原油列管式换热器设计书
- 格式:doc
- 大小:676.07 KB
- 文档页数:26
摘要:列管式换热器属于间壁式换热器,冷热流体通过换热管壁进行热量的交换。
参照任务书的任务量,需设计年冷却15000吨乙醇的列管式换热器,设计时先确定流体流程,壳程走乙醇,其进、出口温度都为80℃,相变放出潜热,井水走管程冷却乙醇,进口温度为32℃,出口温度为40℃。
再进行热量衡算、传热系数校核,初选冷凝器的型号,然后通过进行设备强度校核等一系列的计算和选型,最终确定的设计方案为固定管板式换热器,所选用型号为BEM400-2.5-30-9/25-2 Ⅰ,换热器壳径为400mm,总换热面积为27.79m2,管程为2,管子总根数为60,管长6000 mm,管束为正三角排列,两端封头选取标准椭圆封头。
关键词:列管式换热器,乙醇,水,温度,固定管板式。
Abstract:The tube type heat exchanger is a dividing wall type heat exchanger, fluids with different temperatures exchange heat by means of tube wall’s heat transfer.According to the assignment, A tube type heat exchanger which has a process capacity of .⨯41510t/a is needed. The ethanol flow in the shell,the temperature in the entrance and exits is 80℃.The water which cool the ethanol flow in tubes, the inlet and outlet temperatures are 32℃and 40℃.Then by taking series calculating to confirm the module of the heat exchanger . After the design of intensity designing and a series calculating and choosing , the last result of our design is the fasten-board heat exchanger. The style of the heat exchangeis9BEM400 2.530 225Ⅰ----, and the diameter of the receiver is400mm ,The area of the heat exchange is 27.79 m2, The heat-exchanger in cludes two tube passes,one shell passes and 60 tubes.And the length of tubes is 6000mm . Tubes are ranked of the shape of triangle ,the envelops are oval-shaped.目录1前言 (3)2设计条件 (3)3设计方案的确定 (3)3.1设计原则 (3)3.2结构初选 (4)4列管式换热器的设计计算 (10)4.1列管式换热器型号的初选 (10)4.2核算总传热系数: (13)5列管式换热器的初步计算及选型 (15)5.1试算并初选换热器规格 (15)5.2设计校核 (19)6设备尺寸的确定及强度校核 (22)6.1计算圆筒厚度 (22)6.2封头设计 (23)6.3拉杆定距管尺寸 (24)6.4管板 (25)6.5容器法兰 (26)6.6接管与接管补强 (27)6.7管箱的计算 (33)6.8折流挡板 (33)6.9焊接方式 (34)6.10支座 (34)6.11辅助设备 (38)7设计结果概要 (39)8课程设计心得 (40)9参考文献 (42)1前言艰辛知人生,实践长才干。
列管式换热器课程设计第1章⼯艺流程1.1 ARGG装置ARGG装置包括反应-再⽣、分馏、吸收塔、⽓压机、能量回收及余热锅炉、产品精制⼏部分租成,ARGG⼯艺以常压渣油等重油质油为原料,采⽤重油转化和抗⾦属能⼒强,选择性好的ARG催化剂,以⽣产富含丙烯、异丁烯、异丁烷的液化⽓、并⽣产⾼⾟烷只汽油。
1.2⼯艺原理1.2.1催化裂化部分催化裂化是炼油⼯业中最重要的⼆次加⼯过程,是重油轻质化的重要⼿段。
它是使原料油在适宜的温度、压⼒和催化剂存在的条件下,进⾏分解、异构化、氢转移、芳构化、缩和等⼀系列化学反应,原料油转化为⽓体、汽油、柴油等主要产品及油浆、焦炭的⽣产过程。
催化裂化的原料油来源⼴泛,主要是常减压的馏分油、常压渣油、减压渣油及丙烷脱沥青油、蜡膏、蜡下油等。
随着⽯油资源的短缺和原油的⽇趋变重,重油催化裂化有了较快发展,处理的原料可以是全常渣甚⾄是全减渣。
在硫含量较⾼时,则需⽤加氢脱硫装置进⾏处理,提供催化原料。
催化裂化过程具有轻质油收率⾼、汽油⾟烷值较⾼、⽓体产品中烯烃含量⾼等特点。
催化裂化⽣产过程的主要产品是⽓体、汽油和柴油,其中⽓体产品包括⼲⽓和液化⽯油⽓,⼲⽓作为本装置燃料⽓烧掉,液化⽯油⽓是宝贵的⽯油化⼯原料和民⽤燃料。
催化裂化的⽣产过程包括以下⼏个部分:反应再⽣部分:其主要任务是完成原料油的转化。
原料油通过反应器与催化剂接粗并反应,不断输出反应物,催化剂则在反应器和再⽣器之间不断循环,在再⽣器中通⼊空⽓烧去催化剂上的积灰,恢复催化剂的活性,使催化剂能够循环使⽤。
烧焦放出的热量⼜以催化剂为载体,不断带回反应器,供给反应所需的热量,过剩的热量由专门的取热设施取出并加以利⽤。
分馏部分:主要任务根据反应油⽓中各组分沸点的不同,将他们分离成富⽓、粗油⽓、轻柴油、回炼油、油浆,并保证油⽓⼲点、轻柴油的凝固点和闪点合格。
吸收稳定部分:利⽤各组分之间在液体中溶解度的不同把富⽓和粗油⽓分离成⼲⽓、液化⽓、稳定汽油。
化工原理课程设计题目:原油加热器——固定式换热器指导教师: 李先生院士职称: 国家特级院士班级: 高分子材料与工程系学号: 学生姓名:目录一.绪论 (3)二、设计条件及主要物性参数 (4)1、设计条件 (4)2、定性温度的确定 (4)三. 确定设计方案 (5)1、选择换热器的类型 (5)2、流程安排 (5)四.估算传热面积 (5)1、热流量 (5)2、平均传热温差 (5)3、传热面积 (5)五.工程结构尺寸 (6)1、管径和管内流速 (6)2、管程数和传热管数 (6)3、平均传热温差校正及壳数 (6)4、传热管的排列和分程方法. (7)5、折流板 (7)6、接管 (7)六、换热器核算 (8)1、壳程传热系数 (8)2、管程传热系数 (8)3、污垢热阻和管壁热阻 (9)4、总传热系数K (10)5、传热面积裕度 (10)7、管程流动阻力 (11)8、壳程流动阻力 (11)七、设计计算结果汇总 (12)一、绪论1.加热器简介1.1.固定管板式固定管板式换热器的两端管板和壳体制成一体,当两流体的温度差较大时,在外壳的适当位置上焊上一个补偿圈(或膨胀节)。
当壳体和管束热膨胀不同时,补偿圈发生缓慢的弹性变形来补偿因温差应力引起的热膨胀。
特点:结构简单,造价低廉,壳程清洗和检修困难,壳程必须是洁净不易结垢的物料。
1.2.U形管式U形管式换热器每根管子均弯成U形,流体进、出口分别安装在同一端的两侧,封头内用隔板分成两室,每根管子可自由伸缩,来解决热补偿问题。
特点:结构简单,质量轻,适用于高温和高压的场合。
管程清洗困难,管程流体必须是洁净和不易结垢的物料。
1.3.浮头式换热器两端的管板,一端不与壳体相连,该端称浮头。
管子受热时,管束连同浮头可以沿轴向自由伸缩,完全消除了温差应力。
特点:结构复杂、造价高,便于清洗和检修,完全消除温差应力,应用普遍。
本实验采用的是浮头式加热器,包括输油管,输油管上套有密闭的外壳,外壳的一段管道上设有加热体,该加热体用固定卡固定在外壳表面上,所述外壳的外表面上包覆有保温层。
化工原理课程设计---列管式换热器的设计列管式换热器是一种常用的换热器类型,其结构简单、传热效率高、维修方便等优点使其在工业生产中得到广泛应用。
该换热器由多个平行排列的管子组成,热流体和冷流体分别流过管内外,通过管壁传递热量,实现热量交换。
根据不同的流体流动方式,列管式换热器又可分为纵向流式和横向流式两种形式。
其中,横向流式换热器传热效率更高,但结构较为复杂,维修难度较大,因此在实际应用中需要根据具体情况进行选择。
浮头式换热器的特点是管板和壳体之间没有固定连接,只有一个浮头,管束和浮头相连。
浮头可以在壳体内自由移动,以适应管子和壳体的热膨胀。
这种结构适用于温差较大或壳程压力较高的情况。
但是,由于管束和浮头的连接是松散的,因此需要注意防止泄漏。
U型管式换热器:U型管式换热器的管子呈U形,两端分别焊接在管板上,形成一个U型管束。
壳体内的流体从一端进入,从另一端流出,管内的流体也是如此。
这种结构适用于流体腐蚀性较强的情况,因为管子可以很容易地更换。
多管程换热器:多管程换热器是将管束分成多个组,每组管子单独连接到管板上,形成多个管程。
这种结构可以提高传热效率,但也会增加流体阻力。
因此,需要根据具体情况来选择多管程的数量。
总之,列管式换热器是一种广泛应用于化工及酒精生产的换热器。
不同的结构适用于不同的工艺条件,需要根据具体情况来选择合适的换热器。
在使用过程中,需要注意保养和维护,及时清洗和更换损坏的部件,以保证换热器的正常运行。
换热器的一块管板与外壳用法兰连接,另一块管板不与外壳连接,这种结构称为浮头式换热器。
浮头式换热器的优点是管束可以拉出以便清洗,管束的膨胀不受壳体约束,因此在两种介质温差大的情况下,不会因管束与壳体的热膨胀量不同而产生温差应力。
但其缺点是结构复杂,造价高。
填料式换热器的管束一端可以自由膨胀,结构比浮头式简单,造价也较低。
但壳程内介质有外漏的可能,因此不应处理易挥发、易燃、易爆和有毒的介质。
列管式换热器设计任务书列管式换热器设计任务书一、设计题目: 1,换热器设计二、设计任务及操作条件 1、设计任务:生产能力〔进料量〕 (110000+学号后三位×1000) Kg/h 2、操作条件甲苯的压力: 6.9MPa,进口110℃,出口60℃循环冷却水的压力:0.4MPa 进口?℃,出口?℃ 3、设备型式自选4.物性参数按任务书要求自查三、设计内容:1、设计方案的选择及流程说明选择什么样的换热器,以流程等作必要交代 2、工艺计算确定物性数据,传热面积的估算 3、主要设备工艺尺寸设计〔1〕冷凝器结构尺寸确实定〔2〕传热面积、两侧流体压降校核〔3〕接管尺寸确实定等 6、换热器设备图〔A3〕和说明书四、参考设计计算程序:1.根据条件确定管程和壳程的物体流速,进出口的温度条件;根据两侧流体的温度条件,确定两流体在该换热器中定性温度的物性值。
物性值包括密度、比热、粘度,并计算该换热器的传热量。
2.确定换热器的平均温度差?t,?tm及温差修正系数。
3.假定总传热系数K或壳程的传热系数?04.计算传热面积5.根据工艺选择管径的尺寸,选择管程数和壳程数,确定管程和壳程数,校正 1温度差系数〔必须大于 >0.8〕,否那么返回第二步〔修改良出水温度〕。
如果满足那么计算换热器所需的管数。
按排列等计算壳径。
6.分别计算管程和壳程的传热系数,根据两物体的污垢系数计算K计,如果小于第三步假设值,按K计返回第三部〔重新假设K值〕,如果满足那么进行下一步。
也可算出实际传热面积,实际面积/理论面积应的允许范围内〔范围自查〕 7.计算管程和壳程两侧的压力降,如果满足工艺条件那么结束。
如管程压降偏大可减少管数,壳程压降偏大,可调整折流板的距离,返回第五重新计算。
参考书:1.中国石化集团上海工程.化学工艺设计手册,上,第三版.北京:化学工业出版社,20032.化工机械手册编辑委员会.化工机械手册.天津:天津大学出版社,19923.王静康.化工过程设计,第二版.北京:化学工业出版社,20224.柴诚敬等.化工原理课程设计. 天津:天津大学出版社,20225.杨祖荣等.化工原理.北京:化学工业出版社,2022换热器主要结构尺寸和计算结果见下表:参数管程流率进/出口温度/℃压力/MPa 物定性温度/℃性密度/〔kg/m3〕定压比热容/[kj/〔kg?k〕] 粘度/〔Pa?s〕热导率〔W/m?k〕普朗特数设形式备壳体内径/㎜结管径/㎜构参管长/㎜数管数目/根传热面积/㎡管程数主要计算结果流速/〔m/s〕外表传热系数/[W/〔㎡?k〕] 污垢热阻/〔㎡?k/W〕管程壳程壳程数台数管心距/㎜管子排列折流板数/个折流板间距/㎜材质壳程碳钢 23。
列管换热器设计手册Designing a shell and tube heat exchanger requires careful consideration of several factors. This type of heat exchanger is commonly used in various industries for transferring heat between two fluids. In the design process, engineers must take into account the physical properties of the fluids, the operating conditions, andthe desired heat transfer rate. It is essential to ensure proper sizing, material selection, and overall efficiency of the heat exchanger.设计壳和管换热器需要仔细考虑几个因素。
这种换热器通常用于各种工业中,在两种流体之间传递热量。
在设计过程中,工程师必须考虑流体的物理特性、操作条件和所需的传热速率。
确保换热器适当尺寸、材料选择和整体效率是至关重要的。
The first step in designing a shell and tube heat exchanger is to determine the heat duty, which is the amount of heat that needs to be transferred between the two fluids. This can be calculated based on the flow rates, temperature differentials, and specific heat capacities of the fluids. Once the heat duty is known, engineers can proceed to sizing the heat exchanger by selecting the appropriatenumber of tubes, tube diameter, and tube length to meet the heat transfer requirements.设计壳和管换热器的第一步是确定热负荷,即需要在两种流体之间传递的热量。
第一章列管式换热器的设计1.1概述列管式换热器是一种较早发展起来的型式,设计资料和数据比较完善,目前在许多国家中已有系列化标准。
列管式换热器在换热效率,紧凑性和金属消耗量等方面不及其他新型换热器,但是它具有结构牢固,适应性大,材料范围广泛等独特优点,因而在各种换热器的竞争发展中得以继续应用下去。
目前仍是化工、石油和石油化工中换热器的主要类型,在高温高压和大型换热器中,仍占绝对优势。
例如在炼油厂中作为加热或冷却用的换热器、蒸馏操作中蒸馏釜(或再沸器)和冷凝器、化工厂中蒸发设备的加热室等,大都采用列管式换热器[3]。
1.2列管换热器型式的选择列管式换热器种类很多,目前广泛使用的按其温度差补偿结构来分,主要有以下几种:(1)固定管板式换热器:这类换热器的结构比较简单、紧凑,造价便宜,但管外不能机械清洗。
此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。
通常在管外装置一系列垂直于管束的挡板。
同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。
因此,当管壁与壳壁温度相差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以致管子扭弯或使管子从管板上松脱,甚至毁坏整个换热器。
为了克服温差应力必须有温度补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。
(2)浮头换热器:换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以便管子受热或冷却时可以自由伸缩,但在这块管板上来连接有一个顶盖,称之为“浮头”,所以这种换热器叫做浮头式换热器。
这种型式的优点为:管束可以拉出,以便清洗;管束的膨胀不受壳体的约束,因而当两种换热介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。
其缺点为结构复杂,造价高。
(3)填料函式换热器:这类换热器管束一端可以自由膨胀,结构与比浮头式简单,造价也比浮头式低。
但壳程内介质有外漏的可能,壳程终不应处理易挥发、易爆、易燃和有毒的介质。
*目录*课程设计任务书*设计方案论证*选取数据论证*工艺设计计算*设计结果汇总*设计评述及设计者对本设计有关问题的讨论*参考文献化工原理课程设计任务书一、课程设计的拟题列管式换热器系列标准化选型课程设计设计题目某厂用原油回收柴油的热量,柴油从175℃冷却至130℃,柴油流量为14300 kg/h;原油初温为70℃,经换热后升温到110℃。
换热器的热损失可忽略。
管、壳程阻力压降均不大于105Pa。
污垢热阻均取0.0002㎡·℃/W。
试选用一台合适型号的列管式换热器。
相关物性参数如下:物料密度Kg/m3粘度Pa.s比热容kJ/(kg. ℃)λ导热系数W/(m. ℃)原油815 3×10-3 2.2 0.128 柴油715 0.64×10-3 2.48 0.133二、课程设计的目的和意义列管式换热器系列标准化选型课程设计是在学生学完本门课程以后进行的一个具有总结性的教学环节。
它是培养学生综合运用本门课程和其他有关课程的理论和技术知识解决工程实际问题,树立正确的设计思想和方法,进一步提高计算和使用技术资料能力的重要实践。
通过课程设计,可使学生更为系统和巩固地掌握本课程的主要内容,使学生初步学会设计计算的步骤和方法,培养学生能从理论上的正确性、技术上的可能性和经济上的合理性、来考虑设计的内容,树立正确的设计思想,从而使学生受到一次化工单元操作设计的基本训练,为以后的毕业设计和从事技术工作打下基础。
三、课程设计的要求课程设计的主要目的是通过学生自己动手进行设计的实践,获取从事工程设计工作的能力。
因此,对设计成果的要求应该严格。
课程设计不同于做习题,它是学生在教师的指导下独立地完成一个课题的设计。
它包括查阅资料、选用公式、搜集数据并进行一系列的计算,对设计参数的选择和确定、提出保证过程正常进行的措施、对设计结果进行分析比较和论证、调整和修改有关参数、提出改进措施等,进而得到优化的设计结果。
摘要在不同温度的流体间传递热能的装置成为热交换器,简称为换热器。
在化工、石油、动力、制冷、食品等行业中广泛使用各种换热器,且它们是上述这些行业的通用设备,并占有十分重要的地位。
随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强。
随着换热器在工业生产中的地位和作用不同,换热器的类型也多种多样,不用类型的换热器各有优缺点,性能各异。
在换热器设计中,首先应根据工艺要求选择适用的类型,然后计算,并确定换热器的结构尺寸、材料。
列管式换热器是目前化工及酒精生产上应用最广的一种换热器。
它主要由壳体、管板、换热管、封头、折流挡板等组成。
所需材质,可分别采用普通碳钢、紫铜、或不锈钢制作。
在进行换热时,一种流体由封头的连结管处进入,在管流动,从封头另一端的出口管流出,这称之管程;另-种流体由壳体的接管进入,从壳体上的另一接管处流出,这称为壳程列管式换热器。
关键词:温度传热面积结构尺寸材料1.前言1.1列管式换热器设计的意义换热器是建筑采热取暖生产中必不可少的设备,近几年由于新技术的发展,各种类型的换热器越来越受工业界的重视,而换热器又是节能措施中较为关键的设备,广泛应用于化工、医药、食品饮料、酒精生产、制冷、民用等工艺;因此,无论是从工业的发展还是从能源的有效利用,换热器的合理设计、制造、选型和运行都具有非常重要的意义。
1.2列管式换热器的工作原理进行换热的冷热两种流体,一种在管内流动,称为管程流体;另一种在管外流动,称为壳程流体。
为提高管外流体的传热分系数,通常在壳体内安装若干挡板。
挡板可提高壳程流体速度,迫使流体ﻫ按规定路程多次横向通过管束,增强流体湍流程度。
换热管在管板上按等边三角形或正方形排列。
等边三角形排列较紧凑,管外流体湍动程度高,传热分系数大;正方形排列则管外清洗方便,适用于易ﻫ结垢的流体。
ﻫ流体每通过管束一次称为一个管程;每通过壳体一次称为一个壳程。
按换热方式可分为单壳程单管程换热器、双管程、多管程、多壳程换热器。
水冷却油无相变列管式换热器设计书1.设计原则完善的换热器在设计或选型时应满足以下各项基本要求。
合理地实现所规定的工艺条件传热量、流体的热力学参数(温度、压力、流量、相态等)与物理化学性质(密度、粘度、腐蚀性等)是工艺过程所规定的条件。
设计者应根据这些条件进行热力学和流体力学的计算,经过反复比较,使所设计的换热器具有尽可能小的传热面积,在单位时间传递尽可能多的热量。
其具体做法如下。
增大传热系数在综合考虑流体阻力及不发生流体诱发振动的前提下,尽量选择高的流速。
提高平均温差对于无相变的流体,尽量采用接近逆流的传热方式。
因为这样不仅可提高平均温差,还有助于减少结构中的温差应力。
在允许的条件时,可提高热流体的进口温度或降低冷流体的进口温度。
妥善布置传热面例如在管壳式换热器中,采用合适的管间距或排列方式,不仅可以加大单位空间的传热面积,还可以改善流体的流动特性。
错列管束的传热方式比并列管束的好。
如果换热器中的一侧有相变,另一侧流体为气相,可在气相一侧的传热面上加翅片以增大传热面积,更有利于热量的传递。
1.安全可靠换热器是压力容器,在进行强度、刚度、温差应力以及疲劳寿命计算时,应遵照我国《钢制石油化工压力容器设计规定》与《钢制管壳式换热器设计规定》等有关规定与标准。
这对保证设备的安全可靠起着重要的作用。
2.有利于安装、操作与维修直立设备的安装费往往低于水平或倾斜的设备。
设备与部件应便于运输与装拆,在厂房移动时不会受到楼梯、梁、柱的妨碍,根据需要可添置气、液排放口,检查孔与敷设保温层。
3. 经济合理评价换热器的最终指标是:在一定的时间(通常为1年)固定费用(设备的购置费、安装费等)与操作费(动力费、清洗费、维修费等)的总和为最小。
在设计或选型时,如果有几种换热器都能完成生产任务的需要,这一指标尤为重要。
动力消耗与流速的平方成正比,而流速的提高又有利于传热,因此存在一最适宜的流速。
传热面上垢层的产生和增厚,使传热系数不断降低,传热量随之而减少,故有必要停止操作进行清洗。
化工原理化工设备课程设计任务书设计题目:年处理2.4万吨的列管式换热器学生姓名:***专业班级:环境工程10级4班学号: 1 0 0 7 0 4 0 0 1指导教师:徐慎颖、张燕宜宾学院化学与化工学院2011年12月13 日列管式换热器设计任务书一、设计目的培养学生综合运用本门课程及有关选修课程基础理论和基本知识去完成换热单元操作设备设计任务的实践能力二、设计目标设计的设备必须在技术上是可行的,经济上是合理的,操作上是安全的,环境上是友好的三、设计题目列管式换热器设计四、设计任务及操作条件1. 设计任务设备型式:列管式处理任务:如下表所示:2. 操作条件(1)热流体:入口温度140℃; 出口温度40℃ (2)冷却介质:岷江水 (3)允许压降:不大于0.1MPa (4)物性数据原油定性温度下的物性数据()()C m W C kg kJ c sPa m kg o o opo o o ⋅=⋅=⋅⨯==-/128.0/2.2100.3/81533λμρ导热系数定压比热容粘度密度五、设计内容1. 设计方案的选择2. 设计计算(1)计算总传热系数(2)计算传热面积3. 主要设备工艺尺寸设计(1)管径尺寸和管内流速的确定(2)传热面积、管程数、管数和壳程数的确定4. 换热器核算5. 设计结果汇总6. 绘制换热器简图目录第一章概述 (1)1.1换热器的简单介绍 (1)1.2本设计的目的和意义 (1)第二章设计计算 (2)2.1确定设计方案 (2)2.2确定物性数据 ................................................ 错误!未定义书签。
2.3计算总传热系数 (3)2.4计算传热面积 ................................................ 错误!未定义书签。
2.5工艺结构尺寸 (8)2.6换热器核算 (8)设计图纸(附图纸) ................................................ 错误!未定义书签。
参考文献 (18)评语及成绩 (20)第一章概述1.1换热器的简单介绍在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。
化工生产中换热器的使用十分普遍,由于物料的性质、歘热要求各不相同,换热器的种类很多。
了解各种换热器的特点,根据工艺要求正确选用适当类型的换热器是非常重要的。
按照热量交换的方法不同,分为间壁式换热器、直接接触式换热器、蓄热式换热器式换热器三种。
化工生产中绝大多数情况下不允许冷、热两流体在传热过程中发生混合,所以,间壁式换热器的应用最广泛。
在换热器中至少要有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体温度较低,吸收热量。
换热器在化工、石油、动力、制冷、食品等行业中都有广泛应用,且它们是上述这些行业的通用设备,并占有十分重要的地位。
1.2本设计的目的和意义通过本次课程设计,培养学生多方位、综合地分析考察工程问题并独立解决工程实际问题的能力。
主要体现在以下几个方面:(1)资料、文献、数据的查阅、收集、整理和分析能力。
要科学、合理、有创新地完成一项工程设计,往往需要各种数据和相关资料。
因此,资料、文献和数据的查找、收集是工程设计必不可少的基础工作。
(2)工程的设计计算能力和综合评价的能力。
为了使设计合理要进行大量的工艺计算和设备设计计算。
本设计包括热工计算和冷却器设备的结构计算。
(3)工程设计表达能力。
工程设计完成后,往往要交付他人实施或与他人交流,因此,在工程设计和完成过程中,都必须将设计理念、理想、设计过程和结果用文字、图纸和表格的形式表达出来。
只有完整、流畅、正确地表达出来的工程设计的内容,才可能被他人理解、接受,顺利付诸实施。
通过本设计不仅可以进一步巩固学生所学的相关啊知识,提高学生学以致用的综合能力,尤其对传热学、流体力学等课程更加熟悉,同时还可以培养学生尊重科学、注重实践和学习严禁、作风踏实的品格。
第二章 设计计算2.1确定设计方案1.选择换热器的类型两流体温度变化情况:热流体进口温度140℃,出口温度40℃;冷流体进口温度20℃,出口35℃。
该换热器用岷江水冷却,冬季操作时进口温度会降低,考虑到这一因素,估计该换热器的管壁温和壳体壁温之差较大,因此初步确定选用带膨胀节的固定管板式换热器。
2.流动空间及流速的确定由于冷却水较易结垢,为便于水垢清洗,应使循环水走管程,原油走壳程。
选用φ25×2.5的碳钢管,管内流速取0.5/i u m s =。
2.2确定物性数据(1)热流体:入口温度140℃; 出口温度40℃ (2)冷却介质:岷江水 (3)允许压降:不大于0.1MPa (4)年处理量:3.6万吨(5)定性温度:可取流体进出口温度的平均值。
壳程原油的定性温度为1404090()2o T C +== 管程流体的定性温度为 203527.5()2o t C +== 根据定性温度,分别查取壳程和管程流体的有关物性数据。
原油在90℃下的有关物性数据如下:()()3321815/3.0102.2/0.128/0.000444m W o o o po o o o kg m Pa sc kJ kg C W m C C ρμλ--==⨯⋅=⋅=⋅⋅⋅密度粘度定压比热容导热系数污垢热阻水在27,5℃下的有关物性数据如下:34i i 21996.38kg /8.623104.177/()0.612/()0.000344m i p i m Pa sC kJ kg C W m C C W ρμλ--︒-==⨯⋅=⋅=⋅⋅⋅密度粘度定压比热容导热系数污垢热阻2.3计算总传热系数 1.热流量702.4102739.73/36524m q kg h ⨯==⨯; 30002739.733.36/815m v q q m h ρ===()5500002739.73 2.214040 6.0810/ 1.6910p Q m c t kg h w =∆=⨯⨯-=⨯=⨯2.平均传热温差及其校正()()()()'121214035402051.2614035ln ln 4020mt t t Ct t ---∆-∆∆===∆-∆-12212111140406.67352035200.12514020T T R t t t t P T t --===----==--初步决定采用单壳程、偶数管程的管板式换热器,由R 和P 查温差校正系数图,温差校正系数为0.94t Φ∆=,可行。
'0.9451.2648.1844m t m t t ∆∆=Φ⨯∆=⨯= 3.冷却水用量50 1.69109703.93(/)4.177(3520)i pi i Q w kg h c t ⨯===∆⨯-4.总传热系数K 管程传热系数0.40.80.430.820.020.5996.38Re 11554.910.00086230.023Re 0.612 4.177100.00086230.02311554.912544.32/()0.020.612i i iipi i i i i i d u c d W m C ρμμλαλ⨯⨯===⎛⎫= ⎪⎝⎭⎛⎫⨯⨯=⨯⨯⨯=⋅ ⎪⎝⎭壳程传热系数假设壳程的传热系数()20290/W m C α=⋅ 污垢热阻20.000344si R m =⋅℃/W 200.000444m S R =⋅℃/W 管壁的导热系数45/()W m λ=⋅℃ 0000011si s i i i i K d d bd R R d d d αλα=++++()21205.11/0.0250.0250.00250.02510.0003440.0004442544.320.020.02450.02290W m C ==⋅⨯+⨯+++⨯⨯2.4计算传热面积52'1.6910'17.01205.1148.1844m Q S m K t ⨯===∆⨯ 考虑15%的面积裕度,21.15' 1.1517.0119.57S S m ==⨯=2.5工艺结构尺寸 1.管径和管内流速选用φ25×2.5传热管(碳钢),取管内流速0.5/i u m s = 2.管程数和传热管数依据传热管内径和流速确定单程传热管数 ()()229703.93/996.38360017.23180.020.544i iVn d u ππ⨯===≈⨯⨯根按单程管计算,所需的传热管长度为 019.5713.85d 3.140.02518S L m n π===⨯⨯ 按单管程设计,传热管过长,宜采用多管程结构。
现取传热管长l=6m ,则该换热器管程数为 ()13.8526p L N l ==≈管程 根据初步计算结果:传热面积19.572m ,总管数36根,2管程,管长6m ,(查《化工设备设计手册》表9-3)。
初选管板式换热器型号为BEM-325-1.6-25.9-6/25-2I 。
该管板式壳体直径325mm ,换热面积25.92m ,公称压力1.6MPa ,总管数56,2管程,每管程的管子数为28根。
3.传热管排列和分程方法采用正三角形排列。
管孔加工两端必须倒角0.5⨯45 。
取管心距01.25t d =,则1.252531.2532()t mm =⨯=≈ 横过管束中心线的管数()18c n =≈根 4.壳体内径采用多管程结构,取管板利用率η=0.7,则壳体内径为1.05240.96D mm ==⨯=圆整可取D=325mm 。
所以壳体的壁厚为6mm 。
(《化工单元设备设计》表1—8) 6.接管法兰选用甲型平焊法兰,JB/T 4701-2000(《化工设备机械基础》表12-2)。
7.管箱、管箱支座和管箱垫片管箱的分程隔板厚度为12mm 。
支座采用固定型和滑动型鞍式支座各一个,按JB1167-81鞍式支座的B 型带垫板,高度为200mm 的尺寸选取。
位置尺寸为两支座间距离为换热管束长度的0.6倍,且与两端相等。
耐油橡胶石棉板(GB 151-1999 附录 H )。
垫片厚度,本设计确定为3mm ,隔板槽部分垫片厚度取10mm ,圆角尺寸取R=8mm 。
8.换热管和管板换热管材料选择碳钢,规格25mm ⨯2.5mm ,外径公差mm 20.0±上偏差+12%,下偏差-10%(《化工设备设计手册》表9-15)。
管板与法兰连接密封面为凸面,分程隔板槽拐角处倒角10⨯45 ,隔板槽宽度为12mm ,管板与换热器连接处采用胀接。
9.折流板采用弓形折流板,取弓形折流板圆缺高度为壳体内径的25%,则却去的圆整高度为h=0.25×325=81.25(mm ),故取h=80mm 。