降序排列,然后按照下列步骤进行求解:1. 将一元二次方程化为标准形式:ax² + bx + c = 0;2. 计算判别式Δ = b² - 4ac;3. 若Δ > 0,方程有两个不相等的实数解,可以通过求根公式 x = (-b ± √Δ) / (2a)来求解;4. 若Δ = 0,方程有且仅有一个实数解,解为 x = -b / (2a);5. 若Δ < 0,方程无实数解。
三、示例演示以一元二次方程 x² - 5x + 6 = 0 为例,演示求解过程:1. 将方程化为标准形式:x² - 5x + 6 = 0;2. 计算判别式Δ = (-5)² - 4(1)(6) = 25 - 24 = 1;3. 由于Δ > 0,方程有两个不相等的实数解,应用求根公式计算:x₁ = (-(-5) + √1) / (2(1)) = (5 + 1) / 2 = 3;x₂ = (-(-5) - √1) / (2(1)) = (5 - 1) / 2 = 2;因此,方程的解为 x₁ = 3,x₂ = 2。
四、一元二次方程的图像一元二次方程的图像是一个抛物线,其开口方向取决于二次项系数a的正负。
1. 若a > 0,抛物线开口向上。
以方程 y = x² - 2x + 1 为例:判别式Δ = (-2)² - 4(1)(1) = 0,方程有且仅有一个实数解 x = 1;图像经过点(1, 0),开口向上。