2018年高考全国卷1文科数学试题及含答案
- 格式:doc
- 大小:1.25 MB
- 文档页数:9
三产业收建设前经济收入构成比其它收入 种植收入建设后经济收入构成养植收入 2018年全国卷1文科数学高考试卷一、 选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求的。
1.已知集合A={0,2},B={-2,-1,0,1,2},则A ∩B=( )A.{0,2} B={1,2} C ={0} D={-2,-1,0,1,2}2.设Z=11ii-++2i ,则z =( ) A .0 B . 12C .1 D.3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为了更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则如下结论不正确的是( ) A.新农村建设后,种植收入减少B. 新农村建设后,其它收入增加了一倍以上C. 新农村建设后,养植收入增加了一倍D. 新农村建设后,养植收入与第三产业收入的总和超过了经济收入的一半.4.已知椭圆C: 22214x y a +=的一个焦点为(2,0),则C 的离心率为( )A.13 B.12C. 2D. 35.已知圆柱的上下底面的中心分别为O 1,O 2,过直线O1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A. B. 12π C. D. 10π 6.设函数()()321f x x a x ax =+-+,若()f x 为奇函数,则()y f x =在点(0,0)处的切线方程为( )A . 2y x =- B. y x =- C. 2y x = D. y x =7.在⊿ABC 中,AD 为BC 边上中线。
E 为AD 的中点,则EB uu r=( )B A.3144AB AC-uu u r uuu rB.1344AB AC-uu u r uuu rC.3144AB AC+uu u r uuu rD.1344AB AC+uu u r uuu r8.已知函数()222cos sin2f x x x=-+,则A. ()f x的最小正周期为π,最大值为3 B. ()f x的最小正周期为π,最大值为4 C. ()f x的最小正周期为2π,最大值为3 D. ()f x的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如右图。
2018年普通高等学校招生全国统一考试(新课标I 卷)文科数学本试卷4页,23小题,满分150分.考试用时120分钟.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}2,0{=A ,}2,1,0,1,2{--=B ,则=B A ( )A .}2,0{B .}2,1{C .}0{D .}2,1,0,1,2{-- 1.【解析】}2,0{=B A ,选A . 2.设i 2i1i1++-=z ,则=z ( ) A .0 B .21C .1D .2 2.【解析】()()()i i 22i2i 2i 1i 1i 12=+-=+-+-=z ,则1=z,选C .3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面的结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半3.【解析】经过一年的新农村建设,农村的经济收入增加了一倍,所以建设前与建设后在比例相同的情况下,建设后的经济收入是原来的2倍,所以建设后种植收入为37%相当于建设前的74%,故选A .4.已知椭圆14:222=+y ax C 的一个焦点为)0,2(,则C 的离心率为( ) 28%5% 30%37%第三产业收入其他收入养殖收入种殖收入建设后经济收入构成比例6%4% 30%60%第三产业收入其他收入养殖收入种殖收入建设前经济收入构成比例A .31 B .21C .22D .3224.【解析】844222=+=+=c b a ,所以离心率22222===a c e ,故选C . 5.已知圆柱的上、下底面的中心分别为21,O O ,过直线21O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .π212B .π12C .π28D .π105.【解析】易得圆柱的母线长与底面圆的直径均为22,所以圆柱的表面积222⨯⨯=πS 2222⨯+ππ12=,故选B .6.设函数ax x a x x f +-+=23)1()(.若)(x f 为奇函数,则曲线)(x f y =在点)0,0(处的切线方程为( )A .x y 2-=B .x y -=C .x y 2=D .x y =6.【解析】R x ∈,ax x a x ax x a x x f x f +-++--+-=+-2323)1()1()()(2)1(2x a -=0=,则1=a ,则x x x f +=3)(,13)(2+='x x f ,所以1)0(='f ,在点)0,0(处的切线方程为x y =,故选D .7.在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则=EB ( )A .AC AB 4143- B .AC AB 4341- C .AC AB 4143+ D .AC AB 4341+ 7.【解析】AB 4341)(4121)21(21)(21-=-+=+=+=, 则4143-=,故选A . 8.已知函数2sin cos 2)(22+-=x x x f ,则( )A .)(x f 的最小正周期为π,最大值为3B .)(x f 的最小正周期为π,最大值为4C .)(x f 的最小正周期为π2,最大值为3D .)(x f 的最小正周期为π2,最大值为4 8.【解析】252cos 31cos 32)cos 1(cos 2)(222+=+=+--=x x x x x f ,最小正周期为π,最大值为4,故选B .9.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面 上的点N 在左视图上的对应点为B ,则在此圆柱侧面上, 从M 到N 的路径中,最短路径的长度为( )A .172B .52C .3D .29.【解析】将三视图还原成直观图,并沿点A 所在的母线把圆柱侧面展开成如图所示的矩形,从点M 到点N 的运动轨迹在矩形中为直线段时路径最短,长度为52,故选B .A BDE10.在长方体1111D C B A ABCD -中,2==BC AB ,1AC 与平面C C BB 11所成的角为30,则该长方体的体积为( )A .8B .26C .28D .3810.【解析】1AC 与平面C C BB 11所成的角的平面角为301=∠B AC ,因为2==BC AB ,所以3260tan 1== AB B C ,则221=BB ,长方体的体积282222=⨯⨯=V ,故选C .11.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点),2(),,1(b B a A ,且322cos =α,则=-b a ( )A .51B .55C .552D .111.【解析】321cos 22cos 2=-=αα ,65cos 2=∴α,51tan ,61sin 22==∴αα.又角α终边上有两点),2(),,1(b B a A ,则)0(2tan >==ab b a α.555525551422=-=-⇒==∴b a b a ,故选B . 12.已知函数⎩⎨⎧>≤=-0,10,2)(x x x f x ,则满足)2()1(x f x f <+的x 的取值围是( )A .(]1,-∞-B .()+∞,0C .()0,1-D .()0,∞- 12.【解析】方法1:函数)(x f y =的图像如图所示, 则)2()1(x f x f <+即⎩⎨⎧+<<1202x x x ,解得0<x .故选D .方法2:将1-=x 代入)2()1(x f x f <+得)2()0(-<f f ,显然成立,所以排除B 、D ;将21-=x 代入)2()1(x f x f <+得)1()21(-<f f ,显然成立,所以排除A ;故选D .D 1AB C DA 1C 1 B 1M (A二、填空题:本题共4小题,每小题5分,共20分.13.已知函数)(log )(22a x x f +=,若1)3(=f ,则=a .13.【解析】71)9(log )3(2-=⇒=+=a a f .14.若y x ,满足约束条件⎪⎩⎪⎨⎧≤≥+-≤--001022y y x y x ,则y x z 23+=的最大值为 .14.【解析】可行域为ABC ∆及其部,当直线223zx y +-=经过点)0,2(B 时,6max =z .15.直线1+=x y 与圆03222=-++y y x 交于B A ,两点,则=AB . 15.【解析】圆03222=-++y y x 的半径为2=r ,其圆心)1,0(-到直线1+=x y 的距离为222==d ,所以22222=-=dr AB .16.ABC ∆的角C B A ,,的对边分别为c b a ,,.已知C B a B c C b sin sin 4sin sin =+,8222=-+a c b ,则ABC ∆的面积为 .16.【解析】由正弦定理得C B A B C C B sin sin sin 4sin sin sin sin =+,即21sin =A .由根据余弦定理可得8cos 2222==-+A bc a c b ,所以0cos >A ,得23sin 1cos 2=-=A A ,338=bc ,则ABC ∆的面积为3322133821sin 21=⨯⨯==∆A bc S ABC .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)已知数列{}n a 满足11=a ,n n a n na )1(21+=+,设na b nn =. (1)求1b ,2b ,3b ;(2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式.17.【解析】(1)11=a ,4412==∴a a ;1262323=⇒=a a a .11=∴b ,22=b ,43=b .(2)n n a n na )1(21+=+ ,nan a n n 211=+∴+,n n b b 21=∴+,即21=+n n b b .∴数列{}n b 是为等比数列,首项为1,公比为2.(3)由(2)知12-=n n b ,又na b n n =,所以12-⋅=n n n a ,即{}n a 的通项公式为12-⋅=n n n a .18.(12分)如图,在平行四边形ABCM 中,3==AC AB ,90=∠ACM .以AC 为折痕将ACM ∆折起,使点M 达到D 的位置,且DA AB ⊥.(1)证明:平面⊥ACD 平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且DA DQ BP 32==,求三棱锥ABP Q -的体积. 18.【解析】(1)证明: 平行四边形ABCM 中90=∠ACM ,90=∠∴BAC ,即AC AB ⊥.又DA AB ⊥,A DA AC =⊥,⊥∴AB 平面ACD ,⊂AB 平面ABC ,∴平面⊥ACD 平面ABC .(2)DA DQ BP 32== , ∴ABC ABP S S ∆∆=32且点Q 到平面ABC 的距离是点D 到平面ABC 的距离的31. 3==AC AB 且 90=∠ACD ,∴13332127231929292=⨯⨯⨯⨯=⋅⨯===∆---AB S V V V ACD ACD B ABC D ABP Q .19.(12分)某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m )和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表AP BQMC D使用了节水龙头50天的日用水量频数分布表(2)估计该家庭使用节水龙头后,日用水量小于0.353m 的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)19.【解析】(1)使用了节水龙头50天的日用水量数据的频数分布直方图:(2)样本中,该家庭使用节水龙头后日用水量小于0.353m 的频率为0.48, 估计该家庭使用节水龙头后,日用水量小于0.353m 的概率为0.48. (3)未使用节水龙头50天的日用水量的平均值约为:频率/组距/3m频率/组距日用水量/3m48.024501]565.02655.0945.0435.0225.0315.0105.0[501=⨯=⨯+⨯+⨯+⨯+⨯+⨯+⨯⨯; 使用了节水龙头50天的日用水量的平均值约为:35.05.17501]555.01645.01035.01325.0515.0105.0[501=⨯=⨯+⨯+⨯+⨯+⨯+⨯⨯, ()45.4735.048.0365=-⨯ ,∴估计该家庭使用节水龙头后,一年能节省47.453m 的水.20.(12分)设抛物线x y C 2:2=,点)0,2(A ,)0,2(-B ,过点A 的直线l 与C 交于N M ,两点. (1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABN ABM ∠=∠.20.【解析】(1)当l 与x 轴垂直时,M 为)2,2(或)2,2(-,则直线BM 的斜率为21或21-,直线BM 的方程为)2(21+=x y 或)2(21+-=x y . (2)方法1:易知直线l 的斜率不为0,不妨设2:+=my x l 且直线BN BM ,的斜率分别为21,k k .由⎩⎨⎧=+=xy my x 222得0422=--my y ,则4,22121-==+y y m y y , 因为21k k +0)4)(4(88)4)(4()(4244222121212122112211=+++-=++++=+++=+++=my my mm my my y y y my my y my y x y x y , 所以直线BN BM ,的倾斜角互补,得ABN ABM ∠=∠. 方法2:设直线BN BM ,的斜率分别为21,k k .①当l 与x 轴垂直时,由(1)知21k k -=,即直线BN BM ,的倾斜角互补,所以ABN ABM ∠=∠; ②当l 不与x 轴垂直时,设),2(:-=x k y l ),(),,(2211y x N y x M .由⎩⎨⎧=-=xy x k y 2)2(2得04)24(2222=++-k x k x k ,则0≠k 且4,24212221=+=+x x k k x x . 因为21k k +0)2)(2()82(2)2(2)2(22212122112211=++-=+-++-=+++=x x x x k x x k x x k x y x y , 所以直线BN BM ,的倾斜角互补,得ABN ABM ∠=∠. 综合①②所述,得ABN ABM ∠=∠.21.(12分)已知函数1ln )(--=x ae x f x.(1)设2=x 是)(x f 的极值点,求a ,并求)(x f 的单调区间; (2)证明:当ea 1≥时,0)(≥x f . 21.【解析】(1))0(1)(>-='x x ae x f x,2221021)2(ea ae f =⇒=-='∴, 又221e a =时,xe e xf x 121)(2-='.由x e e y 221=与xy 1=的图像只有一个交点)21,2(可知0)(='x f 在),0(+∞只有一个解2=x , )2,0(∈x 时,0)(<'x f ,)(x f 为减函数;),2(+∞∈x 时,0)(>'x f ,)(x f 为增函数,即2=x 是)(x f 的极小值点, 则221ea =,)(x f 的减区间为)2,0(,)(x f 的增区间为),2(+∞. (2)方法1:证明:当ea 1≥时,1-≥x x e ae . 令1ln )(1--=-x ex g x ,则xe x g x 1)(1-='-, 令x ex g x h x 1)()(1-='=-,则01)(21>+='-xe x h x ,)(x g y '=为),0(+∞上的增函数. 又01)1()1(0=-='=e g h ,所以)1,0(∈x 时,0)(<'x g ,)(x g 为减函数;),1(+∞∈x 时,0)(>'x g ,)(x g 为增函数,则010)1()(0min =--==e g x g ,即01ln 1≥---x e x .故当ea 1≥时,≥--=1ln )(x ae x f x 01ln 1≥---x e x ,得证. 方法2:证明:当ea 1≥时,1-≥x x e ae . 令x ex g x -=-1)(,则1)(1-='-x e x g ,)1,0(∈x 时,0)(<'x g ,)(x g 为减函数;),1(+∞∈x 时,0)(>'x g ,)(x g 为增函数,则01)1()(0min =-==e g x g ,即x e x ≥-1.又令1ln )(--=x x x h ,则xx x x h 111)(-=-=', )1,0(∈x 时,0)(<'x h ,)(x h 为减函数;),1(+∞∈x 时,0)(>'x h ,)(x h 为增函数,则0101)1()(min =--==h x h ,即1ln +≥x x .综上所述,当ea 1≥时,1ln +≥x ae x,即0)(≥x f . 方法3:证明:令xex x g 1ln )(+=,)0(1ln 1)1(ln )(2>+-=+-='x e x x e x e x e x g x x x x , 令1ln 1)(+-=x x x h ,则22111)(xxx x x h +-=--=', 当0>x 时,0)(<'x h ,)(x h 为减函数.又0101)1(=--=h ,则)1,0(∈x 时,0)(>x h ;),1(+∞∈x 时,0)(<x h .即当)1,0(∈x 时,0)(>'x g ,)(x g 为增函数;当),1(+∞∈x 时,0)(<'x g ,)(x g 为减函数, 所以ex g 1)(max =. 又ea 1≥,即max )(x g a ≥, 所以)(x g a ≥恒成立,即0)(1ln 1ln ≥⇔+≥⇔+≥x f x ae ex a xx,得证.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4—4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线1C 的方程为2||+=x k y .以坐标原点为极点,x 轴正半轴为机轴建立极坐标系,曲线2C 的极坐标方程为03cos 22=-+θρρ.(1)求2C 的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程. 22.【解析】(1)θρθρsin ,cos ==y x ,所以2C 的直角坐标方程为03222=-++x y x ; (2)曲线1C :⎩⎨⎧<+-≥+=0,20,2x kx x kx y ,其图像是关于y 轴对称且以)2,0(为端点的两条射线.2C :4)1(22=++y x ,其图像是以)0,1(-为圆心,半径为2的圆.若1C 与2C 有且仅有三个公共点,则0<k 且)0(2≥+=x kx y 与2C 相切(如图). 由2122=++-k k 且0<k ,解得34-=k ,则1C 的方程为:||34+-=x y23.[选修4—5:不等式选讲](10分)已知11)(--+=ax x x f .(1)当1=a 时,求不等式1)(>x f 的解集;(2)若)1,0(∈x 时不等式x x f >)(成立,求a 的取值围. 23.【解析】(1)当1=a 时,11)(--+=x x x f ,则1-≤x 时,2)(-=x f ,则1)(>x f 无解;11<<-x 时,x x f 2)(=,则1)(>x f 的解集为)1,21(;1≥x 时,2)(=x f ,则1)(>x f 的解集为),1[+∞.综上所述,所求解集为),21(+∞.(2))1,0(∈x 时不等式x x f >)(成立,即x ax x >--+11,则11<-ax 成立. 所以xa ax 20111<<⇒<-<-. 因为10<<x 时,有),2(2+∞∈x,所以20≤<a .。
2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}02A=,,{}21012B=--,,,,,则A B=()A.{}02,B.{}12,C.{}0D.{}21012--,,,,2.设121iz ii-=++,则z=()A.0 B.12C.1D.23.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆C:22214x ya+=的一个焦点为()2,0,则C的离心率()A.13B.12C.22D.2235.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A .122π B .12π C .82π D .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( )A .2y x =-B .y x =-C .2y x =D .y x =7.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( ) A .3144AB AC - B .1344AB AC - C .3144AB AC +D .1344AB AC +8.已知函数()222cos sin 2f x x x =-+,则( )A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .25C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为( ) A .8B .62C .82D .8311.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1,A a ,()2,B b ,且2cos 23α=,则a b -=( ) A .15BCD .112.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB = ________.16.ABC △的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则ABC △的面积为________.三、解答题(共70分。
2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}02A=,,{}21012B=--,,,,,则A B=I()A.{}02,B.{}12,C.{}0D.{}21012--,,,,2.设121iz ii-=++,则z=()A.0 B.12C.1D3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆C:22214x ya+=的一个焦点为()2,0,则C的离心率()A.13B.12C D5.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A .122π B .12π C .82π D .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( )A .2y x =-B .y x =-C .2y x =D .y x =7.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =u u u r( )A .3144AB AC -u u ur u u u r B .1344AB AC -u u ur u u u r C .3144AB AC +u u ur u u u rD .1344AB AC +u u ur u u u r8.已知函数()222cos sin 2f x x x =-+,则( )A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .25C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为( ) A .8B .62C .82D .8311.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1,A a ,()2,B b ,且2cos 23α=,则a b -=( ) A .15BCD .112.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB = ________.16.ABC △的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则ABC △的面积为________.三、解答题(共70分。
2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知集合{}02A =,,{}21012B =--,,,,,则A B =I ( ) A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设121iz i i-=++,则z =( )A .0B .12C .1 D3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆C :22214x y a +=的一个焦点为()2,0,则C 的离心率( )A .13B .12C D5.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .B .12πC .D .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( )A .2y x =-B .y x =-C .2y x =D .y x =7.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =u u u r( )A .3144AB AC -u u ur u u u rB .1344AB AC -u u ur u u u rC .3144AB AC +u u ur u u u rD .1344AB AC +u u ur u u u r8.已知函数()222cos sin 2f x x x =-+,则( )A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .B .C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为( )A .8B .C .D .11.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1,A a ,()2,B b ,且2cos 23α=,则a b -=( )A .15B C D .112.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB = ________.16.ABC △的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则ABC △的面积为________.三、解答题(共70分。
****绝密★启用前2018 年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12 小题,每小题 5 分,共60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 A = {0,2} , B = { - 2,-1,0,1,2} , 则 A BA . {0,2}B . {1,2}C . {0}D . { 2, 1,0,1,2}1i2.设z,则 | z|2i1iA . 0B .1C .1D . 2 23.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半文科数学试题第 1 页(共9 页)----****224.已知椭圆x y(2,0) ,则 C 的离心率C:2 1 的一个焦点为为a42 D .2 2A .1B . 1C .32235.已知圆柱的上、下底面的中心分别为O1, O2,过直线O1 O2的平面截该圆柱所得的截面是面积为8 的正方形,则该圆柱的表面积为A . 12 2πB . 12 πC . 8 2 πD . 10π6.设函数32f (x)x(a 1)x ax .若 f ( x)为奇函数,则曲线y f (x) 在点(0,0)处的切线方程为A . y2xB .y xC . y 2 xD .y x7 .在△ ABC 中, AD 为 BC 边上的中线, E 为 AD 的中点,则EB311AB 3A .AB AC B .4AC44 41331C.AB AC D .AB AC4422448.已知函数 f (x)2cos x sin x 2 ,则A . f (x)的最小正周期为π,最大值为3B . f (x)的最小正周期为,最大值为4πC. f (x)的最小正周期为 2 π,最大值为3D. f (x)的最小正周期为 2 π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为 A ,圆柱表面上的点N 在左视图上的对应点为B,则在此圆柱侧面上,从M 到 N 的路径中,最短路径的长度为A . 217B . 25C. 3 D .210 .在长方体ABCD A1 B1 C1 D1中, AB BC 2 , AC 1与平面BB 1C1C 所成的角为30,则该长方体的体积为A . 8B . 6 2C . 8 2D . 8 311 .已知角的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A(1,a),B(2, b) ,且 cos22,则 | a b | 31B .5C .25D .A .5551文科数学试题第 2 页(共9 页)----****xx12 .设函数 f (x)2 , ≤ 0, 则满足 f ( x 1) f (2 x) 的 x 的取值范围是1,x0,A . (, 1] B . (0, ) C . ( 1,0) D . ( ,0)二、填空题:本题共 4 小题,每小题5 分,共 20 分。
绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{0,2}A =,{2,1,0,1,2}B =--,则A B =A .{0,2}B .{1,2}C .{0}D .{2,1,0,1,2}--2.设1i2i 1iz -=++,则||z = A .0B .12C .1D 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆22214x y C a +=:的一个焦点为(2,0),则C 的离心率为A .13B .12C D 5.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A .B .12πC .D .10π6.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =7.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC - B .1344AB AC - C .3144AB AC +D .1344AB AC + 8.已知函数22()2cos sin 2f x x x =-+,则 A .()f x 的最小正周期为π,最大值为3 B .()f x 的最小正周期为π,最大值为4 C .()f x 的最小正周期为2π,最大值为3 D .()f x 的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .B .C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为A .8B .C .D .11.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点(1,)A a ,(2,)B b ,且2cos23α=,则||a b -=A .15B C D .112.设函数2,0,()1,0,x x f x x -⎧=⎨>⎩≤ 则满足(1)(2)f x f x +<的x 的取值范围是A .(,1]-∞-B .(0,)+∞C .(1,0)-D .(,0)-∞二、填空题:本题共4小题,每小题5分,共20分。
2018年全国卷1文科数学高考卷word版(含答案)DA. 15B.5C.5D.112.设函数()2,01,0x x f x x -⎧≤=⎨>⎩,则满足()()12f x f x +<的x 的取值范围是( )A. ](,1-∞-B. ()0,+∞C. (1,0)-D. (,0)-∞二、填空题:本题共4小题,每小题5分,共20分。
13.已知函数()()22log f x x a =+,若()3f =1,则a=___________.14.若x 、y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为__________. 15.直线1y x =+与圆22230x y y ++-=交于A ,B 两点,则AB =_________16.⊿ABC 内角A,B,C 的对边分别为a,b,c,已知bsinC+csinB=4asinBsinC, 2228b c a +-=,则⊿ABC 的面积为_________.三 解答题:共70分.解答题应写出文字说明证明过程或不演算步骤.17~21题为必做题,每个试题考生必须作答.第22,23题为选考题,考生根据要求作答.17.(12分)已知数列{}n a 满足11a =,()121n n na n a +=+,设n n a b n=。
(1)求123,,b b b ;MABP QD C (2)判断数列{}n b 是否为等比数列,并说明理由;(3)求数列{}na 的通项公式。
18.如图,在平行四边形ABCM 中,AB=AC=3,∠ACM=900,以AC 为折痕将⊿ACM 折起,使点M 到达点D 的位置,且AB ⊥DA. (1) 证明:平面ACD ⊥平面ABC;(2) Q 为线段AD 上一点,P 为线段BC 上一点,且BP=DQ=23DA,求三棱锥Q —ABP 的体积.19.(12分)某家庭记录了末使用节水龙头50天的日用水量数据(单位:M 3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:末使用节水龙头50天的日用水量频数分布表使用节水龙头50天的日用水量频数分布表(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:0000000日用水0001111123332222(2)估计该家庭使用节水龙头后,日用水量小于0.35m 3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表)20.(12分)设抛物线C:y2=2x,点A(2,0),B(-2,0),过点A的直线l 与C交于M,N两点,(1)当l与x轴垂直时,求直线BM的方程:(2)求证;∠ABM=∠ABN21.(12分)已知函数f(x)=ae x-lnx-1(1)设x=2是函数f(x)的级值点,求a的值,并求f(x)的单调区间;(2)当a≥e-1时,f(x) ≥0.(二)选考题:共10分。
2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己の姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目の答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出の四个选项中,只有一项是符合题目要求の。
1.已知集合{}02A =,,{}21012B =--,,,,,则A B =I A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设1i2i 1iz -=++,则z = A .0B .12C .1D .23.某地区经过一年の新农村建设,农村の经济收入增加了一倍.实现翻番.为更好地了解该地区农村の经济收入变化情况,统计了该地区新农村建设前后农村の经济收入构成比例.得到如下饼图:则下面结论中不正确の是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入の总和超过了经济收入の一半4.已知椭圆C :22214x y a +=の一个焦点为(20),,则C の离心率为A .13B .12C .22D .2235.已知圆柱の上、下底面の中心分别为1O ,2O ,过直线12O O の平面截该圆柱所得の截面是面积为8の正方形,则该圆柱の表面积为 A .122πB .12πC .82πD .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处の切线方程为A .2y x =-B .y x =-C .2y x =D .y x =7.在△ABC 中,AD 为BC 边上の中线,E 为AD の中点,则EB =u u u rA .3144AB AC -u u ur u u u r B .1344AB AC -u u ur u u u r C .3144AB AC +u u ur u u u rD .1344AB AC +u u ur u u u r8.已知函数()222cos sin 2f x x x =-+,则 A .()f x の最小正周期为π,最大值为3 B .()f x の最小正周期为π,最大值为4 C .()f x の最小正周期为2π,最大值为3 D .()f x の最小正周期为2π,最大值为49.某圆柱の高为2,底面周长为16,其三视图如右图.圆柱表面上の点M 在正视图上の对应点为A ,圆柱表面上の点N 在左视图上の对应点为B ,则在此圆柱侧面上,从M 到N の路径中,最短路径の长度为 A .217 B .25 C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成の角为30︒,则该长方体の体积为 A .8B .62C .82D .8311.已知角αの顶点为坐标原点,始边与x 轴の非负半轴重合,终边上有两点()1A a ,,()2B b ,,且 2cos 23α=,则a b -=A .15BCD .112.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<のx の取值范围是A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+の最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.16.△ABC の内角A B C ,,の对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC の面积为________.三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=. (1)求123b b b ,,; (2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a の通项公式. 18.(12分)如图,在平行四边形ABCM 中,3AB AC ==,90ACM =︒∠,以AC 为折痕将△ACM 折起,使点M 到达点D の位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -の体积.19.(12分)某家庭记录了未使用节水龙头50天の日用水量数据(单位:m3)和使用了节水龙头50天の日用水量数据,得到频数分布表如下:未使用节水龙头50天の日用水量频数分布表日用水量[)00.1,[)0.10.2,[)0.20.3,[)0.30.4,[)0.40.5,[)0.50.6,[)0.60.7,频数 1 3 2 4 9 26 5使用了节水龙头50天の日用水量频数分布表日用水量[)00.1,[)0.10.2,[)0.20.3,[)0.30.4,[)0.40.5,[)0.50.6,频数 1 5 13 10 16 5 (1)在答题卡上作出使用了节水龙头50天の日用水量数据の频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35 m 3の概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中の数据以这组数据所在区间中点の值作代表.) 20.(12分)设抛物线22C y x =:,点()20A ,,()20B -,,过点A の直线l 与C 交于M ,N 两点. (1)当l 与x 轴垂直时,求直线BM の方程; (2)证明:ABM ABN =∠∠. 21.(12分)已知函数()e ln 1xf x a x =--.(1)设2x =是()f x の极值点.求a ,并求()f x の单调区间; (2)证明:当1ea ≥时,()0f x ≥.(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做の第一题计分。
22.[选修4—4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线1C の方程为2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C の极坐标方程为22cos 30ρρθ+-=. (1)求2C の直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C の方程. 23.[选修4—5:不等式选讲](10分)已知()11f x x ax =+--.(1)当1a =时,求不等式()1f x >の解集;(2)若()01x ∈,时不等式()f x x >成立,求a の取值范围.2018年普通高等学校招生全国统一考试文科数学试题参考答案一、选择题 1.A 2.C 3.A 4.C 5.B 6.D 7.A8.B9.B10.C11.B12.D二、填空题 13.-7 14.6 15.22 16.23三、解答题17.解:(1)由条件可得a n +1=2(1)n n a n+. 将n =1代入得,a 2=4a 1,而a 1=1,所以,a 2=4. 将n =2代入得,a 3=3a 2,所以,a 3=12. 从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2の等比数列. 由条件可得121n na a n n+=+,即b n +1=2b n ,又b 1=1,所以{b n }是首项为1,公比为2の等比数列. (3)由(2)可得12n n a n-=,所以a n =n ·2n -1.18.解:(1)由已知可得,BAC ∠=90°,BA AC ⊥.又BA ⊥AD ,所以AB ⊥平面ACD . 又AB ⊂平面ABC , 所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =32 又23BP DQ DA ==,所以22BP =作QE ⊥AC ,垂足为E ,则QE =P 13DC .由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q ABP -の体积为1111322sin 451332Q ABP ABP V QE S -=⨯⨯=⨯⨯⨯⨯︒=△.19.解:(1)(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35m 3の频率为 0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后日用水量小于0.35m 3の概率の估计值为0.48. (3)该家庭未使用节水龙头50天日用水量の平均数为11(0.0510.1530.2520.3540.4590.55260.655)0.4850x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=. 该家庭使用了节水龙头后50天日用水量の平均数为21(0.0510.1550.25130.35100.45160.555)0.3550x =⨯+⨯+⨯+⨯+⨯+⨯=.10 估计使用节水龙头后,一年可节省水3(0.480.35)36547.45(m )-⨯=.20.解:(1)当l 与x 轴垂直时,l の方程为x =2,可得M の坐标为(2,2)或(2,–2).所以直线BM の方程为y =112x +或112y x =--.(2)当l 与x 轴垂直时,AB 为MN の垂直平分线,所以∠ABM =∠ABN .当l 与x 轴不垂直时,设l の方程为(2)(0)y k x k =-≠,M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0.由2(2)2y k x y x=-⎧⎨=⎩,得ky 2–2y –4k =0,可知y 1+y 2=2k ,y 1y 2=–4.直线BM ,BN の斜率之和为 1221121212122()22(2)(2)BM BN y y x y x y y y k k x x x x ++++=+=++++.① 将112y x k =+,222yx k=+及y 1+y 2,y 1y 2の表达式代入①式分子,可得 121221121224()882()0y y k y y x y x y y y k k++-++++===.所以k BM +k BN =0,可知BM ,BN の倾斜角互补,所以∠ABM +∠ABN . 综上,∠ABM =∠ABN .21.解:(1)f (x )の定义域为(0)+∞,,f ′(x )=a e x –1x. 由题设知,f ′(2)=0,所以a =212e . 从而f (x )=21e ln 12e x x --,f ′(x )=211e 2e x x-. 当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )在(0,2)单调递减,在(2,+∞)单调递增.(2)当a ≥1e 时,f (x )≥e ln 1e xx --.设g (x )=e ln 1e x x --,则e 1()e x g x x'=-.当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0.所以x =1是g (x )の最小值点. 故当x >0时,g (x )≥g (1)=0.因此,当1ea ≥时,()0f x ≥.22.[选修4-4:坐标系与参数方程](10分)解:(1)由cos x ρθ=,sin y ρθ=得2C の直角坐标方程为 22(1)4x y ++=.(2)由(1)知2C 是圆心为(1,0)A -,半径为2の圆.由题设知,1C 是过点(0,2)B 且关于y 轴对称の两条射线.记y 轴右边の射线为1l ,y 轴左边の射线为2l .由于B 在圆2C の外面,故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两个公共点.当1l 与2C 只有一个公共点时,A 到1l 所在直线の距离为22=,故43k =-或0k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点.当2l 与2C 只有一个公共点时,A 到2l 所在直线の距离为22=,故0k =或43k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =时,2l 与2C 没有公共点. .综上,所求1C の方程为4||23y x =-+.23.[选修4-5:不等式选讲](10分)解:(1)当1a =时,()|1||1|f x x x =+--,即2,1,()2,11,2, 1.x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩故不等式()1f x >の解集为1{|}2x x >.(2)当(0,1)x ∈时|1||1|x ax x +-->成立等价于当(0,1)x ∈时|1|1ax -<成立. 若0a ≤,则当(0,1)x ∈时|1|1ax -≥; 若0a >,|1|1ax -<の解集为20x a <<,所以21a≥,故02a <≤. 综上,a の取值范围为(0,2].。