考点透析05.高考选择题的答题技巧与方法doc
- 格式:doc
- 大小:635.00 KB
- 文档页数:13
高考数学选择题答题的技巧窍门整理高考数学中选择题是一道常见的题型,占会计分数的比重较大,在备考中需要重点掌握。
下面整理了一些答题技巧和窍门,希望对备考者有所帮助。
1. 做题前的准备在做选择题之前,首先需要做好以下几方面的准备:1.1 熟练掌握知识点选择题往往是考查知识点的掌握程度,因此备考过程中需要认真学习每个知识点,熟练掌握各种公式和定理。
1.2 了解题型不同类型的选择题可能需要采用不同的答题方法,因此需要在备考过程中了解各种选择题的特点。
1.3 做题顺序在做题前需要确定好做题的顺序,比如可以先做易题,再做中等难度的题目,最后做困难题。
2. 选择题答题技巧选择题答题需要注意以下几点:2.1 细节把握在选择题中,有些选项看上去可能很相似,需要仔细辨别,注意各个选项之间的微小区别,避免因细节问题导致失分。
2.2 排除法在做选择题时,可以运用排除法的思想,先排除不可能的选项,然后再根据剩下的选项进行选择。
2.3 充分利用已知条件在选择题中,往往给出了一些已知条件,可以根据已知条件来推导出未知的答案。
2.4 注意常见陷阱在做选择题时需要注意一些常见的陷阱,比如往往会出现一些迷惑性的选项,或者是给出一些无关的条件,需要学生通过仔细分析来避免这些陷阱。
3. 做错题的处理方法在备考过程中,难免有些题目会做错,需要及时处理,以免犯同样的错误。
3.1 记录错题可以记录下做错的题目及其答案,方便后续的复习和查漏补缺。
3.2 分析错误原因要及时对做错的题目进行分析,找出错题的原因,是因为对某一知识点掌握不透彻,还是因为在答题过程中出现了失误等情况。
3.3 强化练习在整理出做错的题目后,可以针对这些题目进行重点练习,加强对难点知识点的掌握。
4. 总结选择题答题需要灵活运用各种答题技巧和方法,及时发现和纠正自己的错误,加强对难点知识点的练习和掌握,相信只有这样才能在高考数学中获得好成绩!。
高考的选择题技巧高考是每个学生人生中的重要节点,选择题作为其中重要的一部分,对于学生来说有着不可忽视的影响力。
掌握一些选择题技巧,对于提高得分和应对考试压力都有着积极的作用。
本文将为大家介绍一些高考选择题的解题技巧。
I. 阅读理解题技巧阅读理解题是高考选择题中比较常见的一种题型。
在解答此类题目时,可以采取以下技巧:1. 提前阅读问题:在阅读文章之前,快速浏览问题,了解问题的要点和答案所需的信息,这有助于有针对性地去寻找相关信息。
2. 仔细阅读文章:注意文章的结构,划分段落,了解每段的主题和要点,这有助于更好地理解文章的内容。
3. 确定问题类型:阅读问题时,要细心分析问题的类型,例如主旨题、细节题、推理题等,以便找到正确的解题思路。
4. 利用排除法:在选择题中,选项通常存在明显错误或为干扰项,通过排除错误选项,可以提高选对正确答案的概率。
II. 语文语法题技巧语文语法题是高考选择题中的重要组成部分。
以下是解答语文语法题的一些技巧:1. 理解句子结构:理解句子的基本结构和语法规则,例如主谓宾结构、定语从句、状语从句等,有助于分析句子的结构和语义。
2. 注意上下文语境:语法题通常在一段文字中,要结合上下文语境理解句子含义,特别是那些需要根据上下文选择正确选项的题目。
3. 注重连词关系:连词在语法题中往往起到关键的作用,注意各个句子之间的逻辑关系,以及连词的正确使用,有助于找到正确答案。
4. 注意常见错误:语法题中常涉及一些常见的错误,例如主谓不一致、时态错误等,通过有针对性地复习这些常见错误,可以提高解题能力。
III. 数学题技巧数学作为高考科目中的一大重头戏,选择题在其中占有重要的地位。
以下是一些解答数学选择题的技巧:1. 理解题目要求:认真阅读题目,理解问题的要求,确定解题思路。
2. 掌握基本概念:数学题常涉及到一些基本概念,例如分类、函数、几何图形等,要熟悉这些基本概念,有助于理解和解答题目。
3. 分析选项:数学题的选项可能存在一些巧合的数值或干扰项,通过分析选项,排除干扰项,可以更准确地找到正确答案。
高考选择题技巧高考选择题是高考中占据很大比重的一种题型,也是考生们比较关注的考试环节之一。
掌握一些高考选择题的解题技巧,可以提高解答效率,更好地应对考试。
本文将介绍一些常用的高考选择题技巧,希望对考生们有所帮助。
首先,了解题目种类是解题的基础。
高考选择题主要包括选择填空题和完型填空题两种类型。
选择填空题要求从四个选项中选择一个最佳答案,而完型填空题则是在一篇短文中,根据上下文选择一个最佳答案。
其次,解题时要注重细节的观察。
在解答选择题时,要认真阅读问题和选项,结合上下文理解题意,排除干扰项,选择正确答案。
有时候,选项中可能会包含一些细节,只有仔细观察才能够选择正确答案。
另外,学会运用排除法。
在解答选择题时,可以排除掉明显错误的选项,然后再从剩下的选项中选择正确答案。
有时候,题目中可能会存在明显错误的选项,只要能辨认出来并进行排除,就能够提高解题的准确率。
此外,要善于利用全文信息。
在解答完型填空题时,要通读整篇短文,了解短文的整体意思和文章结构。
通过理解上下文关系,可以更好地选择正确答案。
有时候,全文的信息会对解题提供很大的帮助。
还有,学会判断作者意图。
在解答选择题时,可以通过分析语言特征、推理和联结等手段判断作者的意图。
了解作者的写作目的和意图,有助于选择正确答案。
判断作者意图的能力是解答选择题的关键。
最后,模拟考试是提高解题技巧的有效方法。
通过模拟考试,可以熟悉考试环境和解题步骤,增强解题信心,提高解题效率。
模拟考试还能够检验解题的准确率和时间管理能力,帮助考生们找出问题并进行针对性的复习。
综上所述,高考选择题是考生们备战高考中必须要面对的一项考试内容。
掌握高考选择题的解题技巧,对于提高解答效率和正确率至关重要。
在应试的过程中,考生们要注重细节观察,善于运用排除法,利用全文信息,判断作者意图,并进行模拟考试。
只有不断积累经验,提高解题技巧,才能更好地应对高考选择题。
高考数学答题技巧之选择题答题技巧高考数学答题技巧之选择题答题技巧1、直接法直接从题设条件出发,运用相关观点、性质、定理、法例和公式等知识,经过严实的推理和正确的运算,进而得出正确的结论。
直接法是解答选择题最常用的基本方法,低档选择题可用此法快速求解。
直接法合用的范围很广,只需运算正确必能得出正确的答案。
2、清除法从题设条件出发,运用定理、性质、公式推演,依据四选一的指令,逐渐剔除扰乱项,进而得出正确的判断。
挑选法适应于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先依据某些条件在选择支中找出显然与之矛盾的,予以否认,再依据另一些条件在减小的选择支的范围那找出矛盾,这样逐渐挑选,直到得出正确的选择。
3、数形联合法据题设条件作出所研究问题的曲线或相关图形,借助几何图形的直观性作出正确的判断.习惯上叫数形联合法。
它在解有关选择题时特别简易有效。
察看内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与少儿生活靠近的,能理解的察看内容。
随机察看也是不行少的,是相当风趣的,如蜻蜓、蚯蚓、毛第1页/共4页毛虫等,孩子一边察看,一边发问,兴趣很浓。
我供给的察看对象,注意形象传神,色彩鲜亮,大小适中,指引少儿多角度多层面地进行察看,保证每个少儿看获取,看得清。
看得清才能说得正确。
在察看过程中指导。
我注意帮助少儿学习正确的察看方法,即按次序察看和抓住事物的不一样特点重点察看,察看与说话相联合,在察看中累积词汇,理解词汇,如一次我抓住机遇,指引少儿察看雷雨,雷雨前天空急巨变化,乌云密布,我问少儿乌云是什么样子的,有的孩子说:乌云像海洋的波涛。
有的孩子说“乌云跑得飞速。
”我加以一定说“这是乌云滔滔。
”当少儿看到闪电时,我告诉他“这叫电光闪闪。
”接着少儿听到雷声惊叫起来,我抓住机遇说:“这就是雷声隆隆。
”一会儿下起了大雨,我问:“雨下得如何 ?”少儿说大极了,我就舀一盆水往下一倒,作比较察看,让幼儿掌握“滂沱大雨”这个词。
高考选择题解答技巧高考是每个学生需要面对的重要考试,其中选择题是占据重要比重的一部分。
在解答选择题时,掌握一些有效的技巧可以提高解题速度和准确率。
本文将介绍几种高考选择题解答技巧,帮助考生更好地应对这一考试环节。
一、审题准确,把握重点在解答选择题之前,首先要仔细审题,理解题目要求和选项内容。
这样能够帮助考生把握住题目的重点,避免在剩余时间有限的情况下陷入纠结和迷茫。
特别是注意题目中的关键词和限定词,它们往往会提供线索,帮助我们筛选选项。
二、排除法缩小范围排除法是解答选择题的常用技巧,通过排除明显错误的选项,可以有效地缩小答案范围。
在进行排除时,可以根据题目中的信息对选项进行逐一核对,去除明显与题目不符的选项。
这样可以减少思考时间,提高选择的准确性。
三、注意否定词的修饰在选择题中,有些题目会涉及否定词的运用,如“不是”、“没有”等,这些词语的出现会改变句子的意思。
在解答这类题目时,需要特别留意否定词的位置和修饰对象。
否定词往往会迷惑考生,导致选择错误。
四、理解上下文关系有些选择题会给出一段文章或句子的片段,要求考生根据上下文推断答案。
在这种情况下,需要认真理解上下文之间的逻辑关系,弄清楚作者的观点和意图。
只有全面把握了上下文的信息,才能正确选择答案。
五、熟悉常见题型高考选择题涉及多种题型,如因果关系、递进关系、比较关系等。
对于每种题型,我们需要有一定的了解和熟悉,掌握常见的解题思路和技巧。
这样在考试中遇到相应的题目时,能够迅速判断并选择正确答案。
六、切勿死守一题在高考时,时间是非常宝贵的,不能将过多时间花费在一道选择题上。
如果对某道题下不了结论,可以先跳过,继续解答后面的题目。
在剩余时间允许的情况下,可以回过头来思考这道题,但也不可纠结过久,以免影响整体解题进度。
七、技巧与平时的积累相结合高考选择题的解答技巧需要与平时的知识积累相结合。
平时的学习要注重对基础知识的理解和掌握,关注题目解答的思路和方法。
考试选择题的技巧考试选择题的答题技巧可以参考以下几点:1.仔细审题:明确题目要求,搞清楚题目在问什么,避免理解错误。
2.排除法:如果对题目的答案没有确切的把握,可以尝试使用排除法。
先查看每个选项,如果发现有明显错误的选项,就直接排除,再从剩下的选项中选择正确的答案。
3.猜测法:如果完全没有头绪,可以尝试猜测法。
快速浏览一下所有的选项,选择一个直觉告诉你的答案。
虽然这种方法不能保证100%的正确率,但至少能为你提供一个答案,让你不在空白处浪费时间。
4.找关键词:对于一些文字类的选择题,可以尝试找关键词法。
先阅读题干,找出关键词,再在选项中寻找与关键词相关的信息,这有助于快速找到正确答案。
5.逻辑推理:对于一些需要进行逻辑推理的选择题,可以尝试逻辑推理法。
先仔细阅读题干和选项,理解问题的逻辑关系,再根据已有的知识和经验进行推理,得出正确答案。
6.利用常识:有时候可以利用自己的常识来解答选择题。
例如,对于一些与生活常识相关的题目,可以凭借自己的生活经验来选择答案。
7.快速阅读法:对于一些需要阅读理解的选择题,可以尝试快速阅读法。
先快速阅读题干和选项,了解问题的主要内容,再根据问题要求从文章中寻找相关信息,这有助于提高阅读效率。
8.列表法:对于一些需要进行比较和排列的选择题,可以尝试列表法。
将所有的选项列出来,进行比较和排列,这有助于快速找到正确答案。
9.估值法:对于一些需要估算的选择题,可以尝试估值法。
先根据题目的描述进行估值,再从选项中选择最接近的答案。
以上技巧仅供参考,具体方法可能会因科目和题型不同而有所差异。
在实际答题时,建议灵活运用各种技巧,以提高答题效率和准确性。
高考数学单选题和多选题的答题技巧【命题规律】高考的单选题和多选题绝大部分属于中档题目,通常按照由易到难的顺序排列,每道题目一般是多个知识点的小型综合,其中不乏渗透各种数学的思想和方法,基本上能够做到充分考查灵活应用基础知识解决数学问题的能力.(1)基本策略:单选题和多选题属于“小灵通”题,其解题过程可以说是“不讲道理”,所以其解题的基本策略是充分利用题干所提供的信息作出判断和分析,先定性后定量,先特殊后一般,先间接后直接,尤其是对选择题可以先进行排除,缩小选项数量后再验证求解.(2)常用方法:单选题和多选题也属“小”题,解题的原则是“小”题巧解,“小”题快解,“小”题解准.求解的方法主要分为直接法和间接法两大类,具体有:直接法,特值法,图解法,构造法,估算法,对选择题还有排除法(筛选法)等.【核心考点目录】核心考点一:直接法核心考点二:特珠法核心考点三:检验法核心考点四:排除法核心考点五:构造法核心考点六:估算法核心考点七:坐标法核心考点八:图解法【真题回归】1.(2022·天津·统考高考真题)函数()21x f x x-=的图像为()A .B .C .D .2.(2022·天津·统考高考真题)如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为120︒,腰为3的等腰三角形,则该几何体的体积为()A .23B .24C .26D .273.(2022·全国·统考高考真题)函数()33cos x x y x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为()A .B .C .D .4.(2022·北京·统考高考真题)若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=()A .40B .41C .40-D .41-5.(多选题)(2022·全国·统考高考真题)若x ,y 满足221+-=x y xy ,则()A .1x y +≤B .2x y +≥-C .222x y +≤D .221x y +≥6.(多选题)(2022·全国·统考高考真题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则()A .322V V =B .31V V =C .312V V V =+D .3123V V =7.(多选题)(2022·全国·统考高考真题)双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为()A B .32C D 8.(多选题)(2022·全国·统考高考真题)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则()A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=【方法技巧与总结】1、排除法也叫筛选法或淘汰法,使用排除法的前提条件是答案唯一,具体的做法是采用简捷有效的手段对各个备选答案进行“筛选”,将其中与题干相矛盾的干扰支逐一排除,从而获得正确结论.2、特殊值法:从题干(或选项)出发,通过选取特殊情况代入,将问题特殊化或构造满足题设条件的特殊函数或图形位置,进行判断.特值法是“小题小做”的重要策略,要注意在怎样的情况下才可使用,特殊情况可能是:特殊值、特殊点、特殊位置、特殊数列等.3、图解法:对于一些含有几何背景的题,若能根据题目中的条件,作出符合题意的图形,并通过对图形的直观分析、判断,即可快速得出正确结果.这类问题的几何意义一般较为明显,如一次函数的斜率和截距、向量的夹角、解析几何中两点间距离等.4、构造法是一种创造性思维,是综合运用各种知识和方法,依据问题给出的条件和结论给出的信息,把问题作适当的加工处理,构造与问题相关的数学模型,揭示问题的本质,从而找到解题的方法5、估算法:由于选择题提供了唯一正确的选项,解答又无需过程.因此,有些题目,不必进行准确的计算,只需对其数值特点和取值界限作出适当的估计,便能作出正确的判断,这就是估算法.估算法往往可以减少运算量.6、检验法:将选项分别代人题设中或将题设代人选项中逐一检验,确定正确选项.【核心考点】核心考点一:直接法【典型例题】例1.(2022春·贵州贵阳·高三统考期中)基本再生数0R 与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:()e rtI t =描述累计感染病例数()I t 随时间t (单位:天)的变化规律,指数增长率r 与0R ,T 近似满足01R rT =+.有学者基于已有数据估计出0 3.28R =6T =.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加3倍需要的时间约为(ln 20.69≈)()A .1.8天B .2.5天C .3.6天D .4.2天例2.(2022春·广东深圳·高三深圳中学校考阶段练习)设函数()()πsin sin 03f x x x ωωω⎛⎫=++> ⎪⎝⎭,已知()f x 在[]0,π上有且仅有3个极值点,则ω的取值范围是().A .710,33⎛⎤⎥⎝⎦B .47,33⎛⎤ ⎥⎝⎦C .1013,33⎛⎤ ⎥⎝⎦D .14,33⎛⎤ ⎥⎝⎦例3.(多选题)(2022春·吉林长春·高一东北师大附中校考期中)设函数()f x 的定义域为R ,满足()2(2)f x f x =-,且当2(]0,x ∈时,()(2)f x x x =-,若对任意(,]x m ∈-∞,都有()3f x ≤,则实数m 的取值可以是()A .3B .4C .92D .112核心考点二:特珠法【典型例题】例4.(辽宁省鞍山市第一中学2022届高三下学期六模考试数学试题)若e b a >>>b m a =,a n b =,log a p b =,则m ,n ,p 这三个数的大小关系为()A .m n p >>B .n p m >>C .n m p>>D .m p n>>例5.(多选题)(广东省佛山市顺德区2022届高三下学期三模数学试题)已知01b a <<<,则下列不等式成立的是()A .log log a b b a<B .log 1a b >C .ln ln a b b a<D .ln ln a a b b>例6.(多选题)(2022春·重庆沙坪坝·高一重庆一中校考阶段练习)我们知道,函数()y f x =的图象关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数.有同学发现可以将其推广为:函数()y f x =的图象关于点(),P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数.现已知函数()11f x ax a x =++-,则下列说法正确的是()A .函数()12y f x a =+-为奇函数B .当0a >时,()f x 在()1,+∞上单调递增C .若方程()0f x =有实根,则()[),01,a ∞∞∈-⋃+D .设定义域为R 的函数()g x 关于()1,1中心对称,若12a =,且()f x 与()g x 的图象共有2022个交点,记为()(),1,2,,2022i i i A x y i = ,则()()()112220222022x y x y x y ++++++ 的值为4044核心考点三:检验法【典型例题】例7.(多选题)(2022·高一课时练习)对于定义在R 上的函数()y f x =,若存在非零实数0x ,使得()y f x =在()0,x -∞和()0,x +∞上均有零点,则称0x 为()y f x =的一个“折点”.下列函数中存在“折点”的是()A .()132x f x -=+B .()()1lg 32f x x =+-C .3()3x f x x=-D .21()4x f x x +=+例8.(多选题)(2022·全国·高三专题练习)已知函数()()2cos 10,02f x x πωϕωϕ⎛⎫=+-><< ⎪⎝⎭的图象经过原点,且恰好存在2个[]00,1x ∈,使得()f x 的图象关于直线0x x =对称,则()A .3πϕ=B .ω的取值范围为58,33ππ⎡⎫⎪⎢⎣⎭C .一定不存在3个[]10,1x ∈,使得()f x 的图象关于点()1,1x -对称D .()f x 在10,4⎡⎤⎢⎥⎣⎦上单调递减例9.(多选题)(2022秋·高二课时练习)在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它得名于荷兰数学家鲁伊兹·布劳威尔,简单地讲就是对于满足一定条件的连续函数()f x ,存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点”函数,而称0x 为该函数的一个不动点,依据不动点理论,下列说法正确的是()A .函数()sin f x x =有3个不动点B .函数2()(0)f x ax bx c a =++≠至多有两个不动点C .若函数2()(0)f x ax bx c a =++≠没有不动点,则方程(())f f x x =无实根D .设函数()f x =R a ∈,e 为自然对数的底数),若曲线sin y x =上存在点00(,)x y 使00(())f f y y =成立,则a 的取值范围是[]1,e 核心考点四:排除法【典型例题】例10.函数()y f x =的部分图象如图所示,则()A .B .C .D .例11.定义在R 上的函数()f x 满足(2)(2)f x f x -=+,且在(2,)+∞单调递增,(4)0f =,4()g x x =,则函数(2)()y f x g x =+的图象可能是()A .B .C .D .例12.如图1,已知PABC 是直角梯形,//AB PC ,AB BC ⊥,D 在线段PC 上,.AD PC ⊥将PAD 沿AD 折起,使平面PAD ⊥平面ABCD ,连接PB ,PC ,设PB的中点为N ,如图2.对于图2,下列选项错误的是()A .平面PAB ⊥平面PBC B .BC ⊥平面PDC C .PD AC⊥D .2PB AN=核心考点五:构造法【典型例题】例13.已知关于x 的不等式ln ln(1)0x e mx x m ---+在(0,)+∞恒成立,则m 的取值范围是()A .(1,1]e --B .(1,1]-C .(1,1]e -D .(1,]e 例14.已知函数()f x 在R 上可导,其导函数为()f x ',若()f x 满足(1)[()()]0x f x f x -'->,22(2)()xf x f x e--=⋅则下列判断一定正确的是()A .(1)(0)f f <B .2(2)(0)f e f >C .3(3)(0)f e f >D .4(4)(0)f e f <例15.已知log a π=12log sin 35b =︒,ee c ππ=,则()A .c b a >>B .c a b >>C .b c a >>D .a b c>>核心考点六:估算法【典型例题】例16.(2020春·江苏淮安·高三江苏省涟水中学校考阶段练习)古希腊时期,人们认为最美0.618≈称为黄金分割比例),已知一位美女身高160cm ,穿上高跟鞋后肚脐至鞋底的长度约103.8cm ,若她穿上高跟鞋后达到黄金比例身材,则她穿的高跟鞋约是()(结果保留一位小数)A .7.8cmB .7.9cmC .8.0cmD .8.1cm例17.设函数()f x 是定义在R 上的奇函数,在区间[1,0]-上是增函数,且(2)()f x f x +=-,则有()A .B .C .D .核心考点七:坐标法【典型例题】例18.在ABC 中,3AC =,4BC =,90.C P ∠=︒为ABC 所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是()A .[5,3]-B .[3,5]-C .[6,4]-D .[4,6]-例19.如图,在直角梯形ABCD 中,//,,2,AB CD AD DC AD DC AB E ⊥==为AD的中点,若(,)CA CE DB R λμλμ=+∈,则λμ+的值为()A .65B .85C .2D .83例20.(多选题)如图,在边长为2的正方形ABCD 中,P 为以A 为圆心、AB 为半径的圆弧(BD包含B ,)D 上的任意一点,且AP x AB y AD =+,则下列结论正确的是()A .x y +的最大值为B .x y +的最小值为2C .AP AD ⋅的最大值为4D .PB PD ⋅的最小值为4-核心考点八:图解法【典型例题】例21.已知函数31,(0),()2ln ,(0),x x f x x x --⎧=⎨>⎩若方程()f x ax =有三个不同的解1x ,2x ,3x ,则a 的取值范围为()A .2(0,eB .2(0,eC .2(,1]eD .(0,1)例22.已知A ,B 是圆O :221x y +=上的两个动点,||AB =,32OC OA OB =- ,M 为线段AB 的中点,则OC OM ⋅的值为()A .14B .12C .34D .32例23.过原点O 的直线交双曲线E :22221(0,0)x y a b a b-=>>于A ,C 两点,A 在第一象限,1F 、2F 分别为E 的左、右焦点,连接2AF 交双曲线E 右支于点B ,若2||||OA OF =,222||3||CF BF =,则双曲线E 的离心率为.()A .2145B .2134C.5D .535【新题速递】一、单选题1.已知函数()f x ,()g x 都是定义域为R 的函数,函数(1)g x -为奇函数,(1)()0f x g x +-=,(3)(2)0f x g x ----=,则(2)f =()A .1-B .0C .1D .22.已知a b <,0a ≠,0b ≠,c R ∈,则下列不等关系正确的是()A .22a b<B .11a b>C .a c b c -<-D .ac bc<3.某同学掷骰子5次,分别记录每次骰子出现的点数,根据5次的统计结果,可以判断一定没有出现点数6的是A .中位数是3,众数是2B .平均数是3,中位数是2C .方差是2.4,平均数是2D .平均数是3,众数是24.在平面内,,A B 是两个定点,C 是动点.若1AC BC ⋅=,则点C 的轨迹为()A .圆B .椭圆C .抛物线D .直线5.在ABC 中,3AC =,4BC =,90.C P ∠=︒为ABC 所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是()A .[5,3]-B .[3,5]-C .[6,4]-D .[4,6]-6.在平行四边形ABCD 中,3A π∠=,边AB 、AD 的长分别为2、1,若M 、N 分别是边BC 、CD 上的点,且满足||||||||BM CN BC CD =,则AM AN ⋅ 的最大值是()A .2B .3C .4D .5二、多选题7.已知0a >,0b >,且41a b +=,则()A .162a b+B .1122log log 4a b +C .4ln 1ab e --- D .24sin 1a b -+8.定义在(0,)+∞上的函数()f x 的导函数为()f x ',且恒成立,则A.B .C.D.9.已知1a >,1b >,且333a b e e a b ++=+,则下列结论正确的是()A .322ab +>B .2218a b+<C .ln()1a b ->D .ln()ln 4a b +<10.已知定义在R 上的单调递增函数()f x 满足:任意x ∈R 有(1)(1)2f x f x -++=,(2)(2)4f x f x ++-=,则()A .当x ∈Z 时,()f x x =B .任意x ∈R ,()()f x f x -=-C .存在非零实数T ,使得任意x ∈R ,()()f x T f x +=D .存在非零实数c ,使得任意x ∈R ,|()|1f x cx - 11.已知函数()f x 及其导函数()f x '的定义域均为R ,对任意的x ,y ∈R ,恒有()()2()()f x y f x y f x f y ++-=⋅,则下列说法正确的有()A .(0)1f =B .()f x '必为奇函数C .()(0)0f x f +D .若1(1)2f =,则202311()2n f n ==∑12.函数2||()x f x x a=+的大致图象可能是()A.B.C.D .13.已知函数()tan(cos )cos(sin )f x x x =+,则()A .()f x 是定义域为R 的偶函数B .()f x 的最大值为2C .()f x 的最小正周期为πD .()f x 在[0,2π上单调递减14.若10a b c >>>>,则有()A .log log c c a b >B .cca b >C .()()a b c b a c +>+D .a b b c<15.十六世纪中叶,英国数学家雷科德在《砺志石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐步被数学界接受,不等号的引入对不等式的发展影响深远.若a ,b ,c R ∈,则下列命题正确的是()A .若0a b >>,则22ac bc>B .若0a b <<,则11a b b a+<+C .若0a b c <<<,则b b ca a c+<+D .若0,0a b >>,则22b a a ba b++ 16.下面有四个说法正确的有()A .1a <且12b a b <⇒+<且1ab <B .1a <且110b ab a b <⇒--+<C .D .111x x>⇒参考答案【真题回归】1.(2022·天津·统考高考真题)函数()21x f x x-=的图像为()A .B .C .D .【答案】D【解析】函数()21x f x -=的定义域为{}0x x ≠,且()()()2211x x f x f x xx----==-=--,函数()f x 为奇函数,A 选项错误;又当0x <时,()210x f x x -=≤,C 选项错误;当1x >时,()22111x x f x x xx x--===-函数单调递增,故B 选项错误;故选:D.2.(2022·天津·统考高考真题)如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为120︒,腰为3的等腰三角形,则该几何体的体积为()A .23B .24C .26D .27【答案】D【解析】该几何体由直三棱柱AFD BHC -及直三棱柱DGC AEB -组成,作HM CB ⊥于M ,如图,因为3,120CH BH CHB ==∠= ,所以32CM BM HM ===,因为重叠后的底面为正方形,所以AB BC ==在直棱柱AFD BHC -中,AB ⊥平面BHC ,则AB HM ⊥,由AB BC B ⋂=可得HM ⊥平面ADCB ,设重叠后的EG 与FH 交点为,I 则132713813333,=3333=322224I BCDA AFD BHC V V --=⨯=⨯⨯则该几何体的体积为8127222742AFD BHC I BCDA V V V --=-=⨯-=.故选:D.3.(2022·全国·统考高考真题)函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为()A .B .C .D .【答案】A【解析】令()()33cos ,,22x xf x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦,则()()()()()33cos 33cos x x x xf x x x f x---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x x x -->>,所以()0f x >,排除C.故选:A.4.(2022·北京·统考高考真题)若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=()A .40B .41C .40-D .41-【答案】B【解析】令1x =,则432101a a a a a ++++=,令=1x -,则()443210381a a a a a -+-+=-=,故420181412a a a +++==,故选:B.5.(多选题)(2022·全国·统考高考真题)若x ,y 满足221+-=x y xy ,则()A .1x y +≤B .2x y +≥-C .222x y +≤D .221x y +≥【答案】BC【解析】因为22222a b a b ab ++⎛⎫≤≤⎪⎝⎭(,a b ÎR ),由221+-=x y xy 可变形为,()221332x y x y xy +⎛⎫+-=≤ ⎪⎝⎭,解得22x y -≤+≤,当且仅当1x y ==-时,2x y +=-,当且仅当1x y ==时,2x y +=,所以A 错误,B 正确;由221+-=x y xy 可变形为()222212x y x y xy ++-=≤,解得222x y +≤,当且仅当1x y ==±时取等号,所以C 正确;因为221+-=x y xy 变形可得223124y x y ⎛⎫-+= ⎪⎝⎭,设cos ,sin 22y x y θθ-==,所以cos ,x y θθθ==,因此2222511cos sin cos 12cos 2333x y θθθθ=θ-θ+=++42π2sin 2,23363θ⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎝⎭⎣⎦,所以当,33x y ==-时满足等式,但是221x y +≥不成立,所以D 错误.故选:BC .6.(多选题)(2022·全国·统考高考真题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则()A .322V V =B .31V V =C .312V V V =+D .3123V V =【答案】CD 【解析】设22AB ED FB a ===,因为ED ⊥平面ABCD ,FB ED ,则()2311114223323ACD V ED S a a a =⋅⋅=⋅⋅⋅= ,()232111223323ABC V FB S a a a =⋅⋅=⋅⋅⋅= ,连接BD 交AC 于点M ,连接,EM FM ,易得BD AC ⊥,又ED ⊥平面ABCD ,AC ⊂平面ABCD ,则ED AC ⊥,又ED BD D = ,,ED BD ⊂平面BDEF ,则AC ⊥平面BDEF ,又12BM DM BD ===,过F 作FG DE ⊥于G ,易得四边形BDGF 为矩形,则,FG BD EG a ===,则,EM FM ====,3EF a ==,222EM FM EF +=,则EM FM ⊥,212EFM S EM FM =⋅=,AC =,则33123A EFM C EFM EFM V V V AC S a --=+=⋅= ,则3123V V =,323V V =,312V V V =+,故A 、B 错误;C 、D 正确.故选:CD.7.(多选题)(2022·全国·统考高考真题)双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为()A B .32C .2D .2【答案】AC【解析】[方法一]:几何法,双曲线定义的应用情况一M 、N 在双曲线的同一支,依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为B ,所以1OB F N ⊥,因为123cos 05F NF ∠=>,所以N 在双曲线的左支,OB a =,1OF c =,1FB b =,设12F NF α∠=,由即3cos 5α=,则4sin 5α=,235NA NF 22a a ==,21NF NF 2a-=532222a a b a ⎛⎫--= ⎪⎝⎭,2b e 2a =∴=,选A 情况二若M 、N 在双曲线的两支,因为123cos 05F NF ∠=>,所以N 在双曲线的右支,所以OB a =,1OF c =,1FB b =,设12F NF α∠=,由123cos 5F NF ∠=,即3cos 5α=,则4sin 5α=,235NA NF 22a a ==,12NF NF 2a -=352222a b a a +-=,所以23b a =,即32b a =,所以双曲线的离心率2c e a ==选C[方法二]:答案回代法A e 2=选项特值双曲线())22121,F ,F 4x y -=∴,过1F 且与圆相切的一条直线为(y 2x =+,两交点都在左支,N ⎛∴ ⎝,2112NF 5,NF 1,FF ∴===则123cos 5F NF ∠=,C e 2=选项特值双曲线())2212x y 1,F ,F 49-=∴,过1F 且与圆相切的一条直线为(2y x 3=,两交点在左右两支,N 在右支,N ∴,2112NF 5,NF 9,FF ∴===则123cos 5F NF ∠=,[方法三]:依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为G ,若,M N 分别在左右支,因为1OG NF ⊥,且123cos 05F NF ∠=>,所以N 在双曲线的右支,又OG a =,1OF c =,1GF b =,设12F NF α∠=,21F F N β∠=,在12F NF △中,有()212sin sin sin NF NF cβαβα==+,故()122sin sin sin NF NF cαββα-=+-即()sin sin sin a c αββα=+-,所以sin cos cos sin sin sin a cαβαββα=+-,而3cos 5α=,sin a c β=,cos b c β=,故4sin 5α=,代入整理得到23b a =,即32b a =,所以双曲线的离心率c e a ==若,M N 均在左支上,同理有()212sin sin sin NF NF c βαβα==+,其中β为钝角,故cos bcβ=-,故()212sin sin sin NF NF cβαβα-=-+即sin sin cos cos sin sin a c βαβαβα=--,代入3cos 5α=,sin a c β=,4sin 5α=,整理得到:1424a b a =+,故2a b =,故e ==故选:AC.8.(多选题)(2022·全国·统考高考真题)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则()A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=【答案】BC【解析】[方法一]:对称性和周期性的关系研究对于()f x ,因为322f x ⎛⎫- ⎪⎝⎭为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭①,所以()()3f x f x -=,所以()f x 关于32x =对称,则(1)(4)f f -=,故C 正确;对于()g x ,因为(2)g x +为偶函数,(2)(2)g x g x +=-,(4)()g x g x -=,所以()g x 关于2x =对称,由①求导,和()()g x f x '=,得333333222222f x f x f x f x g x g x ''⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫''-=+⇔--=+⇔--=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦,所以()()30g x g x -+=,所以()g x 关于3(,0)2对称,因为其定义域为R ,所以302g ⎛⎫= ⎪⎝⎭,结合()g x 关于2x =对称,从而周期34222T ⎛⎫=⨯-= ⎪⎝⎭,所以13022g g ⎛⎫⎛⎫-== ⎪ ⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.[方法二]:【最优解】特殊值,构造函数法.由方法一知()g x 周期为2,关于2x =对称,故可设()()cos πg x x =,则()()1sin ππf x x c =+,显然A ,D 错误,选BC.故选:BC.[方法三]:因为322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,(2)(2)g x g x +=-,所以()()3f x f x -=,(4)()g x g x -=,则(1)(4)f f -=,故C 正确;函数()f x ,()g x 的图象分别关于直线3,22x x ==对称,又()()g x f x '=,且函数()f x 可导,所以()()30,32g g x g x ⎛⎫=-=- ⎪⎝⎭,所以()(4)()3g x g x g x -==--,所以()(2)(1)g x g x g x +=-+=,所以13022g g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.【整体点评】方法一:根据题意赋值变换得到函数的性质,即可判断各选项的真假,转化难度较高,是该题的通性通法;方法二:根据题意得出的性质构造特殊函数,再验证选项,简单明了,是该题的最优解.【方法技巧与总结】1、排除法也叫筛选法或淘汰法,使用排除法的前提条件是答案唯一,具体的做法是采用简捷有效的手段对各个备选答案进行“筛选”,将其中与题干相矛盾的干扰支逐一排除,从而获得正确结论.2、特殊值法:从题干(或选项)出发,通过选取特殊情况代入,将问题特殊化或构造满足题设条件的特殊函数或图形位置,进行判断.特值法是“小题小做”的重要策略,要注意在怎样的情况下才可使用,特殊情况可能是:特殊值、特殊点、特殊位置、特殊数列等.3、图解法:对于一些含有几何背景的题,若能根据题目中的条件,作出符合题意的图形,并通过对图形的直观分析、判断,即可快速得出正确结果.这类问题的几何意义一般较为明显,如一次函数的斜率和截距、向量的夹角、解析几何中两点间距离等.4、构造法是一种创造性思维,是综合运用各种知识和方法,依据问题给出的条件和结论给出的信息,把问题作适当的加工处理,构造与问题相关的数学模型,揭示问题的本质,从而找到解题的方法5、估算法:由于选择题提供了唯一正确的选项,解答又无需过程.因此,有些题目,不必进行准确的计算,只需对其数值特点和取值界限作出适当的估计,便能作出正确的判断,这就是估算法.估算法往往可以减少运算量.6、检验法:将选项分别代人题设中或将题设代人选项中逐一检验,确定正确选项.【核心考点】核心考点一:直接法【典型例题】例1.(2022春·贵州贵阳·高三统考期中)基本再生数0R 与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:()e rtI t =描述累计感染病例数()I t 随时间t (单位:天)的变化规律,指数增长率r 与0R ,T 近似满足01R rT =+.有学者基于已有数据估计出0 3.28R =,6T =.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加3倍需要的时间约为(ln 20.69≈)()A .1.8天B .2.5天C .3.6天D .4.2天【答案】C【解析】把0 3.28R =,6T =代入01R rT =+,可得0.38r =,所以()0.38e tI t =.设在新冠肺炎疫情初始阶段,累计感染病例数增加3倍需要的时间为1t ,则有()()14I t t I t +=,即()10.380.38t e 4e t t +=,整理有10.38t e 4=,则10.38ln 4t =,解得1ln 42ln 220.693.60.380.380.38t ⨯==≈≈.故选:C .例2.(2022春·广东深圳·高三深圳中学校考阶段练习)设函数()()πsin sin 03f x x x ωωω⎛⎫=++> ⎪⎝⎭,已知()f x 在[]0,π上有且仅有3个极值点,则ω的取值范围是().A .710,33⎛⎤⎥⎝⎦B .47,33⎛⎤ ⎥⎝⎦C .1013,33⎛⎤ ⎥⎝⎦D .14,33⎛⎤ ⎥⎝⎦【答案】A【解析】由题知,()ππsin sin sin326f x x x x x x ωωωωω⎛⎫⎛⎫=++=+=+ ⎪ ⎪⎝⎭⎝⎭,因为[]0,πx ∈,所以πππ,π666x ωω⎡⎤+∈+⎢⎥⎣⎦,因为()f x 在[]0,π上有且仅有3个极值点,所以5ππ7ππ262ω<+≤,解得71033ω<≤,所以ω的取值范围是710,33⎛⎤ ⎥⎝⎦,故选:A例3.(多选题)(2022春·吉林长春·高一东北师大附中校考期中)设函数()f x 的定义域为R ,满足()2(2)f x f x =-,且当2(]0,x ∈时,()(2)f x x x =-,若对任意(,]x m ∈-∞,都有()3f x ≤,则实数m 的取值可以是()A .3B .4C .92D .112【答案】ABC【解析】因为函数()f x 的定义域为R ,满足()2(2)f x f x =-,且当2(]0,x ∈时,()(2)f x x x =-,所以当(2,4]x ∈时,()2(2)[2(2)]2(2)(4)f x x x x x =---=--,当6(4],x ∈时,()4[(2)2][4(2)]4(4)(6)f x x x x x =----=--,函数部分图象如图所示,由4(4)(6)3x x --=,得2440990x x -+=,解得92x =或112x =,因为对任意(,]x m ∈-∞,都有()3f x ≤,所以由图可知92m ≤,故选:ABC核心考点二:特珠法【典型例题】例4.(辽宁省鞍山市第一中学2022届高三下学期六模考试数学试题)若e b a >>>b m a =,a n b =,log a p b =,则m ,n ,p 这三个数的大小关系为()A .m n p >>B .n p m >>C .n m p >>D .m p n>>【答案】C【解析】因为e b a >>>所以取52,2a b ==,则()5225,6bm a ====,2525 6.2524an b ⎛⎫=== ⎪⎝⎭=,()25log log 1,22a pb ==∈,所以n m p >>.故选:C.例5.(多选题)(广东省佛山市顺德区2022届高三下学期三模数学试题)已知01b a <<<,则下列不等式成立的是()A .log log a b b a <B .log 1a b >C .ln ln a b b a <D .ln ln a a b b>【答案】BC【解析】选项A :()()22lg lg lg lg lg lg lg lg log log lg lg lg lg lg lg a b b a b a b a b a b a a b a b a b-+--=-==由01b a <<<,可得lg lg 0b a <<,则lg lg 0b a >,lg lg 0b a -<,lg lg 0b a +<则()()lg lg lg lg 0lg lg b a b a a b-+>,则log log a b b a >.判断错误;选项B :由01a <<,可得log a y x =为(0,)+∞上减函数,又0b a <<,则log log 1a a b a >=.判断正确;选项C :由01a <<,可知x y a =为R 上减函数,又b a <,则a b a a >由0a >,可知a y x =为(0,)+∞上增函数,又b a <,则a a b a <,则b a a b >又ln y x =为(0,)+∞上增函数,则ln ln b a a b >,则ln ln a b b a <.判断正确;选项D :令211e e a b ==,,则01b a <<<,e ln l 111e n e a a =-=,222ln ln 112e e eb b =-=则22122e0e ln eln e a a b b --+==<-,即ln ln a a b b <.判断错误.故选:BC例6.(多选题)(2022春·重庆沙坪坝·高一重庆一中校考阶段练习)我们知道,函数()y f x =的图象关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数.有同学发现可以将其推广为:函数()y f x =的图象关于点(),P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数.现已知函数()11f x ax a x =++-,则下列说法正确的是()A .函数()12y f x a =+-为奇函数B .当0a >时,()f x 在()1,+∞上单调递增C .若方程()0f x =有实根,则()[),01,a ∞∞∈-⋃+D .设定义域为R 的函数()g x 关于()1,1中心对称,若12a =,且()f x 与()g x 的图象共有2022个交点,记为()(),1,2,,2022i i i A x y i = ,则()()()112220222022x y x y x y ++++++ 的值为4044【答案】ACD【解析】对于A.()()11121211f x a a x a a ax x x+-=+++-=++-由解析式可知1y ax x=+是奇函数,故A 正确;对于B.特殊值法33152322212f a a a ⎛⎫=++=+ ⎪⎝⎭-,()1223121f a a a =++=+-即3(2)122a f f ⎛⎫-=- ⎪⎝⎭,若02a <<,则()f x 在()1,+∞上不是单调递增,故B 错误.对于C.令()101f x ax a x =++=-,分离参数后211a x=-,()(]21,0)(0,1x ∞-∈-⋃故()[)21,01,1x ∞∞∈-⋃+-,C 正确;对于D.由A 可知,当12a =时,()f x 关于()1,1中心对称,且()g x 关于()1,1中心对称,所以这2022个交点关于()1,1对称,故()()122022122022202220224044x x x y y y +++++++=+= ,D 正确.故选:ACD核心考点三:检验法【典型例题】例7.(多选题)(2022·高一课时练习)对于定义在R 上的函数()y f x =,若存在非零实数0x ,使得()y f x =在()0,x -∞和()0,x +∞上均有零点,则称0x 为()y f x =的一个“折点”.下列函数中存在“折点”的是()A .()132x f x -=+B .()()1lg 32f x x =+-C .3()3x f x x=-D .21()4x f x x +=+【答案】BC【解析】A :因为10()32323x f x -=+≥+=,所以()f x 没有零点,即()f x 没有“折点”;B :当0x ≥时1()lg(3)2f x x =+-单调递增,又1(0)lg 302f =-<,1(7)lg1002f =->,所以()f x 在()0,+∞上有零点.又()()1lg 32f x x =+-是偶函数,所以()f x 在(),0-∞上有零点,所以()f x 存在“折点”.C :令3()03x f x x =-=,得0x =或()f x 在()0,+∞上有零点,在(),0-∞上有零点,即()f x 存在“折点”.D :令21()04x f x x +==+,解得=1x -,所以()f x 只有一个零点,即()f x 没有“折点”.故选:BC例8.(多选题)(2022·全国·高三专题练习)已知函数()()2cos 10,02f x x πωϕωϕ⎛⎫=+-><< ⎪⎝⎭的图象经过原点,且恰好存在2个[]00,1x ∈,使得()f x 的图象关于直线0x x =对称,则()A .3πϕ=B .ω的取值范围为58,33ππ⎡⎫⎪⎢⎣⎭C .一定不存在3个[]10,1x ∈,使得()f x 的图象关于点()1,1x -对称D .()f x 在10,4⎡⎤⎢⎥⎣⎦上单调递减【答案】ABD【解析】因为()02cos 10,02f πϕϕ=-=<<,得3πϕ=,A 正确.设3u x πω=+,则2cos 1y u =-如图所示,由[]0,1x ∈,得,333x πππωω⎡⎤+∈+⎢⎥⎣⎦,所以233ππωπ≤+<,得5833ππω≤<,B 正确.如图所示,当5323ππωπ≤+<时,存在3个[]10,1x ∈,使得()f x 的图象关于点()1,1x -对称.C 错误.因为10,4x ⎡⎤∈⎢⎥⎣⎦,所以1,3343x πππωω⎡⎤+∈+⎢⎥⎣⎦,又5833ππω≤<,所以31443ππωπ≤+<,所以()f x 在10,4⎡⎤⎢⎥⎣⎦上单调递减,D 正确.故选:ABD例9.(多选题)(2022秋·高二课时练习)在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它得名于荷兰数学家鲁伊兹·布劳威尔,简单地讲就是对于满足一定条件的连续函数()f x ,存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点”函数,而称0x 为该函数的一个不动点,依据不动点理论,下列说法正确的是()A .函数()sin f x x =有3个不动点B .函数2()(0)f x ax bx c a =++≠至多有两个不动点C .若函数2()(0)f x ax bx c a =++≠没有不动点,则方程(())f f x x =无实根D .设函数()f x =R a ∈,e 为自然对数的底数),若曲线sin y x =上存在点00(,)x y 使00(())f f y y =成立,则a 的取值范围是[]1,e 【答案】BCD【解析】对于A ,令()sin g x x x =-,x ∈R ,()cos 10g x x '=-≤,当且仅当cos 1x =时取“=”,则()g x 在R 上单调递减,而(0)0g =,即()g x 在R 上只有一个零点,函数()f x 只有一个不动点,A 不正确;对于B ,因二次函数2(1)y ax b x c =+-+至多有两个零点,则函数()f x 至多有两个不动点,B 正确;对于C ,依题意,方程2()0(1)0f x x ax b x c -=⇔+-+=无实数根,即2(1)40b ac ∆=--<,当0a >时,二次函数()y f x x =-的图象开口向上,则()0f x x ->恒成立,即R x ∀∈,恒有()f x x >,而()R f x ∈,因此有[()]()f f x f x x >>恒成立,即方程(())f f x x =无实根,当a<0时,二次函数()y f x x =-的图象开口向下,则()0f x x -<恒成立,即R x ∀∈,恒有()f x x <,而()R f x ∈,因此有[()]()f f x f x x <<恒成立,即方程(())f f x x =无实根,所以函数2()(0)f x ax bx c a =++≠没有不动点,则方程(())f f x x =无实根,C 正确;对于D ,点00(,)x y 在曲线sin y x =上,则0[1,1]y ∈-,又00(())f f y y =,即有001y ≤≤,当001y ≤≤时,00()f y y =满足00(())f f y y =,显然函数()f x =函数,若00()f y y >,则000(())()f f y f y y >>与00(())f f y y =矛盾,若00()f y y <,则000(())()f f y f y y <<与00(())f f y y =矛盾,因此,当001y ≤≤时,00()f y y =,即当01x ≤≤时,()f x x =,对[0,1]x ∈,2e e x x x a x a x x +-=⇔=-+,令2()e x h x x x =-+,[0,1]x ∈,()e 21220x h x x x '=-+≥-≥,而两个“=”不同时取得,即当[0,1]x ∈时,()0h x '>,于是得()h x 在[0,1]上单调递增,有(0)()(1)h h x h ≤≤,即1()e h x ≤≤,则1e a ≤≤,D 正确.故选:BCD核心考点四:排除法【典型例题】例10.函数()y f x =的部分图象如图所示,则()A .B .C .D .【答案】A【解析】由题意,函数()f x 图象可得函数()f x 为奇函数,对于A ,111()2(1)2(1)f x x x x -=++-+---,符合题意,对于B ,111()2(1)2(1)f x x x x -=-+-+---,符合题意,对于C ,111()2(1)2(1)f x x x x -=+--+---,不符合题意,对于D ,111()2(1)2(1)f x x x x -=--+-+---,不符合题意,故排除C ,D 选项,又当0.1x =时,代入B 中函数解析式,即111(0.1)2(0.11)0.12(0.11)f =-++-55100119=--<,不符合题意;故排除B 选项,故选.A 例11.定义在R 上的函数()f x 满足(2)(2)f x f x -=+,且在(2,)+∞单调递增,(4)0f =,4()g x x =,则函数(2)()y f x g x =+的图象可能是()A .B .C .D .【答案】B【解析】依题意可知函数()f x 的对称轴方程为2x =,在(2,)+∞上单调递增,且(4)0f =,设()(2)h x f x =+,则函数()h x 的对称轴方程为0x =,在(0,)+∞上单调递增,且(2)0h =,()h x ∴是偶函数,且当02x <<时,()0.h x <因此函数4(2)()()y f x g x h x x =+=⋅也是偶函数,其图象关于y 轴对称,故可以排除选项A 和D ;当02x <<时,4()0y h x x =⋅<,由此排除选项.C 例12.如图1,已知PABC 是直角梯形,//AB PC ,AB BC ⊥,D 在线段PC 上,.AD PC ⊥将PAD 沿AD 折起,使平面PAD ⊥平面ABCD ,连接PB ,PC ,设PB的中点为N ,如图2.对于图2,下列选项错误的是()A .平面PAB ⊥平面PBC B .BC ⊥平面PDC C .PD AC⊥D .2PB AN=【答案】A【解析】解:因为AD PC ⊥,所以AD DC ⊥,AD PD ⊥,又DC ,PD ⊂平面PDC ,DC PD D ⋂=,即AD ⊥平面PDC ,折叠前有//AB PC ,AB BC ⊥,AD PC ⊥,所以//AD BC ,所以BC ⊥平面PDC ,故B 正确.由于平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,PD ⊂平面PAD ,且AD PD ⊥,所以PD ABCD ⊥平面,又AC ABCD ⊂平面,所以PD AC ⊥,故C 正确.DC PD ⊥ ,DC AD ⊥,PD AD D ⋂=,PD 、AD 在平面PAD 内,DC ∴⊥平面PAD ,//AB DC ,AB ∴⊥平面PAD ,又PA ⊂平面PAD ,故AB PA ⊥,PAB ∴∆为直角三角形,N 为斜边的中点,所以2PB AN =,故D 正确.由排除法可得A 错误.故选.A 核心考点五:构造法【典型例题】例13.已知关于x 的不等式ln ln(1)0xe mx x m ---+在(0,)+∞恒成立,则m 的取值范围是()A .(1,1]e --B .(1,1]-C .(1,1]e -D .(1,]e 【答案】A【解析】解:由ln ln(1)0xe mx x m ---+得ln(1)x e mx m x -+ ,即,令()xf x e x =+,(0,)x ∈+∞,则,故()f x 在(0,)x ∈+∞单调递增,若()(ln(1))f x f m x + ,则在(0,)x ∈+∞恒成立,记()ln(1)g x x m x =-+,则()0g x 在(0,)x ∈+∞上恒成立,即min ()0g x ,因为1()1g x x'=-,则当1x <时,()0,g x '<当1x >时,()0,g x '>故()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,故min ()(1)1ln(1)0g x g m ==-+所以,即01m e <+,解得11m e -<- ,所以m 的取值范围是(1,e --故选:.A 例14.已知函数()f x 在R 上可导,其导函数为()f x ',若()f x 满足(1)[()()]0x f x f x -'->,22(2)()xf x f x e--=⋅则下列判断一定正确的是()A .(1)(0)f f <B .2(2)(0)f e f >C .3(3)(0)f e f >D .4(4)(0)f e f <【答案】C【解析】解:令()()x f x g x e =,则()()().xf x f xg x e''-=()f x 满足:(1)[()()]0x f x f x -'->,∴当1x <时,()()0.()0.f x f x g x '-<∴'<此时函数()g x 单调递减.(1)(0).g g ∴->即10(1)(0)(0).f f f e e-->=。
高考选择题答题技巧
1. 认真读题呀,这可太重要啦!就像你找路一样,如果方向都搞错了,那怎么能走到目的地呀!比如那道问函数图像的题,你不仔细读题,怎么能选对嘛!
2. 别着急选答案,多思考一下下嘛。
好比选衣服,你不得多比划比划,看看合不合适呀!像那道历史事件排序的题,别急着就选,多想想时间顺序对不对呀!
3. 排除法好用得很嘞!就像打扫房间,把没用的东西先清理掉,留下正确的。
比如英语单选题,把肯定不对的先排除掉,范围不就缩小啦!
4. 相信自己的第一感觉呀!有时候想太多反而容易错呢。
就好像你第一眼看上的东西,往往就是最合心意的嘛。
像那道地理的气候题,第一感觉很重要哦!
5. 注意题干中的关键词呀!这就像找宝藏的线索一样重要哦。
比如数学题中提到的特殊条件,那就是解题的关键呀!
6. 遇到不会的题别慌呀!慌张有啥用嘞。
这就像走路遇到个小坡,咱慢慢爬过去就好啦。
像那道物理难题,放轻松,说不定灵感就来啦!
7. 检查检查很有必要哇!别以为做完就万事大吉了。
好比做好的饭菜得尝尝味道对不对呀!像做完一张试卷,再检查一遍,能发现不少问题嘞!
8. 要掌握好时间分配呀!可不能在一道题上磨蹭太久。
就像跑步比赛,合理分配体力才能跑得更快嘛。
像综合试卷,得合理安排时间来答题哟!
9. 保持良好的心态最重要啦!千万别因为几道题就心情不好了。
这就像天气有时阴有时晴,我们都要笑着面对呀!
我的观点结论:只要掌握了这些高考选择题答题技巧,加上认真和细心,大家一定能在高考中取得好成绩哒!。
高考数学中的选择题解题技巧高考数学中的选择题占据了大部分的分值,因此很多考生在备考期间都会重点关注选择题的解题技巧。
本文将着重介绍一些高考数学中的选择题解题技巧,希望能够帮助广大考生在考场上更好地解题,取得更好的成绩。
一、审题是关键做选择题首先要明确题意,理解题意后再进行操作,这是最基本的解题要求。
而审题的方法大致有以下几种:1.精读题目:对于每道选择题,首先要认真阅读题目,弄清楚题目中的关键词和题干中所涉及的知识点。
2.化繁为简:把题目涉及到的内容简化,将问题归结到一个比较简单的层次,这样能够更好地理解问题。
3.提取条件:提取题目中所给出的条件,将条件进行分类,方便后续的解题思路展开。
二、选项为出发点在选择题中,选项往往会为我们提供一定的线索,他们会给我们一些提示和启示。
因此,在解题的过程中,我们可以将选项作为出发点,逐一比较选项中所给的数据与题意之间的关系,并通过排除法来确定正确的答案。
具体而言,可以按照以下步骤进行解题:1.通读所有选项:对于每道选择题,首先要通读所有的选项,明确每个选项中的含义和变量名称,不要漏掉任何一个选项。
2.排除不可能的选项:通过分析题干中的信息,尽可能地排除掉不可能的选项,缩小正确选项的范围。
3.比较相似的选项:有时候,选项之间存在很多相似之处,但是又存在微妙的差别,这时候需要逐一比较和分析,寻找不同之处,以帮助我们更准确地定位正确答案。
三、巧用替换法在很多时候,我们很难直接得到题目所要求的结果,但是我们可以通过巧妙地替换一些变量,将题目转化为容易计算的形式。
因此,在解题的过程中,我们可以尝试巧用替换法。
具体而言,可以按照以下步骤进行解题:1.寻找替换变量:找到题目中能够替代的变量,例如将某个式子中的“x”换成“y”。
2.确定替换关系:确定变量之间的替换关系,即后面的变量可以通过前面的变量推导出来,从而可以按照顺序进行替换。
3.回代求解:最后将替换后的变量,回代到原来的式子中,得到最后的结果。
高考数学选择题的答题技巧方法高考数学选择题的答题技巧方法数学选择题是高考数学试卷的三大题型之一,是学生们的拿分题,下面店铺为大家带来了高考数学选择题的答题技巧方法,希望对大家有帮助!方法一:直接法所谓直接法,就是直接从题设的条件出发,运用有关的概念、定义、性质、定理、法则和公式等知识,通过严密的推理与计算来得出题目的结论,然后再对照题目所给的四个选项来“对号入座”.其基本策略是由因导果,直接求解.方法二:特例法特例法的理论依据是:命题的一般性结论为真的先决条件是它的特殊情况为真,即普通性寓于特殊性之中,所谓特例法,就是用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断.常用的特例有取特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.这种方法实际是一种“小题小做”的解题策略,对解答某些选择题有时往往十分奏效.注意:在题设条件都成立的情况下,用特殊值(取得越简单越好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的较佳策略.近几年高考选择题中可用或结合特例法来解答的约占30%.因此,特例法是求解选择题的好招.方法三:排除法数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的选项,找到符合题意的正确结论.筛选法(又叫排除法)就是通过观察分析或推理运算各项提供的信息或通过特例,对于错误的选项,逐一剔除,从而获得正确的结论.注意:排除法适应于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选项中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小选项的'范围内找出矛盾,这样逐步筛选,直到得出正确的答案.它与特例法、图解法等结合使用是解选择题的常用方法,近几年高考选择题中占有很大的比重.方法四:数形结合法数形结合,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维结合起来,通过对图形的处理,发挥直观对抽象的支持作用,实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观.方法五:估算法在选择题中作准确计算不易时,可根据题干提供的信息,估算出结果的大致取值范围,排除错误的选项.对于客观性试题,合理的估算往往比盲目的准确计算和严谨推理更为有效,可谓“一叶知秋”.方法六:综合法当单一的解题方法不能使试题迅速获解时,我们可以将多种方法融为一体,交叉使用,试题便能迎刃而解.根据题干提供的信息,不易找到解题思路时,我们可以从选项里找解题灵感.。
高考选择题的解题策略 一. 选择题的题型特点认识 1. 题型的结构与解答特点: 数学选择题通常是由一个问句或一个不完整的句子和四个供考生选择用的选择肢构成,即“一干,四支”。考生只需从选择四肢中选择一项作为答案,便完成了解答。高考数学选择题的解答特点是“四选一”,怎样快速、准确、无误地选择好这个“一”是十分必要的,也是决胜高考的前提, 2. 数学选择题的学科特点: ① 概念性强:数学概念是抽象的,而且是复杂的,学好考好数学的关健是正确理解好概念。数学选择中有一部分是以基本概念为基础命制和构造出来的。因此,快速准确地解好数学选择题的前提是深刻理解数学基本概念。 ② 量化突出:数学是研究现实世界中数量关系的科学,因此数学选择题的数量特点十分明。但是,盲目计算又是解选择题的一大“误区”,只有建立在对的数学概念的深刻理解,熟练掌握基本性质,基本方法,基本定理的基础之上科学合理地利用联想、推理、类比等分析来简化计算才能羸得高考的时间,确保选择题的准确,从而才能奠定高考中数学高分。 ③ 辨证思维,善辨真伪。 ④ 数形结合,相互转化。 ⑤ 一题多解,巧解高效。 二. 考查特点: ① 能在较大的知识范围内,实现对基础知识,基本技能和基本思想方法的考查; ② 能比较确切地测试考生对概念、原理、性质和法则、定理和公式的掌握和理解; ③ 在一定程度上,能有效地考查逻辑思维能力、运算能力空间想象能力,以及灵活和综合地运用数学知识解决问题的能力。 三. 思维策略 数学选择题每次试题多、考查面广,不仅要求考生有正确的分辨能力,还要有较快的解题速度,为此,需要研究解答选择题的一些技巧。总的来说,选择题属小题,解题的原则是:“小题巧解,小题不能大做”。解题的基本策略是 :充分地利用题干和选择肢的两方面条件所提供的信息作出判断。 先定性后定量,先特殊后推理;先间接后直解,先排除后求解。 四. 解题方法 1. 特殊法:特殊法是“小题小作”的重要策略,辨证法认为矛盾的特殊性是矛盾的一般性的突出表现,是矛盾的一般性的集中反映。由于选择题的结构“一干四肢”和答题“四选一”的特点。 例1.一个等差数列的前n和为48,前2n项和为60,前3n项为 ( ) A.-24 B.84 C.72 D.36 解:设n=1,则a1=48,a2=60-48=12,d=12-48=-36,a3=12-36=-24 S3=S2+a3=60-24=36 选D 例2.如果等比数列{an}的首项是正数,公比大于1,则数列}log{31na是( ) A.是递增等比数列 B.是递减等比数列 C.是递增等差数列 D.是递减的等差数列. 解:设an=3n则Dnan,选=31log
cot2cot.tan2tan.cos2cos.sin2sin.)(4||0.3DCBA则若例
解:取α=6,可否定A、C,D因此选B. 例4.双曲线b2x2-a2y2=a2b2(a>b>0)的渐近线夹角为α,离心率为e,则2cos等于( )
A.e B.e2 C.e1 D.21e 解:设a=2,b=1则Ce故选522cos,25 例5.已知长方形的四个项点A(0,0),B(2,0),C(2,1)和D(0,1),一质点从AB的中点P0沿与AB夹角为的方向射到BC上的点P1后,依次反射到CD、DA和AB上的点P2、P3和P4(入射解等于反射角),设P4坐标为44(,0),1x2,tanx若则的取值范围是( ) (A))1,31( (B))32,31( (C))21,52( (D))32,52( 解:考虑由P0射到BC的中点上,这样依次反射最终回到P0,此时容易求出tan=21,由题设条件知,1<x4<2,则tan≠21,排除A、B、D,故选C.
2. 图象法 例6.已知αβ都是第二象限的角,且cosα>cosβ,则 ( ) A.αsinβ C.tanα>tan D.cotα解:观察上图在第二象限内的正弦函数线,有sinα>sinβ 故选 B 例7.不等式)(2||}|{)0(,等于,则,且的解集是aanmnxmxaxax A. 1 B.2 C.3 D.4 解:作函数图象与xyaxy,由此可得am
3.23.33.21.)(3)2(,.822DCBAxyyxyx的最大值是那么满足等式如果实数例
.33)2(003)2(),(2222DyxOxykOPyxyxP,故选相切的直线的斜率为且与圆过原点的斜率上任意一点,则直线为圆解:设
例9.在圆x2+y2=4上与直线4x+3y-12=0距离 最小的点的坐标是( ) (A)(85,65) (B)(85,-65)
DCM(1,0)AB
x
y
mnOxyy=x
(2,0)xyP (C)(-85,65) (D)(-85,-65) 解:(图解法)在同一直角坐标系中作出圆x2+y2=4和直线4x+3y-12=0后,由图可知距离最小的点在第一象限内,所以选A. 直接法:先求得过原点的垂线,再与已知直线相交而得. 例10.设函数2112)(xxfx 00xx,若1)(0xf,则0x的取值范围是( )
(A)(1,1)(B)(1,)(C)(,2)(0,)(D)(,1)(1,) 解:(图解法)在同一直角坐标系中,作出函数 ()yfx的图象和直线1y,它们相交于(-1,1) 和(1,1)两点,由0()1fx,得01x或01x. 严格地说,图解法并非属于选择题解题思路范畴,而是一种数形结合的解题策略.但它在解有关选择题时非常简便有效.不过运用图解法解题一定要对有关函数图象、方程曲线、几何图形较熟悉,否则错误的图象反而会导致错误的选择.如: 3. 直接法:涉及数学定理、定义、法则、公式的应用的问题,通常通过直接演算出结果,与选择支比较作出选择称之为直接法。 例11.已知函数y=f(x)存在反函数y=g(x),若f(3)= -1,则函数y=g(x-1)必经过点 ( ) A. (-2,3) B.(0,3) C.(2,-1) D.(4,-1)
-111Oyx 解:y=f(x)经过点(3,-1) 则y=g(x)经过(-1,3)则y=g(x-1)必经过(0,3)选B
16.9.10.11.)(||||5||1916,.121122221DCBABFAFABBAFyxFF等于则=若。,的直线较椭圆于点的两焦点,过点为椭圆已知例
解:由椭圆定义可求得11||||11BFAF故选A 4.代入验算法:当题干提供的信息较少时或结论是一些具体的数字时,我们可以从选择肢中先选较为简单的数进行验算,逐一验算是否与题干相符合。 例12. 如果函数y=sin2x+a cos2x的图象关于直线x=-8对称,那么a=( ) (A)2 (B)-2 (C)1 (D)-1 例13. 若焦点在x轴上的椭圆1222myx的离心率为21,则m=( ) A.3 B.23 C.38 D.32 解:假设21,22,21232232aceccm则 故选B.
.(4,6)]6,4.()6,4[]6,4.[)(102534.14222DCBAryxryx的取值范围是,则的距离等于上恰有相异两点到直线若圆例
解:因为圆心O(0,0)到直线4x-3y+25=0的距离d=5,若r=4,则圆上只有一点到直线距离等于1,故r≠4 又若r=6,则圆上有三点到直线距离等于1,故r≠6.所以选D
5排除法:它是运用选择题中单选题和特征,即有且只有一个答案是
正确的这一特点,在解选择题时,先排除一些肯定是错误的的选择肢,从而达到缩小选择范围确保答案的准确性,并提高答题速度。 例15.对任意的锐角,,下列不等关系中正确的是( ) A.sinsin)sin( B.coscos)sin( C.sinsin)cos( D.coscos)cos( 解:当30o时,可排除A、B选项,当15o时代入C选项中,即:0cos302sin15oo 两边平方
234sin154o
1cos304230.2682o矛盾故选D
例16.设、为两个不同的平面,lm、为两条不同的直线,且,lm,有如下的两个命题:①若∥,则l∥m;②若l⊥m,则⊥.那么 (A) ①是真命题,②是假命题 (B) ①是假命题,②是真命题 (C) ①②都是真命题 (D) ①②都是假命题
解:CAmlml,)1(////,,是假命题,故可排除推不出 ②也是假命题。故选择D 6.特征分析法:根据题目所提供的信息,如数值特征,结构特征,位置特征等,进行快速推理,迅速作出判断的方法,称之为特征法。 例17.函数)20,0,)(sin(Rxxy的部分图象如图,( ) A.4,2 B.6,3 C.4,4 D.45,4 解:观察图形可得4)13(422==TC故选,4,214 例18.已知F1、F2是双曲线)0,0(12222babyax 的两焦点,以线段F1F2为边作正三角形MF1F2,若边MF1
的中点在双曲线上,则双曲线的离心率( )
A.324 B.13C.213 D.13
解:作图如上|OI|=c,22222243)23,2(bacacbccI在双曲线上,可得点 Deee,故选,解得化简可得1304824