贵州省黔东南州2013年中考数学真题试题(解析版)
- 格式:doc
- 大小:362.50 KB
- 文档页数:15
2024年贵州黔东南中考数学试题及答案同学你好!答题前请认真阅读以下内容:1.全卷共6页,三个大题,共25小题,满分150分.考试时长120分钟.考试形式为闭卷.2.请在答题卡相应位置作答,在试题卷上答题无效.3.不能使用计算器.一、选择题(本大题共12题,每题3分,共36分.每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置填涂)1. 下列有理数中最小的数是( )A. 2-B. 0C. 2D. 42. “黔山秀水”写成下列字体,可以看作是轴对称图形的是( )A. B. C. D.3. 计算23a a +的结果正确的是( )A. 5aB. 6aC. 25aD. 26a 4. 不等式1x <的解集在数轴上的表示,正确的是( )A. B.C.D.5. 一元二次方程220x x -=的解是( )A. 13x =,21x = B. 12x =,20x = C. 13x =,22x =- D. 12x =-,21x =-6.为培养青少年的科学态度和科学思维,某校创建了“科技创新”社团.小红将“科”“技”“创”“新”写在如图所示的方格纸中,若建立平面直角坐标系,使“创”“新”的坐标分别为()2,0-,()0,0,则“技”所在的象限为( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.为了解学生的阅读情况,某校在4月23日世界读书日,随机抽取100名学生进行阅读情况调查,每月阅读两本以上经典作品的有20名学生,估计该校800名学生中每月阅读经典作品两本以上的人数为( )A 100人 B. 120人 C. 150人 D. 160人8. 如图,ABCD Y 的对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A. AB BC =B. AD BC =C. OA OB =D. AC BD^9. 小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是( )A. 小星定点投篮1次,不一定能投中B. 小星定点投篮1次,一定可以投中C. 小星定点投篮10次,一定投中4次D. 小星定点投篮4次,一定投中1次10. 如图,在扇形纸扇中,若150AOB Ð=°,24OA =,则»AB 长为( )A. 30πB. 25πC. 20πD. 10π11. 小红学习了等式的性质后,在甲、乙两台天平的左右两边分别放入“■”“●”“▲”三种物体,如图所示,天平都保持平衡.若设“■”与“●”的质量分别为x ,y ,则下列关系式正确的是( )A. x y= B. 2x y = C. 4x y = D. 5x y=12. 如图,二次函数2y ax bx c =++的部分图象与x 轴的一个交点的横坐标是3-,顶点坐标为()1,4-,则下列说法正确的是( ).的A. 二次函数图象的对称轴是直线1x =B. 二次函数图象与x 轴的另一个交点的横坐标是2C. 当1x <-时,y 随x 的增大而减小D. 二次函数图象与y 轴交点的纵坐标是3二、填空题(本大题共4题,每题4分,共16分)13.的结果是________.14.如图,在ABC V 中,以点A 为圆心,线段AB 的长为半径画弧,交BC 于点D ,连接AD .若5AB =,则AD 的长为______.15.在元朝朱世杰所著的《算术启蒙》中,记载了一道题,大意是:快马每天行240里,慢马每天行150里,慢马先行12天,则快马追上慢马需要的天数是______.16. 如图,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,连接AE ,AF .若4sin 5EAF Ð=,5AE =,则AB 的长为______.三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)17. (1)在①22,②2-,③()01-,④122´中任选3个代数式求和;的(2)先化简,再求值:()21122x x -×+,其中3x =.18. 已知点()1,3在反比例函数k y x=的图象上.(1)求反比例函数的表达式;(2)点()3,a -,()1,b ,()3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.19.根据《国家体质健康标准》规定,七年级男生、女生50米短跑时间分别不超过7.7秒、8.3秒为优秀等次.某校在七年级学生中挑选男生、女生各5人进行集训,经多次测试得到10名学生的平均成绩(单位:秒)记录如下:男生成绩:7.61,7.38,7.65,7.38,7.38女生成绩:8.23,8.27,8.16,8.26,8.32根据以上信息,解答下列问题:(1)男生成绩的众数为______,女生成绩的中位数为______;(2)判断下列两位同学的说法是否正确.(3)教练从成绩最好的32名学生代表学校参加比赛,请用画树状图或列表的方法求甲被抽中的概率.20. 如图,四边形ABCD 的对角线AC 与BD 相交于点O ,AD BC ∥,90ABC Ð=°,有下列条件:①AB CD ∥,②AD BC =.(1)请从以上①②中任选1个作为条件,求证:四边形ABCD 是矩形;(2)在(1)的条件下,若3AB =,5AC =,求四边形ABCD 的面积.21.为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?22. 综合与实践:小星学习解直角三角形知识后,结合光的折射规律进行了如下综合性学习.【实验操作】第一步:将长方体空水槽放置在水平桌面上,一束光线从水槽边沿A 处投射到底部B 处,入射光线与水槽内壁AC 的夹角为A Ð;第二步:向水槽注水,水面上升到AC 的中点E 处时,停止注水.(直线NN ¢为法线,AO 为入射光线,OD 为折射光线.)测量数据】如图,点A ,B ,C ,D ,E ,F ,O ,N ,N ¢在同一平面内,测得20cm AC =,45A Ð=°,折射角32DON Ð=°.【问题解决】根据以上实验操作和测量的数据,解答下列问题:(1)求BC 的长;(2)求B ,D 之间的距离(结果精确到0.1cm ).(参考数据:sin 320.52°»,cos320.84°»,tan 320.62°»)23.如图,AB 为半圆O 的直径,点F 在半圆上,点P 在AB 的延长线上,PC 与半圆相切于点C ,与OF 的延长线相交于点D ,AC 与OF 相交于点E ,DC DE =.(1)写出图中一个与DEC Ð相等的角:______;(2)求证:OD AB ^;【(3)若2OA OE =,2DF =,求PB 的长.24.某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y (盒)与销售单价x (元)是一次函数关系,下表是y 与x 的几组对应值.销售单价x /元…1214161820…销售量y /盒…5652484440…(1)求y 与x 的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m 元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m 的值.25. 综合与探究:如图,90AOB Ð=°,点P 在AOB Ð的平分线上,PA OA ^于点A .(1)【操作判断】如图①,过点P 作PC OB ^于点C ,根据题意在图①中画出PC ,图中APC Ð的度数为______度;(2)问题探究】如图②,点M 在线段AO 上,连接PM ,过点P 作PN PM ^交射线OB 于点N ,求证:2OM ON PA +=;(3)【拓展延伸】点M 在射线AO 上,连接PM ,过点P 作PN PM ^交射线OB 于点N ,射线NM 与射线PO 相交于点F ,若3ON OM =,求OP OF的值.【参考答案同学你好!答题前请认真阅读以下内容:1.全卷共6页,三个大题,共25小题,满分150分.考试时长120分钟.考试形式为闭卷.2.请在答题卡相应位置作答,在试题卷上答题无效.3.不能使用计算器.一、选择题(本大题共12题,每题3分,共36分.每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置填涂)【1题答案】【答案】A【2题答案】【答案】B【3题答案】【答案】A【4题答案】【答案】C【5题答案】【答案】B【6题答案】【答案】A【7题答案】【答案】D【8题答案】【答案】B【9题答案】【答案】A【10题答案】【答案】C【11题答案】【答案】C【12题答案】【答案】D二、填空题(本大题共4题,每题4分,共16分)【13题答案】【14题答案】【答案】5【15题答案】【答案】20【16题答案】三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)【17题答案】【答案】(1)见解析(2)12x-,1【18题答案】【答案】(1)3 yx =(2)a c b<<,理由见解析【19题答案】【答案】(1)7.38,8.26(2)小星的说法正确,小红的说法错误(3)2 3【20题答案】【答案】(1)见解析(2)12【21题答案】【答案】(1)种植1亩甲作物和1亩乙作物分别需要5、6名学生(2)至少种植甲作物5亩【22题答案】【答案】(1)20cm(2)3.8cm【23题答案】【答案】(1)DCEÐ(答案不唯一)(2)163(3)163【24题答案】【答案】(1)280y x =-+(2)糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元(3)2【25题答案】【答案】(1)画图见解析,90(2)见解析 (3)23或83。
启用前·绝密黔东南州初中毕业升学统一考试数学试卷注意事项:1、本卷共有三个大题,26个小题,满分150分,考试时间120分钟。
2、请用(蓝、黑)色墨水钢笔或圆珠笔直接在试卷上答题。
、答题前务必将密封线内的项目填写清楚。
并填上座位号。
一、单项选择题:(每小题4分,共40分)1、下列运算正确的是()A、39±=B、33-=-C、39-=-D、932=-2、在下列几何图形中一定是轴对称图形的有()平行四边形抛物线三角形A、1个B、2个C、3个D、4个3、下列图形中,面积最大的是()A、对角线长为6和8的菱形;B、边长为6的正三角形;C、半径为3的圆;D、边长分别为6、8、10的三角形;4、下面简举几何体的主视图是()正面 A B C D5、抛物线的图象如图1所示,根据图象可知,抛物线的解析式可能..是()A、y=x2-x-2B、y=121212++-x_ _ __ _C 、y=121212+--x x D 、y=22++-x x 6、如图2,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD ,则∠A 等于( )A 、30oB 、40oC 、45oD 、36o7、方程0|84|=--+-m y x x ,当0>y 时,m 的取值范围是( )A 、10<<mB 、2≥mC 、2<mD 、2≤m 8、设矩形ABCD 的长与宽的和为2,以AB 为轴心旋转一周得到一个几何体,则此几何体的侧面积有( )A 、最小值4πB 、最大值4πC 、最大值2πD 、最小值2π9、某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验;第1组取3粒,第2组取5粒,第3组取7粒……即每组所取种子数目比该组前一组增加2粒,按此规律,那么请你推测第n 组应该有种子数( )粒。
A 、12+nB 、12-nC 、n 2D 、2+n 10、如图3,在凯里一中学生耐力测试比赛中,甲、乙两学生测试的路程s (米)与时间t (秒)之间的函数关系的图象分别为折线OABC 和线段OD ,下列说法正确的是( )A 、乙比甲先到终点;B 、乙测试的速度随时间增加而增大;C 、比赛进行到29.4秒时,两人出发后第一次相遇;D 、比赛全程甲的测试速度始终比乙的测试速度快;二、填空题:(每小题4分,共32分)11、=-2)3(___________12、2x =___________13、当x______时,11+x 有意义。
2013年贵州省铜仁地区中考数学试卷一、选择题(共10小题)1.(2013铜仁)2-的相反数是( )A .21B .12- C .2- D .2 考点:相反数。
解答:解:∵2+(﹣2)=0, ∴2-的相反数是2. 故选D .2.(2013铜仁)下列图形中,既是轴对称图形又是中心对称图形的有( )A .4个B .3个C .2个D .1个 考点:中心对称图形;轴对称图形。
解答:解:A 、是轴对称图形,也是中心对称图形; B 、是轴对称图形,不是中心对称图形; C 、是轴对称图形,也是中心对称图形; D 、是轴对称图形,也是中心对称图形. 故选B .3.(2013铜仁)某中学足球队的18名队员的年龄情况如下表:则这些队员年龄的众数和中位数分别是( )A .15,15B .15,15.5C .15,16D .16,15 考点:众数;中位数。
解答:解:根据图表数据,同一年龄人数最多的是15岁,共6人, 所以众数是15,18名队员中,按照年龄从大到小排列,第9名队员的年龄是15岁,第10名队员的年龄是16岁,所以,中位数是15162+=15.5. 故选B .4.(2013铜仁)铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是( ) A .5(211)6(1)x x +-=- B .5(21)6(1)x x +=- C .5(211)6x x +-=D .5(21)6x x +=考点:由实际问题抽象出一元一次方程。
解答:解:设原有树苗x 棵,由题意得5(211)6(1)x x +-=-.故选A .5.(2013铜仁)如图,正方形ABOC 的边长为2,反比例函数ky x=的图象过点A ,则k 的值是( )A .2B .﹣2C .4D .﹣4 考点:反比例函数系数k 的几何意义。
贵州省铜仁地区2013年中考数学试卷一、选择题(本大题共10个小题,每小题4分,共40分)本题每小题均有A、B、C、D 四个备选答案,其中只有一个是正确的,请你将正确答案的序号填涂在相应的答题卡上.1.(4分)(2013•铜仁地区)|﹣2013|等于()A.﹣2013 B.2013 C.1D.0考点:绝对值.分析:根据绝对值的性质一个负数的绝对值等于这个数的相反数,直接就得出答案.解答:解:|﹣2013|=2013.故选B.点评:此题主要考查了绝对值的性质,熟练应用绝对值的性质是解决问题的关键.2.(4分)(2013•铜仁地区)下列运算正确的是()A.a2•a3=a6B.(a4)3=a12C.(﹣2a)3=﹣6a3D.a4+a5=a9考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.专题:计算题.分析:根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.解答:解:A、a2•a3=a2+3=a5≠a6,故本选项错误;B、(a4)3=a4×3=a12,故本选项正确;C、(﹣2a)3=(﹣2)3a3=﹣8a3,故本选项错误;D、a4与a5不是同类项,不能合并,故本选项错误.故选B.点评:本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.3.(4分)(2013•铜仁地区)一枚质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,抛掷这枚骰子一次,则向上的面的数字大于4的概率是()A.B.C.D.考点:概率公式.分析:让向上一面的数字是大于4的情况数除以总情况数6即为所求的概率.解答:解:正方体骰子,六个面上分别刻有的1,2,3,4,5,6六个数字中,大于4为5,6,则向上一面的数字是大于4的概率为=.故选:C.点评:此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.4.(4分)(2013•铜仁地区)如图,在下列条件中,能判断AD∥BC的是()A.∠DAC=∠BCA B.∠DCB+∠ABC=180°C.∠ABD=∠BDC D.∠BAC=∠ACD考点:平行线的判定分析:根据各选项中各角的关系及利用平行线的判定定理,分别分析判断AD、BC是否平行即可.解答:解:A、∵∠DAC=∠BCA,∴AD∥BC(内错角相等,两直线平行).故本选项正确;B、根据“∠DCB+∠ABC=180°”只能判定“DC∥AB”,而非AD∥BC.故本选项错误;C、根据“∠ABD=∠BDC”只能判定“DC∥AB”,而非AD∥BC.故本选项错误;D、根据“∠BAC=∠ACD”只能判定“DC∥AB”,而非AD∥BC.故本选项错误;故选A.点评:本题考查了平行线的判定.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.5.(4分)(2013•铜仁地区)⊙O的半径为8,圆心O到直线l的距离为4,则直线l与⊙O 的位置关系是()A.相切B.相交C.相离D.不能确定考点:直线与圆的位置关系.分析:根据圆O的半径和,圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.解答:解:∵⊙O的半径为8,圆心O到直线L的距离为4,∵8>4,即:d<r,∴直线L与⊙O的位置关系是相交.故选:B.点评:本题主要考查对直线与圆的位置关系的性质的理解和掌握,能熟练地运用性质进行判断是解此题的关键.6.(4分)(2013•铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为()A.2cm B.7cm C.5cm D.6cm考点:三角形中位线定理.分析:由中点和中位线定义可得新三角形的各边长为原三角形各边长的一半,即可求其周长.解答:解:如图,D,E,F分别是△ABC的三边的中点,则DE=AC,DF=BC,EF=AB,∴△DEF的周长=DE+DF+EF=(AC+BC+AB)=6cm,故选D.点评:解决本题的关键是利用中点定义和中位线定理得到新三角形各边长与原三角形各边长的数量关系.7.(4分)(2013•铜仁地区)已知矩形的面积为8,则它的长y与宽x 之间的函数关系用图象大致可以表示为()A.B.C.D.考点:反比例函数的应用;反比例函数的图象.分析:首先由矩形的面积公式,得出它的长y与宽x之间的函数关系式,然后根据函数的图象性质作答.注意本题中自变量x的取值范围.解答:解:由矩形的面积8=xy,可知它的长y与宽x之间的函数关系式为y=(x>0),是反比例函数图象,且其图象在第一象限.故选B.点评:本题考查了反比例函数的应用及反比例函数的图象,反比例函数的图象是双曲线,当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.8.(4分)(2013•铜仁地区)下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形考点:正方形的判定;平行四边形的判定;菱形的判定;矩形的判定;命题与定理.分析:A、根据矩形的定义作出判断;B、根据菱形的性质作出判断;C、根据平行四边形的判定定理作出判断;D、根据正方形的判定定理作出判断.解答:解:A、两条对角线相等且相互平分的四边形为矩形;故本选项错误;B、对角线互相垂直的平行四边形是菱形;故本选项错误;C、对角线互相平分的四边形是平行四边形;故本选项正确;D、对角线互相垂直平分且相等的四边形是正方形;故本选项错误;故选C.点评:本题综合考查了正方形、矩形、菱形及平行四边形的判定.解答此题时,必须理清矩形、正方形、菱形与平行四边形间的关系.9.(4分)(2013•铜仁地区)张老师和李老花眼师住在同一个小区,离学校3000米,某天早晨,张老师和李老师分别于7点10分、7点15分离家骑自行车上班,刚好在校门口遇上,已知李老师骑车的速度是张老师的1.2倍,为了求他们各自骑自行车的速度,设张老师骑自行车的速度是x米/分,则可列得方程为()A.B.C.D.考点:由实际问题抽象出分式方程分析:设张老师骑自行车的速度是x米/分,则李老师骑自行车的速度是1.2x米/分,根据题意可得等量关系:张老师行驶的路程3000÷他的速度﹣李老师行驶的路程3000÷他的速度=5分钟,根据等量关系列出方程即可.解答:解:设张老师骑自行车的速度是x米/分,由题意得:﹣=5,故选:A.点评:此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,表示出李老师和张老师各行驶3000米所用的时间,根据时间关系列出方程.10.(4分)(2013•铜仁地区)如图,直线y=kx+b交坐标轴于A(﹣2,0),B(0,3)两点,则不等式kx+b>0的解集是()A.x>3 B.﹣2<x<3 C.x<﹣2 D.x>﹣2考点:一次函数与一元一次不等式.分析:看在x轴上方的函数图象所对应的自变量的取值即可.解答:解:∵直线y=kx+b交x轴于A(﹣2,0),∴不等式kx+b>0的解集是x>﹣2,故选:D.点评:此题主要考查一次函数与一元一次不等式解集的关系;理解函数值大于0的解集是x轴上方的函数图象所对应的自变量的取值是解决本题的关键.二、填空题(本大题共8个小题,每小题4分,共32分)11.(4分)(2013•铜仁地区)4的平方根是±2.考点:平方根分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.解答:解:∵(±2)2=4,∴4的平方根是±2.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.(4分)(2013•铜仁地区)方程的解是y=﹣4.考点:解分式方程专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到y的值,经检验即可得到分式方程的解.解答:解:去分母得:2y+1=﹣3+y,解得:y=﹣4,经检验y=﹣4是分式方程的解.故答案为:y=﹣4点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13.(4分)(2013•铜仁地区)国家统计局于2013年4月15日发布初步核算数据,一季度中国国内生产总值(GDP)为119000亿元,同比增长7.7%.数据119000亿元用科学记数法表示为 1.19×105亿元.考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:119000=1.19×105,故答案为:1.19×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(4分)(2013•铜仁地区)不等式2m﹣1≤6的正整数解是1,2,3.考点:一元一次不等式的整数解分析:首先解不等式,确定不等式解集中的正整数即可.解答:解:移项得:2m≤6+1,即2m≤7,则m≤.故正整数解是1,2,3.故答案是:1,2,3.点评:本题考查不等式的正整数解,正确解不等式是关键.15.(4分)(2013•铜仁地区)点P(2,﹣1)关于x轴对称的点P′的坐标是(2,1).考点:关于x轴、y轴对称的点的坐标.分析:根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可以直接得到答案.解答:解:点P(2,﹣1)关于x轴对称的点P′的坐标是(2,1),故答案为:(2,1).点评:此题主要考查了关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律.16.(4分)(2013•铜仁地区)如图,在直角三角形ABC中,∠C=90°,AC=12,AB=13,则sinB的值等于.考点:锐角三角函数的定义.分析:根据锐角三角函数的定义得出sinB=,代入求出即可.解答:解:∵∠C=90°,AC=12,AB=13,∴sinB==,故答案为:.点评:本题考查了锐角三角函数的定义的应用,注意:在Rt△ACB中,∠C=90°,则sinB=,cosB=,tanB=.,..17.(4分)(2013•铜仁地区)某公司80名职工的月工资如下:月工资(元)18000 12000 8000 6000 4000 2500 2000 1500 1200人数 1 2 3 4 10 20 22 12 6则该公司职工月工资数据中的众数是2000.考点:众数分析:直接根据众数的定义求解.解答:解:数据2000出现了22次,次数最多,所以该公司职工月工资数据中的众数是2000.故答案为2000.点评:本题考查了众数:一组数据中出现次数最多的数据叫做众数.18.(4分)(2013•铜仁地区)如图,已知∠AOB=45°,A1、A2、A3、…在射线OA上,B1、B2、B3、…在射线OB上,且A1B1⊥OA,A2B2⊥OA,…A n B n⊥OA;A2B1⊥OB,…,A n+1B n⊥OB (n=1,2,3,4,5,6…).若OA1=1,则A6B6的长是32.考点:等腰直角三角形专题:规律型.分析:仔细观察图形,分析其中的规律,得到A n B n的规律性公式,然后求得n=6时的值.解答:解:由题意,可知图中的三角形均为等腰直角三角形,OA1=1,A1B1=A1A2=1,B1A2=B1B2=,A2B2=A2A3=2,B2A3=B2B3=,A3B3=A3A4=4,…,从中发现规律为A n B n=2A n﹣1B n﹣1,其中A1B1=1,∴A n B n=2n﹣1.当n=6时,A6B6=26﹣1=25=32.故答案为:32.点评:本题考查图形的规律性.本题的图形是由一系列有规律的等腰直角三角形所组成,仔细观察图形,发现其中的规律,是解决本题的关键.三、解答题(本题共4个小题,第19题每小题10分,第20、21、22题每小题10分,共40分,要有解题的主要过程)19.(10分)(2013•铜仁地区)(1)计算(﹣1)2013+2sin60°+(π﹣3.14)0+|﹣|;(2)先化简,再求值:,其中.考点:分式的化简求值;实数的运算;零指数幂;特殊角的三角函数值分析:(1)先分别根据有理数乘方的法则、0指数幂、特殊角的三角函数值及绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再把a=3,b=1代入原式进行计算即可.解答:解:(1)原式=﹣1+2×+1+=2;(2)原式=×=a﹣2;把a=+2代入上式得,原式=+2﹣2=.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.(10分)(2013•铜仁地区)如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.考点:全等三角形的判定与性质;等腰直角三角形.专题:证明题.分析:求出AD=AE,AB=AC,∠DAB=∠EAC,根据SAS证出△ADB≌△AEC即可.解答:证明:∵△ABC和△ADE都是等腰直角三角形∴AD=AE,AB=AC,又∵∠EAC=90°+∠CAD,∠DAB=90°+∠CAD,∴∠DAB=∠EAC,∵在△ADB和△AEC中∴△ADB≌△AEC(SAS),∴BD=CE.点评:本题考查了等腰直角三角形性质,全等三角形的性质和判定的应用,关键是推出△ADB≌△AEC.21.(10分)(2013•铜仁地区)为了测量旗杆AB的高度.甲同学画出了示意图1,并把测量结果记录如下,BA⊥EA于A,DC⊥EA于C,CD=a,CA=b,CE=c;乙同学画出了示意图2,并把测量结果记录如下,DE⊥AE于E,BA⊥AE于A,BA⊥CD于C,DE=m,AE=n,∠BDC=α.(1)请你帮助甲同学计算旗杆AB的高度(用含a、b、c的式子表示);(2)请你帮助乙同学计算旗杆AB的高度(用含m、n、α的式子表示).考点:相似三角形的应用;解直角三角形的应用.分析:(1)根据DC⊥AE,BA⊥AE判定△ECD∽△EAB,利用相似三角形对应边的比相等列出比例式,从而用含有a、b、c的式子表示AB即可;(2)首先在直角三角形DBC中用n和α表示出线段BC,然后再表示出AB即可.解答:解:(1)∵DC⊥AE,BA⊥AE∴△ECD∽△EAB,∴即:∴;(2)∵AE⊥AB,DC⊥AB,DE⊥AE∴DC=AE=n,AC=DE=m在Rt△DBC中,=tanα,∴BC=n•tanα∴AB=BC+AC=n•tanα+m点评:本题考查了相似三角形的应用及解直角三角形的应用,解决本题的关键是根据题目的条件判定相似三角形.22.(10分)(2013•铜仁地区)某中学组织部分优秀学生分别去北京、上海、天津、重庆四个城市进行夏令营活动,学校购买了前往四个城市的车票,如图是未制作完整的车票种类和数量的条形统计图,请你根据统计图回答下列问题:(1)若前往天津的车票占全部车票的30%,则前往天津的车票数是多少张?并请补全统计图.(2)若学校采取随机抽取的方式分发车票,每人抽取一张(所有的车票的形状、大小、质地完全相同),那么张明抽到前往上海的车票的概率是多少?考点:条形统计图;分式方程的应用;概率公式分析:(1)设去天津的车票数为x张,根据条形统计图所给的数据和前往天津的车票占全部车票的30%,列出方程,求出x的值,从而补全统计图;(2)先算出总车票数和去上海的车票数,再根据概率公式即可得出答案.解答:解:(1)设去天津的车票数为x张,根据题意得:=30%,解得:x=30,补全统计图如右图所示:(2)∵车票的总数为20+40+30+10=100张,去上海的车票为40张,∴前往上海的车票的概率==,答:张明抽到去上海的车票的概率是.点评:此题考查了条形统计图和概率公式,从条形统计图中获得必要的信息是本题的关键,条形统计图能清楚地表示出每个项目的数据.四、(本题满分12分)23.(12分)(2013•铜仁地区)铜仁市某电解金属锰厂从今年1月起安装使用回收净化设备(安装时间不计),这样既改善了环境,又降低了原料成本,根据统计,在使用回收净化设备后的1至x月的利润的月平均值w(万元)满足w=10x+90.(1)设使用回收净化设备后的1至x月的利润和为y,请写出y与x的函数关系式.(2)请问前多少个月的利润和等于1620万元?考点:一元二次方程的应用;根据实际问题列二次函数关系式.分析:(1)利用“总利润=月利润的平均值×月数”列出函数关系式即可;(2)根据总利润等于1620列出方程求解即可.解答:解:(1)y=w•x=(10x+90)x=10x2+90x(x为正整数),(2)设前x个月的利润和等于1620万元,10x2+90x=1620即:x2+9x﹣162=0得x=x1=9,x2=﹣18(舍去),答:前9个月的利润和等于1620万元.点评:本题考查了一元二次方程的应用及根据实际问题列出二次函数关系式的知识,解题的关键是弄清总利润与月平均利润和月数之间的关系.五、(本题满分12分)24.(12分)(2013•铜仁地区)如图,AC是⊙O的直径,P是⊙O外一点,连结PC交⊙O 于B,连结PA、AB,且满足PC=50,PA=30,PB=18.(1)求证:△PAB∽△PCA;(2)求证:AP是⊙O的切线.考点:切线的判定;相似三角形的判定与性质.专题:证明题.分析:(1)根据△PAB与△PCA的对应边成比例,夹角相等证得结论;(2)欲证明AP是⊙O的切线,只需证得∠PAC=90°.解答:证明:(1)∵PC=50,PA=30,PB=18,∴,==,∴=,又∵∠APC=∠BPA,∴△PAB∽△PCA;(2)∵AC是⊙O的直径,∴∠ABC=90°,∴∠ABP=90°,又∵△PAB∽△PCA,∴∠PAC=∠ABP,∴∠PAC=90°,∴PA是⊙O的切线.点评:本题考查了相似三角形的判定与性质、切线的判定.解题时,利用了圆周角定理:直径所对的圆周角是直角.六、(本题满分14分)25.(14分)(2013•铜仁地区)如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合).(1)求抛物线的解析式;(2)求△ABC的面积;(3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标.考点:二次函数综合题专题:综合题.分析:(1)根据直线解析式求出点A及点B的坐标,然后将点A及点B的坐标代入抛物线解析式,可得出b、c的值,求出抛物线解析式;(2)由(1)求得的抛物线解析式,可求出点C的坐标,继而求出AC的长度,代入三角形的面积公式即可计算;(3)根据点M在抛物线对称轴上,可设点M的坐标为(﹣1,m),分三种情况讨论,①MA=BA,②MB=BA,③MB=MA,求出m的值后即可得出答案.解答:解:(1)∵直线y=3x﹣3分别交x轴、y轴于A、B两点,∴可得A(1,0),B(0,﹣3),把A、B两点的坐标分别代入y=x2+bx+c得:,解得:.∴抛物线解析式为:y=x2+2x﹣3.(2)令y=0得:0=x2+2x﹣3,解得:x1=1,x2=﹣3,则C点坐标为:(﹣3,0),AC=4,故可得S△ABC=AC×OB=×4×3=6.(3)抛物线的对称轴为:x=﹣1,假设存在M(﹣1,m)满足题意:讨论:①当MA=AB时,,解得:,∴M1(﹣1,),M2(﹣1,﹣);②当MB=BA时,,解得:M3=0,M4=﹣6,∴M3(﹣1,0),M4(﹣1,﹣6),③当MB=MA时,,解得:m=﹣1,∴M5(﹣1,﹣1),答:共存在五个点M1(﹣1,),M2(﹣1,﹣),M3(﹣1,0),M4(﹣1,﹣6),M5(﹣1,﹣1)使△ABM为等腰三角形.点评:本题考查了二次函数的综合题,涉及了待定系数法求二次函数解析式、等腰三角形的性质及三角形的面积,难点在第三问,注意分类讨论,不要漏解.。
2013中考全国100份试卷分类汇编规律探索题1、(绵阳市2013年)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现用等式A M=(i,j)表示正奇数M是第i组第j个数(从左往右数),如A7=(2,3),则A2013=( C )A.(45,77)B.(45,39)C.(32,46)D.(32,23)[解析]第1组的第一个数为1,第2组的第一个数为3,第3组的第一个数为9,第4组的第一个数为19,第5组的第一个数为33……将每组的第一个数组成数列:1,3,9,19,33……分别计作a1,a2,a3,a4,a5……a n,a n表示第n组的第一个数,a1 =1a2 = a1+2a3 = a2+2+4×1a4 = a3+2+4×2a5 = a4+2+4×3……a n = a n-1+2+4×(n-2)将上面各等式左右分别相加得:a n =1+2(n-1)+4(n-2+1)(n-2)/2=2n2-4n+3 (上面各等式左右分别相加时,抵消了相同部分a1 + a2 + a3 + a4 + a5 + …… + a n-1),当n=45时,a n = 3873 > 2013 ,2013不在第45组当n=32时,a n = 1923 < 2013 ,(2013-1923)÷2+1=46, A2013=(32,46).如果是非选择题:则2n2-4n+3≤2013,2n2-4n-2010≤0,假如2013是某组的第一个数,则2n2-4n-2010=0,解得n=1+ 1006 ,31<1006 <32,32<n<33, 2013在第32组,但不是第32组的第一个数,a32=1923, (2013-1923)÷2+1=46.(注意区别a n和A n)2、(2013济宁)如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为()A.cm2 B.cm2 C.cm2D.cm2考点:矩形的性质;平行四边形的性质.专题:规律型.分析:根据矩形的对角线互相平分,平行四边形的对角线互相平分可得下一个图形的面积是上一个图形的面积的,然后求解即可.解答:解:设矩形ABCD的面积为S=20cm2,∵O为矩形ABCD的对角线的交点,∴平行四边形AOC1B底边AB上的高等于BC的,∴平行四边形AOC1B的面积=S,∵平行四边形AOC1B的对角线交于点O1,∴平行四边形AO1C2B的边AB上的高等于平行四边形AOC1B底边AB上的高的,∴平行四边形AO1C2B的面积=×S=,…,依此类推,平行四边形AO4C5B的面积===cm2.故选B.点评:本题考查了矩形的对角线互相平分,平行四边形的对角线互相平分的性质,得到下一个图形的面积是上一个图形的面积的是解题的关键.3、(2013年武汉)两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么六条直线最多有()A.21个交点B.18个交点C.15个交点D.10个交点答案:C解析:两条直线的最多交点数为:12×1×2=1,三条直线的最多交点数为:12×2×3=3,四条直线的最多交点数为:12×3×4=6,所以,六条直线的最多交点数为:12×5×6=15,4、(2013•资阳)从所给出的四个选项中,选出适当的一个填入问号所在位置,使之呈现相同的特征()A.B.C.D.考点:规律型:图形的变化类分析:根据图形的对称性找到规律解答.解答:解:第一个图形是轴对称图形,第二个图形是轴对称也是中心对称图形,第三个图形是轴对称也是中心对称图形,第四个图形是中心对称但不是轴对称,所以第五个图形应该是轴对称但不是中心对称,故选C.点评:本题考查了图形的变化类问题,解题的关键是仔细的观察图形并发现其中的规律.5、(2013•烟台)将正方形图1作如下操作:第1次:分别连接各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,根据以上操作,若要得到2013个正方形,则需要操作的次数是()A.502 B.503 C.504 D.505考点:规律型:图形的变化类.分析:根据正方形的个数变化得出第n次得到2013个正方形,则4n+1=2013,求出即可.解解:∵第1次:分别连接各边中点如图2,得到4+1=5个正方形;答:第2次:将图2左上角正方形按上述方法再分割如图3,得到4×2+1=9个正方形…,以此类推,根据以上操作,若第n次得到2013个正方形,则4n+1=2013,解得:n=503.故选:B.点评:此题主要考查了图形的变化类,根据已知得出正方形个数的变化规律是解题关键.6、(2013泰安)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32013的末位数字是()A.0 B.1 C.3 D.7考点:尾数特征.分析:根据数字规律得出3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3进而得出末尾数字.解答:解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187…∴末尾数,每4个一循环,∵2013÷4=503…1,∴3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3的末尾数为3,故选:C.点评:此题主要考查了数字变化规律,根据已知得出数字变化规律是解题关键.7、(2013•德州)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需()根火柴.A.156 B.157 C.158 D.159考点:规律型:图形的变化类.分析:根据第1个图案需7根火柴,7=1×(1+3)+3,第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,得出规律第n个图案需n(n+3)+3根火柴,再把11代入即可求出答案.解答:解:根据题意可知:第1个图案需7根火柴,7=1×(1+3)+3,第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,…,第n个图案需n(n+3)+3根火柴,则第11个图案需:11×(11+3)+3=157(根);故选B.点评:此题主要考查了图形的变化类,关键是根据题目中给出的图形,通过观察思考,归纳总结出规律,再利用规律解决问题,难度一般偏大,属于难题.9、(2013•十堰)如图,是一组按照某种规律摆放成的图案,则图5中三角形的个数是()A.8B.9C.16 D.17考点:规律型:图形的变化类.分析:对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,进而得出即可.解答:解:由图可知:第一个图案有三角形1个.第二图案有三角形1+3=5个.第三个图案有三角形1+3+4=8个,第四个图案有三角形1+3+4+4=12第五个图案有三角形1+3+4+4+4=16故选:C.点评:此题主要考查了图形的变化规律,注意由特殊到一般的分析方法.这类题型在中考中经常出现.10、(2013•恩施州)把奇数列成下表,根据表中数的排列规律,则上起第8行,左起第6列的数是171.考点:规律型:数字的变化类.分析:根据第6列数字从31开始,依次加14,16,18…得出第8行数字,进而求出即可.解答:解:由图表可得出:第6列数字从31开始,依次加14,16,18…则第8行,左起第6列的数为:31+14+16+18+20+22+24+26=171.故答案为:171.点评:此题主要考查了数字变化规律,根据已知得出没行与每列的变化规律是解题关键.11、(2013•孝感)如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1,5,12,22…为五边形数,则第6个五边形数是51.考点:规律型:图形的变化类.专题:规律型.分析:计算不难发现,相邻两个图形的小石子数的差值依次增加3,根据此规律依次进行计算即可得解.解解:∵5﹣1=4,答:12﹣5=7,22﹣12=10,∴相邻两个图形的小石子数的差值依次增加3,∴第4个五边形数是22+13=35,第5个五边形数是35+16=51.故答案为:51.点评:本题是对图形变化规律的考查,仔细观察图形求出相邻两个图形的小石子数的差值依次增加3是解题的关键.12、(2013•绥化)如图所示,以O为端点画六条射线后OA,OB,OC,OD,OE,O后F,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个点在射线OC上.考点:规律型:图形的变化类.分析:根据规律得出每6个数为一周期.用2013除以3,根据余数来决定数2013在哪条射线上.解答:解:∵1在射线OA上,2在射线OB上,3在射线OC上,4在射线OD上,5在射线OE上,6在射线OF上,7在射线OA上,…每六个一循环,2013÷6=335…3,∴所描的第2013个点在射线和3所在射线一样,∴所描的第2013个点在射线OC上.故答案为:OC.点评:此题主要考查了数字变化规律,根据数的循环和余数来决定数的位置是解题关键.13、(2013•常德)小明在做数学题时,发现下面有趣的结果:3﹣2=18+7﹣6﹣5=415+14+13﹣12﹣11﹣10=924+23+22+21﹣20﹣19﹣18﹣17=16…根据以上规律可知第100行左起第一个数是10200.考点:规律型:数字的变化类.分析:根据3,8,15,24的变化规律得出第100行左起第一个数为1012﹣1求出即可.解答:解:∵3=22﹣1,8=32﹣1,15=42﹣1,24=52﹣1,…∴第100行左起第一个数是:1012﹣1=10200.故答案为:10200.点评:此题主要考查了数字变化规律,根据已知得出数字的变与不变是解题关键.14、(2013年河北)如图12,一段抛物线:y=-x(x-3)(0≤x≤3),记为C1,它与x 轴交于点O,A1;将C1绕点A1旋转180°得C2,交x 轴于点A2;将C2绕点A2旋转180°得C3,交x 轴于点A3;……如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m =_________.答案:2解析:C1:y=-x(x-3)(0≤x≤3)C2:y=(x-3)(x-6)(3≤x≤6)C3:y=-(x-6)(x-9)(6≤x≤9)C4:y=(x-9)(x-12)(9≤x≤12)┉C13:y=-(x-36)(x-39)(36≤x≤39),当x=37时,y=2,所以,m=2。
2013年红河州哈尼族彝族自治州初中学业水平考试数学试题一、选择题(本大题共8个小题,每小题只有一个选项符合题目要求,每小题3分,满分24分) 1.12-的倒数是(A )A .2-B .2C .12-D .12【答案】A2.右图是某个几何体的三视图,该几何体是(B ) A .正方体 B .圆柱 C .圆锥 D .球【答案】B3.下列运算正确的是(D )A .2a a a +=B .632a a a ÷= C .0( 3.14)0π-= D.=【答案】D4.不等式组3x x <⎧⎨⎩≥1的解集在数轴上表示为 (C )【答案】CABCD主视图俯视图左视图5.B)A.3-B.3C.9-C.9【答案】B6.如图,AB∥CD,∠D =∠E =35°,则∠B的度数为(C)A.60°B.65°C.70°D.75°【答案】C7.在平面直角坐标系中,已知点P的坐标是(-1,-2),则点P关于原点对称的点的坐标是(C)A.(-1,2)B.(1,-2)C.(1,2)D.(2,1)【答案】C8.如图,AB是⊙O的直径,点C在⊙O上,弦BD平分ABC∠,则下列结论错误的是(D)A.AD DC=B.AD DC= C.ADB ACB∠=∠D.DAB CBA∠=∠【答案】DABA CDE二、填空题(本大题共6个小题,每小题3分,满分18分)9.红河州总人口位居全省16个地州市的第四位,约有450万人,把近似数4 500 000用科学记数法表示为 . 【答案】64.510⨯10.分解因式:29ax a -= . 【答案】()()33a x x +-11.某中学为了了解本校2 000名学生所需运动服尺码,在全校范围内随机抽取100名学生进行调查,这次抽样调查的样本容量是 . 【答案】 100 12.在函数11y x =-中,自变量x 的取值范围是 . 【答案】1x ≠13.已知扇形的半径是30cm ,圆心角是60,则该扇形的弧长为 cm (结果保留π). 【答案】 10 π14.下列图形是由一些小正方形和实心圆按一定规律排列而成的,如图所示,按此规律排列下去,第20个图形中有 个实心圆.【答案】 42三、解答题(本大题共9个小题,满分58分)……(1) (2) (3)BACD E15.解方程212xx x +=+. 【答案】解:方程两边同时乘以(2)x x +得:22(2)(2)x x x x +++=. 22242x x x x +++=.1x =-.检验:把1x =-代入(2)0x x +≠. ………………………………4分 ∴1x =-是原方程的解. ………………………………5分16.如图,D 是△ABC 的边AB 上一点,E 是AC 的中点,过点C 作//CF AB ,交DE 的延长线于点F .求证:AD = CF . 【答案】证明:∵E 是AC 的中点,∴AE = CE . ………………………1分 ∵CF ∥AB ,∴∠A =∠ECF , ∠ADE =∠F . ………………………………3分 在△ADE 与△CFE 中,,,,ADE F A ECF AE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△CFE (AAS ). ……………………………4分 ∴AD CF =. ……………………………5分17.一件外衣的进价为200元,按标价的8折销售时,利润率为10%,求这件外衣的标价为多少元?(注:=100%⨯售价-进价利润率进价)【答案】解:设这件外衣的标价为x 元,依题意得: ……………………………1分0.820020010%x -=⨯. ……………………………3分0.820200x =+.0.8220x =.275x =. ……………………………5分答:这件外衣的标价为275元. ……………………………6分 18.今年植树节,东方红中学组织师生开展植树造林活动,为了了解全校800名学生的植树情况,随机抽样调查50名学生的植树情况,制成如下统计表和条形统计图(均不完整).(1)将统计表和条形统计图补充完整; (2)求抽样的50名学生植树数量的平均数;(3)根据抽样数据,估计该校800名学生的植树数量. 【答案】解:(1)统计表和条形统计图补充如下:…………………………………………………………3分植树数量(棵)植树数量(棵)(2)抽样的50名学生植树的平均数是:354205156104.650x ⨯+⨯+⨯+⨯==(棵).……………………5分 (3)∵样本数据的平均数是4.6,∴估计该校800名学生参加这次植树活动的总体平均数是4.6棵. 于是4.6×800 =3 680(棵),∴估计该校800名学生植树约为3 680棵. ……………………………7分19.今年“五·一”节期间,红星商场举行抽奖促销活动,凡在本商场购物总金额在300元以上者,均可抽一次奖,奖品为精美小礼品.抽奖办法是:在一个不透明的袋子中装有四个标号分别为1,2,3,4的小球,它们的形状、大小、质地等完全相同.抽奖者第一次摸出一个小球,不放回,第二次再摸出一个小球,若两次摸出的小球中有一个小球标号为“1”,则获奖.(1)请你用树形图或列表法表示出抽奖所有可能出现的结果; (2)求抽奖人员获奖的概率. 【答案】解:(1)列表法表示如下:或树形图:……………………………………………………………………4分(2)由表格或树形图可知,抽奖所有可能出现的结果共有12种,这些结果出现的可能性相等,其中有一个小球标号为“1”的有6种, 所以抽奖人员的获奖概率为61122p ==. …………………………7分 20.如图,某山顶上建有手机信号中转塔AB ,在地面D 处测得塔尖的仰角60ADC ∠=,塔底的仰角45BDC ∠=,点D 距塔AB 的距离DC 为100米,求手机信号中转塔AB 的高度(结果保留根号).【答案】解:由题意可知,△ACD 与△BCD 都是直角三角形.在Rt △BCD 中, ∵∠BDC = 45°,∴BC = CD = 100.在Rt △ACD 中,∵∠ADC = 60°,CD = 100, ∴tan60ACCD=, 即100AC= 1234211332443开 始D6045∴AC = …………………………4分 ∴AB AC BC =-1)=. …………………………5分答:手机信号中转塔的高度为1)米. …………………………6分21.(2013云南红河州,21,6分)如图,正比例函数1y x =的图象与反比例函数2ky x=(0k ≠)的图象相交于A 、B 两点,点A 的纵坐标为2. (1)求反比例函数的解析式;(2)求出点B 的坐标,并根据函数图象,写出当12y y >时,自变量x 的取值范围. 【答案】解:(1)设A 点的坐标为(m ,2)2m =,所以点A 的坐标为(2,2). ∴224k =⨯=.∴反比例函数的解析式为:24y x=.…………………………3分 (2)当12y y =时,4x x=. 解得2x =±.∴点B 的坐标为(-2,-2).或者由反比例函数、正比例函数图象的对称性得点B 的坐标为(-2,-2). 由图象可知,当12y y >时,自变量x 的取值范围是:20x -<<或2x >.……………………………………………………………………6分22.(2013云南红河州,22,7分)如图,过正方形ABCD 的顶点D 作DE ∥AC 交BC 的延长线于点E .(1)判断四边形ACED 的形状,并说明理由; (2)若BD = 8cm ,求线段BE 的长.BACDE【答案】解:(1)四边形ACED 是平行四边形. ………………………………1分理由如下:∵四边形ABCD 是正方形, ∴AD ∥BC ,即AD ∥CE . ∵DE ∥AC ,∴四边形ACED 是平行四边形. ………………………………3分 (2)由(1)知,BC = AD = CE = CD , 在Rt △BCD 中, 令BC CD x ==,则2228x x +=. ………………………………5分解得1x =2x =-.∴2)BE x cm ==. ………………………………7分23.(2013云南红河州,23,9分)如图,抛物线24y x =-+与x 轴交于A 、B 两点,与y 轴交于C 点,点P 是抛物线上的一个动点且在第一象限,过点P 作x 轴的垂线,垂足为D ,交直线BC 于点E .(1)求点A 、B 、C 的坐标和直线BC 的解析式; (2)求△ODE 面积的最大值及相应的点E 的坐标;(3)是否存在以点P 、O 、D 为顶点的三角形与△OAC 相似?若存在,请求出点P 的坐标,若不存在,请说明理由.【答案】解:(1)在24y x =-+中,当y =0时,即240x -+=,解得2x =±.当0x =时,即04y =+,解得4y =.所以点A 、B 、C 的坐标依次是A (-2,0)、 B (2,0)、C (0,4).设直线BC 的解析式为y kx b =+(0k ≠),则204k b b +=⎧⎨=⎩,解得24k b =-⎧⎨=⎩. 所以直线BC 的解析式为24y x =-+. ………………………………3分 (2)∵点E 在直线BC 上,∴设点E 的坐标为(, 24)x x -+,则△ODE 的面积S 可表示为:221(24)2(1)12S x x x x x =-+=-+=--+. ∴当1x =时,△ODE 的面积有最大值1.此时,242142x -+=-⨯+=,∴点E 的坐标为(1,2). …………………5分 (3)存在以点P 、O 、D 为顶点的三角形与△OAC 相似,理由如下: 设点P 的坐标为2(, 4)x x -+,02x <<.因为△OAC 与△OPD 都是直角三角形,分两种情况: ①当△PDO ∽△COA 时,PD ODCO AO=, 2442x x-+=,解得11x,21x =(不符合题意,舍去).当1x =时,21)42y =-+=. 此时,点P的坐标为2).②当△PDO ∽△AOC 时,PD OD AO CO=, 2424x x -+=,解得3x =,4x =(不符合题意,舍去).当x =24y =-+此时,点P的坐标为. 综上可得,满足条件的点P 有两个:112)P,2P . ………………………9分 (注:本卷中所有解答题,若有其它方法得出正确结论的,请参照评分标准给分)。
贵州省铜仁地区2013年中考数学试卷一、选择题(本大题共10个小题,每小题4分,共40分)本题每小题均有A、B、C、D 四个备选答案,其中只有一个是正确的,请你将正确答案的序号填涂在相应的答题卡上.3.(4分)(2013•铜仁地区)一枚质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,B的概率为=.4.(4分)(2013•铜仁地区)如图,在下列条件中,能判断AD∥BC的是()5.(4分)(2013•铜仁地区)⊙O的半径为8,圆心O到直线l的距离为4,则直线l与⊙O的6.(4分)(2013•铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中AC BC EF=7.(4分)(2013•铜仁地区)已知矩形的面积为8,则它的长y与宽x之间的函数关系用图...D.y=9.(4分)(2013•铜仁地区)张老师和李老花眼师住在同一个小区,离学校3000米,某天早晨,张老师和李老师分别于7点10分、7点15分离家骑自行车上班,刚好在校门口遇上,已知李老师骑车的速度是张老师的1.2倍,为了求他们各自骑自行车的速度,设张老师骑自.﹣10.(4分)(2013•铜仁地区)如图,直线y=kx+b交坐标轴于A(﹣2,0),B(0,3)两点,则不等式kx+b>0的解集是()二、填空题(本大题共8个小题,每小题4分,共32分)11.(4分)(2013•铜仁地区)4的平方根是±2.12.(4分)(2013•铜仁地区)方程的解是y=﹣4.13.(4分)(2013•铜仁地区)国家统计局于2013年4月15日发布初步核算数据,一季度中国国内生产总值(GDP)为119000亿元,同比增长7.7%.数据119000亿元用科学记数法表示为 1.19×105亿元.14.(4分)(2013•铜仁地区)不等式2m﹣1≤6的正整数解是1,2,3..15.(4分)(2013•铜仁地区)点P(2,﹣1)关于x轴对称的点P′的坐标是(2,1).16.(4分)(2013•铜仁地区)如图,在直角三角形ABC中,∠C=90°,AC=12,AB=13,则sinB的值等于.,代入求出即可.=故答案为:.,,tanB=则该公司职工月工资数据中的众数是2000.18.(4分)(2013•铜仁地区)如图,已知∠AOB=45°,A1、A2、A3、…在射线OA上,B1、B2、B3、…在射线OB上,且A1B1⊥OA,A2B2⊥OA,…A n B n⊥OA;A2B1⊥OB,…,A n+1B n⊥OB (n=1,2,3,4,5,6…).若OA1=1,则A6B6的长是32.三、解答题(本题共4个小题,第19题每小题10分,第20、21、22题每小题10分,共40分,要有解题的主要过程)19.(10分)(2013•铜仁地区)(1)计算(﹣1)2013+2sin60°+(π﹣3.14)0+|﹣|;(2)先化简,再求值:,其中.×+1+×+2+22=20.(10分)(2013•铜仁地区)如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.21.(10分)(2013•铜仁地区)为了测量旗杆AB的高度.甲同学画出了示意图1,并把测量结果记录如下,BA⊥EA于A,DC⊥EA于C,CD=a,CA=b,CE=c;乙同学画出了示意图2,并把测量结果记录如下,DE⊥AE于E,BA⊥AE于A,BA⊥CD于C,DE=m,AE=n,∠BDC=α.(1)请你帮助甲同学计算旗杆AB的高度(用含a、b、c的式子表示);(2)请你帮助乙同学计算旗杆AB的高度(用含m、n、α的式子表示).∴∴=tan22.(10分)(2013•铜仁地区)某中学组织部分优秀学生分别去北京、上海、天津、重庆四个城市进行夏令营活动,学校购买了前往四个城市的车票,如图是未制作完整的车票种类和数量的条形统计图,请你根据统计图回答下列问题:(1)若前往天津的车票占全部车票的30%,则前往天津的车票数是多少张?并请补全统计图.(2)若学校采取随机抽取的方式分发车票,每人抽取一张(所有的车票的形状、大小、质地完全相同),那么张明抽到前往上海的车票的概率是多少?=,答:张明抽到去上海的车票的概率是四、(本题满分12分)23.(12分)(2013•铜仁地区)铜仁市某电解金属锰厂从今年1月起安装使用回收净化设备(安装时间不计),这样既改善了环境,又降低了原料成本,根据统计,在使用回收净化设备后的1至x月的利润的月平均值w(万元)满足w=10x+90.(1)设使用回收净化设备后的1至x月的利润和为y,请写出y与x的函数关系式.(2)请问前多少个月的利润和等于1620万元?五、(本题满分12分)24.(12分)(2013•铜仁地区)如图,AC是⊙O的直径,P是⊙O外一点,连结PC交⊙O于B,连结PA、AB,且满足PC=50,PA=30,PB=18.(1)求证:△PAB∽△PCA;(2)求证:AP是⊙O的切线.∴,=,∴=六、(本题满分14分)25.(14分)(2013•铜仁地区)如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合).(1)求抛物线的解析式;(2)求△ABC的面积;(3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标.得:,.AC×,,,﹣时,,),﹣。
20XX年贵州省黔东南州中考数学试卷一.选择题1.(2012黔东南州)计算﹣1﹣2等于()A. 1 B. 3 C.﹣1 D.﹣3考点:有理数的减法。
专题:计算题。
分析:根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.解答:解:﹣1﹣2=﹣3.故选D.点评:本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.2.(2012黔东南州)七(1)班的6位同学在一节体育课上进行引体向上训练时,统计数据分别为7,12,10,6,9,6则这组数据的中位数是()A. 6 B. 7 C. 8 D. 9考点:中位数。
专题:推理填空题。
分析:将该组数据按从小到大依次排列,找到位于中间位置的两个数,求出其平均数即为正确答案.解答:解:将该组数据按从小到大依次排列为6,6,7,9,10,12,位于中间位置的数为7,9,其平均数为==8,故中位数为8.故选C.点评:本题中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.3.(2012黔东南州)下列等式一定成立的是()A.B.C.D.=9考点:二次根式的混合运算。
分析:利用算术平方根的定义(a≥0)表示a的是a的非负的平方根,以及平方根的定义即可判断.解答:解:A.﹣=3﹣2=1,故选项错误;B.正确;C.=3,故选项错误;D.﹣=﹣9,故选项错误.故选B.点评:本题考查了平方根的定义,正确理解(a≥0)表示a的是a的非负的平方根是关键.4.(2012黔东南州)如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数为()A. 35°B. 45°C. 55°D. 75°考点:圆周角定理。
分析:首先连接AD,由直径所对的圆周角是直角,即可求得∠ADB=90°,由直角三角形的性质,求得∠A 的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠BCD的度数.解答:解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=55°,∴∠A=90°﹣∠ABD=35°,∴∠BCD=∠A=35°.故选A.点评:此题考查了圆周角定理与直角三角形的性质.此题比较简单,注意掌握辅助线的作法,注意直径所对的圆周角是直角与在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用.5.(2012黔东南州)抛物线y=x2﹣4x+3的图象向右平移2个单位长度后所得新的抛物线的顶点坐标为()A.(4,﹣1)B.(0,﹣3)C.(﹣2,﹣3)D.(﹣2,﹣1)考点:二次函数图象与几何变换。
2.【答案】B【解析】解:27907.910=⨯ 故选B .【提示】科学记数法的表示形式为10n a ⨯的形式,其中1|10|a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【考点】用科学记数法表示较大的数 3.【答案】B【解析】解:∵将直线1l 沿着AB 的方向平移得到直线2l ,∴12l l ∥,∵150︒∠=,∴2∠的度数是50︒ 故选:B .【提示】根据平移的性质得出12l l ∥,进而得出2∠的度数 【考点】平移的性质 4.【答案】D【解析】由于众数是数据中出现次数最多的数,故儿童福利院最值得关注的应该是统计调查数据的众数. 故选D .【提示】儿童福利院最值得关注的应该是哪种粽子爱吃的人数最多,即众数.【考点】统计量的选择,众数. 5.【答案】A 【解析】根据几何体的主视图和左视图是矩形,俯视图是三角形可以得到该几何体是三棱柱,根据俯视图三角形的方向可以判定选A ,故选A .【提示】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.结合图形,使用排除法来解答.【考点】由三视图判断几何体 6.【答案】D【解析】∵经过一个十字路口,共有红、黄、绿三色交通信号灯,∴在路口遇到红灯、黄灯、绿灯的概率之故选:D .【提示】根据在路口遇到红灯、黄灯、绿灯的概率之和是1,再根据在路口遇到红灯的概率为13,遇到绿灯的概率为59,即可求出他遇到黄灯的概率 【考点】概率的意义 7.【答案】C【解析】过P 作PE x ⊥轴于E ,∵(12,5)P ,∴5PE =,12OE =,∴5tan 12PE OE α==, 故选C .【提示】过P 作PE x ⊥轴于E ,根据(12,5)P 得出5PE =,12OE =,根据锐角三角函数定义得出tan PEOEα=,代入求出即可【考点】锐角三角函数的定义,坐标与图形性质.8.【答案】C【解析】∵截得的三角形与ABC △相似,∴过点M 作AB 的垂线,或作AC 的垂线,或作BC 的垂线,所得三角形满足题意.∴过点M 作直线l 共有三条, 故选C .【提示】过点D 作直线与另一边相交,使所得的三角形与原三角形有一个公共角,只要再作一个直角就可以.【考点】相似三角形的判定 9.【答案】A【解析】解:∵圆的半径为定值,∴在当点P 从点A 到点B 的过程中OP 的长度为定值,当点P 从点B 到点O 的过程中OP 逐渐缩小,从点O 到点A 的过程中OP 逐渐增大.故选A .【提示】先根据圆的半径为定值可知,在当点P 从点A 到点B 的过程中OP 的长度为定值,当点P 从点B 到点O 的过程中OP 逐渐缩小,从点O 到点A 的过程中OP 逐渐增大,由此即可得出结论. 【考点】动点问题的函数图像 10.【答案】B【解析】如图,连接AD 、AB 与O 的切点E 、F ,则OE AD ⊥,OF AB ⊥. 易证,四边形OEAF 是正方形,则1AF OE ==.∵O 的周长212ππ=⨯=,硬币从如图所示的位置开始,在矩形内沿着边AB 、BC 、CD 、DA 滚动到开始的位置为止,硬币自身滚动的路程是:2()820812AB BC AF +-=-=, ∴硬币自身滚动的圈数大约是:122π2÷≈(圈) 故选B .【提示】根据题意易证,四边形OEAF 是正方形,则1AF OE ==.所以硬币从如图所示的位置开始,在矩形内沿着边AB 、BC 、CD 、DA 滚动到开始的位置为止,硬币自身滚动的路程是:2()820812AB BC AF +-=-=,则硬币自身滚动的圈数大约是:122÷≈硬币的周长(圈) 【考点】切线的性质,弧长的计算. 二、填空题 11.【答案】2x =【解析】移项得,371x =-,合并同类项得,36x =,系数化为1得,2x =. 【提示】根据一元一次方程的解法,移项、合并同类项、系数化为1即可. 【考点】解一元一次方程 12.【答案】4【解析】不透明的布袋中的小球除颜色不同外,其余均相同,共有10个小球,其中白色小球x 个,根据古典型概率公式知:P (白色小球)40%10x==,解得:4x =. 【提示】根据摸到白球的概率公式40%10x=,列出方程求解即可. 【考点】利用频率估计概率13.【答案】【提示】在直角ACD △中,依据直角三角形的性质:30度的锐角所对的直角边等于斜边的一半即可求得AB 的长,然后利用勾股定理即可求得半径OA 的长度,则直径AD 即可求得,然后在直角ACD △中,依据30度的锐角所对的直角边等于斜边的一半即可求解.【考点】圆周角定理,含30度角的直角三角形,勾股定理【提示】将A 与B 坐标代入反比例解析式求出11x y 与22x y 的值,即可求出所求式子的值. 【考点】反比例函数与一次函数的交点问题【提示】根据二次函数的性质,利用二次函数的对称轴不大于2列式计算即可得解. 【考点】二次函数的性质 三、解答题【提示】先根据分式混合运算的法则把原式进行化简,再把的值代入进行计算即可. 【考点】分式的化简求值17.【答案】(1)12P P ==(小红获胜)(数字相同),12P P ==(小明获胜)(数字不同),则这个游戏公平(2)不正确理由如下:因为“和为4”的情况只出现了1次,所以和为4的概率为14,所以她的这种看法不正确. 【解析】解:(1)根据题意画树状图如下:【考点】游戏公平性,列表法与树状图法18.【答案】(1)AC 的距离为(2)tan (5tan5014AE AD ADE ︒=∠=+⨯≈(2)在Rt ADE △中,50ADE ︒∠=,5AD =+∴tan AEADE ∠=,∴tan (5tan5014AE AD ADE ︒=∠=+⨯≈(m ),答:塔高AE 约为14m【考点】解直角三角形的应用的仰角俯角问题19.【答案】(1)5050%25m =⨯=人,1950100%38%n =÷⨯= (2)乙校的扇形统计图中“话剧”的圆心角度数108︒ (3)(15050)30%30-⨯=人,∵3025> ∴乙校参加“话剧”的师生人数多【解析】解:(1)∵参加演讲的有6人,占12%,∴参加本次活动的共有612%50÷=人,∴5050%25m =⨯=人,1950100%38%n =÷⨯=(2)乙校的扇形统计图中“话剧”的圆心角度数为:360(160%10%)108︒︒⨯--=;(3)(15050)30%30-⨯=人,∵3025> ∴乙校参加“话剧”的师生人数多【提示】首先求得总人数,然后在计算m 和n 的值,话剧的圆心角等于其所占的百分比乘以360︒,算出参加话剧的师生的人数后比较即可得到结论 【考点】扇形统计图,统计表. 20.【答案】(1)证明见解析(2)是线段BC 的中点【提示】连接AC ,根据菱形的对角线互相垂直平分可得BD 垂直平分AC ,再根据线段垂直平分线上的点到线段两端点的距离相等即可得证,先判定出ABC △是等边三角形,根据等边三角形的每一个角都是60︒,可得60BAC ︒∠=,再根据等边对等角以及三角形的一个外角等于与它不相邻的两个内角的和求出30EAC ︒∠=,从而判断出AF 是ABC △的角平分线,再根据等边三角形的性质可得AF 是ABC △的BC 边上的中线,从而解得【考点】菱形的性质,等边三角形的判定与性质.21.【答案】(1)2010年底至2012年底该市汽车拥有量的年平均增长率是20%.(2)2012年底至2013年底该市汽车拥有量的年增长率要控制在不超过18%能达到要求.【解析】解:(1)设2010年底至2012年底该市汽车拥有量的年平均增长率是x ,根据题意,2100(1)144x += 1 1.2x +=±∴10.220% x ==,2 2.2x =-(不合题意,舍去)答:2010年底至2012年底该市汽车拥有量的年平均增长率是20%. (2)设2012年底到2013年底该市汽车拥有量的年平均增长率为y , 根据题意得:144(1)14410%155.52y +-⨯≤解得:0.18y ≤答:2012年底至2013年底该市汽车拥有量的年增长率要控制在不超过18%能达到要求. 【提示】设2010年底至2012年底该市汽车拥有量的年平均增长率是x ,根据2010年底该市汽车拥有量为100万辆,而截止到2012年底,该市的汽车拥有量已达1445万辆可列方程求解,设全市每年新增汽车数量为y 万辆,则2013年底全市的汽车拥有量为144(1)90%y +⨯万辆,根据要求到2013年底全市汽车拥有量不超过155.52万辆可列不等式求解.【考点】一元二次方程的应用,一元一次不等式的应用.22.【答案】(1)证明见解析(2)25πAOD AOF S S S -==△阴影扇形3【提示】作OC AB ⊥于点C ,由OC AB ⊥可知AC BC =,再根据AE BF =可知EC FC =, 因为OC EF ⊥,所以OE OF =,再由60EOF ︒∠=,在等边OEF △中,因为60OEF EOF ︒∠=∠=,AE OE =,所以30A AOE ︒∠=∠=,故90AOF ︒∠=,再由10AO =可求出OF 的长,根据AOF AOD S S S -=△阴影扇形即可得出结论.【考点】垂径定理,等边三角形的判定与性质,扇形面积的计算. 23.【答案】(1)(1,4)- (2)711y x =+(3)(7,60)-,(2,3)-【解析】解:(1)∵22223(2)3(1)4y x x x x x =-+=-++=-++-,∴P 点坐标为:(1,4)-;故答案为:(1,4)-;(2)将点(1,4)P -,(0,11)A 代入y ax b =+得:411a b b =-+⎧⎨=⎩,解得:711a b =⎧⎨=⎩,∴该直线的表达式为:711y x =+; (3)∵直线y mx n =+与直线711y x =+关于x 轴成轴对称,∴y mx n =+过点(1,4)P '--,(0,11)A '-,∴411m n n -=-+⎧⎨-=⎩解得:711m n =-⎧⎨=-⎩,∴711y x =--,∴271123x x x --=-+-,解得:17x =,22x =-, 此时160y =-,23y =,∴直线y mx n =+与抛物线223y x x -=-+的交点坐标为:(7,60)-,(2,3)-【提示】利用配方法求出图像的顶点坐标即可,利用待定系数法求一次函数解析式即可,利用关于x 轴对称点的坐标性质,首先求出直线y mx n =+的解析式,进而得出直线y mx n =+与抛物线223y x x -=-+的交点坐标.【考点】二次函数的性质,一次函数图像与几何变换,待定系数法求一次函数解析式.③当6c <时,这个三角形是钝角三角形③222a b c +<,即220c >,c >,∴当6c <<时,这个三角形是钝角三角形【提示】利用勾股定理列式求出两直角边为6、8时的斜边的值,然后做出判断即可,根据(1)中的计算做出判断,根据三角形的任意两边之和大于第三边求出最长边c 点的最大值,然后得到c 的取值范围,然后分情况讨论即可得解【考点】勾股定理的逆定理,勾股定理25.【答案】(1);(2)P ;(3)存在四个点,分别是【考点】一次函数综合题。
2.【答案】B【解析】解:27907.910=⨯ 故选B .【提示】科学记数法的表示形式为10n a ⨯的形式,其中1|10|a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【考点】用科学记数法表示较大的数 3.【答案】B【解析】解:∵将直线1l 沿着AB 的方向平移得到直线2l ,∴12l l ∥,∵150︒∠=,∴2∠的度数是50︒ 故选:B .【提示】根据平移的性质得出12l l ∥,进而得出2∠的度数 【考点】平移的性质 4.【答案】D【解析】由于众数是数据中出现次数最多的数,故儿童福利院最值得关注的应该是统计调查数据的众数. 故选D .【提示】儿童福利院最值得关注的应该是哪种粽子爱吃的人数最多,即众数. 【考点】统计量的选择,众数. 5.【答案】A【解析】根据几何体的主视图和左视图是矩形,俯视图是三角形可以得到该几何体是三棱柱,根据俯视图三角形的方向可以判定选A ,故选A .【提示】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.结合图形,使用排除法来解答.【考点】由三视图判断几何体 6.【答案】D【解析】∵经过一个十字路口,共有红、黄、绿三色交通信号灯,∴在路口遇到红灯、黄灯、绿灯的概率故选:D .【提示】根据在路口遇到红灯、黄灯、绿灯的概率之和是1,再根据在路口遇到红灯的概率为13,遇到绿灯的概率为59,即可求出他遇到黄灯的概率 【考点】概率的意义 7.【答案】C【解析】过P 作PE x ⊥轴于E ,∵(12,5)P ,∴5PE =,12OE =,∴5tan 12PE OE α==, 故选C .【提示】过P 作PE x ⊥轴于E ,根据(12,5)P 得出5PE =,12OE =,根据锐角三角函数定义得出tan PEOEα=,代入求出即可【考点】锐角三角函数的定义,坐标与图形性质. 8.【答案】C【解析】∵截得的三角形与ABC △相似,∴过点M 作AB 的垂线,或作AC 的垂线,或作BC 的垂线,所得三角形满足题意.∴过点M 作直线l 共有三条, 故选C .【提示】过点D 作直线与另一边相交,使所得的三角形与原三角形有一个公共角,只要再作一个直角就可以.【考点】相似三角形的判定 9.【答案】A【解析】解:∵圆的半径为定值,∴在当点P 从点A 到点B 的过程中OP 的长度为定值,当点P 从点B 到点O 的过程中OP 逐渐缩小,从点O 到点A 的过程中OP 逐渐增大.故选A .【提示】先根据圆的半径为定值可知,在当点P 从点A 到点B 的过程中OP 的长度为定值,当点P 从点B 到点O 的过程中OP 逐渐缩小,从点O 到点A 的过程中OP 逐渐增大,由此即可得出结论. 【考点】动点问题的函数图像 10.【答案】B【解析】如图,连接AD 、AB 与O e 的切点E 、F ,则OE AD ⊥,OF AB ⊥. 易证,四边形OEAF 是正方形,则1AF OE ==.∵O e 的周长212ππ=⨯=,硬币从如图所示的位置开始,在矩形内沿着边AB 、BC 、CD 、DA 滚动到开始的位置为止,硬币自身滚动的路程是:2()820812AB BC AF +-=-=, ∴硬币自身滚动的圈数大约是:122π2÷≈(圈) 故选B .【提示】根据题意易证,四边形OEAF 是正方形,则1AF OE ==.所以硬币从如图所示的位置开始,在矩形内沿着边AB 、BC 、CD 、DA 滚动到开始的位置为止,硬币自身滚动的路程是:2()820812AB BC AF +-=-=,则硬币自身滚动的圈数大约是:122÷≈硬币的周长(圈) 【考点】切线的性质,弧长的计算.二、填空题 11.【答案】2x =【解析】移项得,371x =-,合并同类项得,36x =,系数化为1得,2x =. 【提示】根据一元一次方程的解法,移项、合并同类项、系数化为1即可. 【考点】解一元一次方程 12.【答案】4【解析】不透明的布袋中的小球除颜色不同外,其余均相同,共有10个小球,其中白色小球x 个,根据古典型概率公式知:P (白色小球)40%10x==,解得:4x =. 【提示】根据摸到白球的概率公式40%10x=,列出方程求解即可. 【考点】利用频率估计概率13.【答案】【提示】在直角ACD △中,依据直角三角形的性质:30度的锐角所对的直角边等于斜边的一半即可求得AB 的长,然后利用勾股定理即可求得半径OA 的长度,则直径AD 即可求得,然后在直角ACD △中,依据30度的锐角所对的直角边等于斜边的一半即可求解.【考点】圆周角定理,含30度角的直角三角形,勾股定理【提示】将A 与B 坐标代入反比例解析式求出11x y 与22x y 的值,即可求出所求式子的值. 【考点】反比例函数与一次函数的交点问题【提示】根据二次函数的性质,利用二次函数的对称轴不大于2列式计算即可得解. 【考点】二次函数的性质 三、解答题【提示】先根据分式混合运算的法则把原式进行化简,再把的值代入进行计算即可. 【考点】分式的化简求值17.【答案】(1)12P P ==(小红获胜)(数字相同),12P P ==(小明获胜)(数字不同),则这个游戏公平(2)不正确理由如下:因为“和为4”的情况只出现了1次,所以和为4的概率为14,所以她的这种看法不正确. 【解析】解:(1)根据题意画树状图如下:【考点】游戏公平性,列表法与树状图法18.【答案】(1)AC 的距离为(2)tan (5tan5014AE AD ADE ︒=∠=+⨯≈g30,AB(2)在Rt ADE △中,50ADE ︒∠=,5AD =+∴tan AEADE ∠=,∴tan (5tan5014AE AD ADE ︒=∠=+⨯≈g (m ),答:塔高AE 约为14m【考点】解直角三角形的应用的仰角俯角问题19.【答案】(1)5050%25m =⨯=人,1950100%38%n =÷⨯= (2)乙校的扇形统计图中“话剧”的圆心角度数108︒ (3)(15050)30%30-⨯=人,∵3025> ∴乙校参加“话剧”的师生人数多【解析】解:(1)∵参加演讲的有6人,占12%,∴参加本次活动的共有612%50÷=人,∴5050%25m =⨯=人,1950100%38%n =÷⨯=(2)乙校的扇形统计图中“话剧”的圆心角度数为:360(160%10%)108︒︒⨯--=;(3)(15050)30%30-⨯=人,∵3025> ∴乙校参加“话剧”的师生人数多【提示】首先求得总人数,然后在计算m 和n 的值,话剧的圆心角等于其所占的百分比乘以360︒,算出参加话剧的师生的人数后比较即可得到结论 【考点】扇形统计图,统计表. 20.【答案】(1)证明见解析(2)是线段BC 的中点【提示】连接AC ,根据菱形的对角线互相垂直平分可得BD 垂直平分AC ,再根据线段垂直平分线上的点到线段两端点的距离相等即可得证,先判定出ABC △是等边三角形,根据等边三角形的每一个角都是60︒,可得60BAC ︒∠=,再根据等边对等角以及三角形的一个外角等于与它不相邻的两个内角的和求出30EAC ︒∠=,从而判断出AF 是ABC △的角平分线,再根据等边三角形的性质可得AF 是ABC △的BC 边上的中线,从而解得【考点】菱形的性质,等边三角形的判定与性质.21.【答案】(1)2010年底至2012年底该市汽车拥有量的年平均增长率是20%.(2)2012年底至2013年底该市汽车拥有量的年增长率要控制在不超过18%能达到要求.【解析】解:(1)设2010年底至2012年底该市汽车拥有量的年平均增长率是x ,根据题意,2100(1)144x += 1 1.2x +=±∴10.220% x ==,2 2.2x =-(不合题意,舍去)答:2010年底至2012年底该市汽车拥有量的年平均增长率是20%. (2)设2012年底到2013年底该市汽车拥有量的年平均增长率为y , 根据题意得:144(1)14410%155.52y +-⨯≤解得:0.18y ≤答:2012年底至2013年底该市汽车拥有量的年增长率要控制在不超过18%能达到要求. 【提示】设2010年底至2012年底该市汽车拥有量的年平均增长率是x ,根据2010年底该市汽车拥有量为100万辆,而截止到2012年底,该市的汽车拥有量已达1445万辆可列方程求解,设全市每年新增汽车数量为y 万辆,则2013年底全市的汽车拥有量为144(1)90%y +⨯万辆,根据要求到2013年底全市汽车拥有量不超过155.52万辆可列不等式求解.【考点】一元二次方程的应用,一元一次不等式的应用.22.【答案】(1)证明见解析(2)25πAOD AOF S S S -==△阴影扇形 3【提示】作OC AB ⊥于点C ,由OC AB ⊥可知AC BC =,再根据AE BF =可知EC FC =, 因为OC EF ⊥,所以OE OF =,再由60EOF ︒∠=,在等边OEF △中,因为60OEF EOF ︒∠=∠=,AE OE =,所以30A AOE ︒∠=∠=,故90AOF ︒∠=,再由10AO =可求出OF 的长,根据AOF AOD S S S -=△阴影扇形即可得出结论.【考点】垂径定理,等边三角形的判定与性质,扇形面积的计算. 23.【答案】(1)(1,4)- (2)711y x =+(3)(7,60)-,(2,3)-【解析】解:(1)∵22223(2)3(1)4y x x x x x =-+=-++=-++-,∴P 点坐标为:(1,4)-;故答案为:(1,4)-;(2)将点(1,4)P -,(0,11)A 代入y ax b =+得:411a b b =-+⎧⎨=⎩,解得:711a b =⎧⎨=⎩,∴该直线的表达式为:711y x =+; (3)∵直线y mx n =+与直线711y x =+关于x 轴成轴对称,∴y mx n =+过点(1,4)P '--,(0,11)A '-,∴411m n n -=-+⎧⎨-=⎩解得:711m n =-⎧⎨=-⎩,∴711y x =--,∴271123x x x --=-+-,解得:17x =,22x =-, 此时160y =-,23y =,∴直线y mx n =+与抛物线223y x x -=-+的交点坐标为:(7,60)-,(2,3)-【提示】利用配方法求出图像的顶点坐标即可,利用待定系数法求一次函数解析式即可,利用关于x 轴对称点的坐标性质,首先求出直线y mx n =+的解析式,进而得出直线y mx n =+与抛物线223y x x -=-+的交点坐标.【考点】二次函数的性质,一次函数图像与几何变换,待定系数法求一次函数解析式.③当6c <时,这个三角形是钝角三角形③222a b c +<,即220c >,c >,∴当6c <<时,这个三角形是钝角三角形【提示】利用勾股定理列式求出两直角边为6、8时的斜边的值,然后做出判断即可,根据(1)中的计算做出判断,根据三角形的任意两边之和大于第三边求出最长边c 点的最大值,然后得到c 的取值范围,然后分情况讨论即可得解【考点】勾股定理的逆定理,勾股定理25.【答案】(1);(2)P ;(3)存在四个点,分别是【考点】一次函数综合题。
1 贵州省黔东南州2013年中考数学试卷 一、选择题(本大题共10个小题,每小题4分,共40分)本大题每小题均有ABCD四个备选答案,其中只有一个是正确的。 1.(4分)(2013•黔东南州)(﹣1)2的值是( ) A. ﹣1 B. 1 C. ﹣2 D. 2
考点: 有理数的乘方. 分析: 根据平方的意义即可求解. 解答: 解:(﹣1)2=1. 故选B. 点评: 本题考查了乘方的运算,负数的奇数次幂是负数,负数的偶数次幂是正数.
2.(4分)(2013•黔东南州)下列运算正确的是( ) A. (a2)3=a6 B. a2+a=a5 C. (x﹣y)2=x2﹣y2 D. +=2
考点: 幂的乘方与积的乘方;实数的运算;合并同类项;完全平方公式. 专题: 计算题. 分析: A、利用幂的乘方运算法则计算得到结果,即可作出判断; B、原式不能合并,错误; C、原式利用完全平方公式展开得到结果,即可作出判断; D、原式利用立方根的定义化简得到结果,即可作出判断. 解答: 解:A、(a2)3=a6,本选项正确; B、本选项不能合并,错误; C、(x﹣y)2=x2﹣2xy+y2,本选项错误;
D、+=2+,本选项错误, 故选A 点评: 此题考查了积的乘方与幂的乘方,合并同类项,同底数幂的乘法,以及完全平方公式,熟练掌握公式及法则是解本题的关键.
3.(4分)(2013•黔东南州)如图是有几个相同的小正方体组成的一个几何体.它的左视图是( )
A. B. C. D. 考点: 简单组合体的三视图. 分析: 根据左视图是从左面看到的图判定则可. 2
解答: 解:左面看去得到的正方形第一层是2个正方形,第二层是1个正方形. 故选B. 点评: 本题主要考查了几何体的三视图,从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图,难度适中.
4.(4分)(2013•黔东南州)从长为10cm、7cm、5cm、3cm的四条线段中任选三条能够成三角形的概率是( ) A. B. C. D.
考点: 列表法与树状图法. 分析: 列举出所有情况,让能组成三角形的情况数除以总情况数即为所求的概率. 解答: 解:共有10、7、5;10、7、3;10、5、3;7、3、5;4种情况, 10、7、3;10、5、3这两种情况不能组成三角形;
所以P(任取三条,能构成三角形)=. 故选:C. 点评: 此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其
中事件A出现m种结果,那么事件A的概率P(A)=.构成三角形的基本要求为两小边之和大于最大边.
5.(4分)(2013•黔东南州)如图,已知a∥b,∠1=40°,则∠2=( )
A. 140° B. 120° C. 40° D. 50° 考点: 平行线的性质;对顶角、邻补角. 专题: 计算题. 分析: 如图:由a∥b,根据两直线平行,同位角相等,可得∠1=∠3;又根据邻补角的定义,可得∠2+∠3=180°,所以可以求得∠2的度数. 解答: 解:∵a∥b, ∴∠1=∠3=40°; ∵∠2+∠3=180°, ∴∠2=180°﹣∠3=180°﹣40°=140°. 故选A. 3
点评: 此题考查了平行线的性质:两直线平行,同位角相等以及邻补角互补. 6.(4分)(2013•黔东南州)某中学九(1)班6个同学在课间体育活动时进行1分钟跳绳比赛,成绩如下:126,144,134,118,126,152.这组数据中,众数和中位数分别是( ) A. 126,126 B. 130,134 C. 126,130 D. 118,152
考点: 众数;中位数. 分析: 根据众数和中位数的定义求解即可. 解答: 解:这组数据按从小到大的顺序排列为:118,126,126,134,144,152, 故众数为:126, 中位数为:(126+134)÷2=130. 故选C. 点评: 本题考查了众数和中位数的知识,属于基础题,掌握各知识点的定义是解答本题的关键.
7.(4分)(2013•黔东南州)Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径作圆,若圆C与直线AB相切,则r的值为( ) A. 2cm B. 2.4cm C. 3cm D. 4cm
考点: 直线与圆的位置关系. 分析: R的长即为斜边AB上的高,由勾股定理易求得AB的长,根据直角三角形面积的不同表示方法,即可求出r的值. 解答: 解:Rt△ABC中,∠C=90°,AC=3cm,BC=4cm; 由勾股定理,得:AB2=32+42=25, ∴AB=5; 又∵AB是⊙C的切线, ∴CD⊥AB, ∴CD=R;
∵S△ABC=AC•BC=AB•r; ∴r=2.4cm, 故选B. 点评: 本题考查的知识点有:切线的性质、勾股定理、直角三角形面积的求法;斜边上的高即为圆的半径是本题的突破点
8.(4分)(2013•黔东南州)二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是( ) 4
A. a<0,b<0,c>0,b2﹣4ac>0 B. a>0,b<0,c>0,b2﹣4ac<0 C. a<0,b>0,c<0,b2﹣4ac>0 D. a<0,b>0,c>0,b2﹣4ac>0
考点: 二次函数图象与系数的关系. 分析: 由抛物线的开口方向判断a与0的关系,再结合抛物线的对称轴与y轴的关系判断b与0的关系,由抛物线与y轴的交点判断c与0的关系,根据抛物线与x轴交点的个数判断b2﹣4ac与0的关系. 解答: 解:∵抛物线的开口向下, ∴a<0, ∵对称轴在y轴右边, ∴a,b异号即b>0, ∵抛物线与y轴的交点在正半轴, ∴c>0, ∵抛物线与x轴有2个交点, ∴b2﹣4ac>0. 故选D. 点评: 二次函数y=ax2+bx+c系数符号的确定: (1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0.
(2)b由对称轴和a的符号确定:由对称轴公式x=判断符号. (3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0. (4)b2﹣4ac由抛物线与x轴交点的个数确定:2个交点,b2﹣4ac>0;1个交点,b2﹣4ac=0;没有交点,b2﹣4ac<0.
9.(4分)(2013•黔东南州)直线y=﹣2x+m与直线y=2x﹣1的交点在第四象限,则m的取值范围是( ) A. m>﹣1 B. m<1 C. ﹣1<m<1 D. ﹣1≤m≤1
考点: 两条直线相交或平行问题. 专题: 计算题. 分析: 联立两直线解析式求出交点坐标,再根据交点在第四象限列出不等式组求解即可. 解答: 解:联立,
解得, ∵交点在第四象限, 5
∴, 解不等式①得,m>﹣1, 解不等式②得,m<1, 所以,m的取值范围是﹣1<m<1. 故选C. 点评: 本题考查了两直线相交的问题,解一元一次不等式组,联立两函数解析式求交点坐标是常用的方法,要熟练掌握并灵活运用.
10.(4分)(2013•黔东南州)如图,直线y=2x与双曲线y=在第一象限的交点为A,过点A作AB⊥x轴于B,将△ABO绕点O旋转90°,得到△A′B′O,则点A′的坐标为( )
A. (1.0) B. (1.0)或(﹣1.0) C. (2.0)或(0,﹣2) D. (﹣2.1)或(2,﹣1)
考点: 反比例函数与一次函数的交点问题;坐标与图形变化-旋转. 专题: 计算题. 分析: 联立直线与反比例解析式,求出交点A的坐标,将△ABO绕点O旋转90°,得到△A′B′O,利用图形及A的坐标即可得到点A′的坐标. 解答: 解:联立直线与反比例解析式得:,
消去y得到:x2=1, 解得:x=1或﹣1, ∴y=2或﹣2, ∴A(1,2),即AB=2,OB=1, 根据题意画出相应的图形,如图所示, 可得A′B′=A′′B′′=AB=2,OB′=OB′′=OB=1, 根据图形得:点A′的坐标为(﹣2,1)或(2,﹣1). 故选D. 6
点评: 此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形变化﹣旋转,作出相应的图形是解本题的关键.
二、填空题(本题共6小题,每小题4分,共24分) 11.(4分)(2013•黔东南州)平面直角坐标系中,点A(2,0)关于y轴对称的点A′的坐标为 (﹣2,0) .
考点: 关于x轴、y轴对称的点的坐标. 分析: 根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可以直接写出答案. 解答: 解:点A(2,0)关于y轴对称的点A′的坐标为(﹣2,0), 故答案为:(﹣2,0). 点评: 此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.
12.(4分)(2013•黔东南州)使根式有意义的x的取值范围是 x≤3 . 考点: 二次根式有意义的条件. 分析: 根据被开方数大于等于0列式计算即可得解. 解答: 解:根据题意得,3﹣x≥0, 解得x≤3. 故答案为:x≤3. 点评: 本题考查的知识点为:二次根式的被开方数是非负数.
13.(4分)(2013•黔东南州)将一副三角尺如图所示叠放在一起,则的值是 .
考点: 相似三角形的判定与性质. 分析: 由∠BAC=∠ACD=90°,可得AB∥CD,即可证得△ABE∽△DCE,然后由相似三角形的对
应边成比例,可得:,然后利用三角函数,用AC表示出AB与CD,即可求得答案.