初中九年级上学期数学期中考试试卷
- 格式:pdf
- 大小:431.74 KB
- 文档页数:4
人教版九年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案)1.观察下列图案,既是轴对称图形又是中心对称图形的是()A .B .C .D .2.如图,∠1=∠2,则下列各式不能说明△ABC ∽△ADE 的是()A .∠D =∠B B .∠E =∠C C .AD AE AB AC =D .AD DE AB BC=3.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C ∆相似的是()A .B .C .D .4.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,∠BOC =100°,AD ∥OC ,则∠AOD =()A .20°B .60°C .50°D .40°5.如图,在Rt △ABC 中,∠ACB =Rt ∠,CD ⊥AB ,D 为垂足,且AD =3,AC =,则斜边AB 的长为()A .6B .15C .5D .56.如图,若将△ABC 绕点C 顺时针旋转90°后得到△A ′B ′C ′,则A 点的对应点A ′的坐标是()A .(﹣3,﹣2)B .(2,2)C .(3,0)D .(2,1)7.下列方程中,一元二次方程有()①3x 2+x =20;②2x 2﹣3xy +4=0;③214x x -=;④x 2=1;⑤2303x x -+=A .2个B .3个C .4个D .5个8.已知二次函数y =kx 2-7x-7的图象与x 轴没有交点,则k 的取值范围为()A .k >74-B .k≥74-且k≠0C .k <74-D .k >74-且k≠09.二次函数2y 2x 13=--+()的图象的顶点坐标是()A .(1,3)B .(,3)C .(1,)D .(,)10.将抛物线y=3x 2向左平移2个单位,再向下平移1个单位,所得抛物线为()A .y=3(x+2)2﹣1B .y=3(x ﹣2)2+1C .y=3(x ﹣2)2﹣1D .y=3(x+2)2+1二、填空题11.已知方程ax 2+7x ﹣2=0的一个根是﹣2,则a 的值是_____.12.在平面直角坐标系中,点P (﹣20,a )与点Q (b ,13)关于原点对称,则a +b 的值为_____.13.如图,D 是等腰直角三角形ABC 内一点,BC 是斜边,如果将△ABD 绕点A 按逆时针方向旋转到△ACD ′的位置,则∠DAD ′的度数是_____.14.在相同时刻物高与影长成比例,如果高为1.5m 的测竿的影长为2.5m ,那么影长为30m 的旗杆的高度是_____m .15.如图,在半径为13的⊙O 中,OC 垂直弦AB 于点B ,交⊙O 于点C ,AB=24,则CD 的长是_____.16.如图,DF ∥EG ∥BC .AD =DE =EB ,则DF 、EG 把△ABC 分成三部分的面积比S 1:S 2:S 3为_____.三、解答题17.解下列方程:(1)2230x x --=;(2)()()2323x x +=+18.如图,在四边形ABCD 中,AD ∥BC ,∠A =∠BDC .(1)求证:△ABD ∽△DCB ;(2)若AB =12,AD =8,CD =15,求DB 的长.19.如图,在平面直角坐标系中,网格中每个小正方形的边长为1,已知△ABC(1)将△ABC绕点O顺时针旋转90画出旋转后得到的△A1B1C1;(2)画出△ABC以坐标原点O为位似中心的位似图形△A2B2C2,使△A2B2C2在第二象限,与△ABC的位似比是1 2.20.如图,四边形ABCD是正方形,△ADF绕着点A顺时旋转90°得到△ABE,若AF=4,AB=7.(1)求DE的长度;(2)指出BE与DF的关系如何?并说明由.21.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利6000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?22.已知:m,n是方程x2﹣6x+5=0的两个实数根,且m<n,抛物线y=﹣x2+bx+c的图象经过点A(m,0),B(0,n).(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C,D的坐标和△BCD的面积.23.如图,在▱ABCD中,AB⊥AC,AB=1,BC,对角线AC,BD交于O点,将直线AC绕点O顺时针旋转,分别交于BC,AD于点E,F.(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;(2)试说明在旋转过程中,线段AF与EC总保持相等;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不可能,请说明理由;如果可能,说明理由并求出此时AC绕点O顺时针旋转的度数.24.如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.动点M从点B出发,在BA 边上以每秒3cm的速度向定点A运动,同时动点N从点C出发,在CB边上以每秒2cm的速度向点B运动,且MG⊥BC,运动时间为t秒(0<t<103),连接MN.(1)用含t的式子表示MG;(2)当t为何值时,四边形ACNM的面积最小?并求出最小面积;(3)若△BMN与△ABC相似,求t的值.25.如图,抛物线y=ax2+bx+3与x轴相交于点A(﹣1,0)、B(3,0),与y轴相交于点C,点P为线段OB上的动点(不与O、B重合),过点P垂直于x轴的直线与抛物线及线段BC分别交于点E、F,点D在y轴正半轴上,OD=2,连接DE、OF.(1)求抛物线的解析式;(2)当四边形ODEF是平行四边形时,求点P的坐标;(3)过点A的直线将(2)中的平行四边形ODEF分成面积相等的两部分,求这条直线的解析式.(不必说明平分平行四边形面积的理由)参考答案1.C【解析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、不是轴对称图形,也不是中心对称图形.故错误.故选C.【点睛】考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.D【分析】根据∠1=∠2,可知∠DAE =∠BAC ,因此只要再找一组角或一组对应边成比例即可.【详解】解:A 和B 符合有两组角对应相等的两个三角形相似;C 、符合两组对应边的比相等且相应的夹角相等的两个三角形相似;D 、对应边成比例但无法证明其夹角相等,故其不能推出两三角形相似.故选D .【点睛】考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.3.B【分析】根据相似三角形的判定方法一一判断即可.【详解】解:因为111A B C 中有一个角是135°,选项中,有135°角的三角形只有B ,且满足两边成比例夹角相等,故选B .【点睛】本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.4.D【解析】试题分析:此题考查平行线性质及三角形内角和定理的运用.根据三角形内角和定理可求得∠AOC 的度数,再根据平行线的性质及三角形内角和定理即可求得∠AOD 的度数.解:∵∠BOC=110°,∠BOC+∠AOC=180°,∴∠AOC=70°.∵AD∥OC,OD=OA,∴∠D=∠A=70°,∴∠AOD=180°-2∠A=40°.故选D.考点:1.圆周角定理;2.平行线的性质;3.等腰三角形的性质.5.B【分析】先确定△ADC与△ACB相似,再根据相似三角形对应边成比例求出AB的长.【详解】解:∵∠ACB=∠ADC=90°,∠A=∠A∴△ADC∽△ACB∴AD:AC=AC:AB∵AD=3,∴AB=15故选B.【点睛】此题考查学生对相似三角形的性质的理解及运用,解题关键是由相似三角形的性质得出比例式.注意:求相似比不仅要认准对应边,还需注意两个三角形的先后次序.6.C【详解】试题分析:根据旋转的概念结合坐标系内点的坐标特征解答.解:由图知A点的坐标为(﹣1,2),根据旋转中心C,旋转方向顺时针,旋转角度90°,画图,从而得A′点坐标为(3,0).故选C.考点:坐标与图形变化-旋转.7.B【分析】根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】解:①符合一元二次方程定义,正确;②方程含有两个未知数,错误;③不是整式方程,错误;④符合一元二次方程定义,正确;⑤符合一元二次方程定义,正确.故选B .【点睛】判断一个方程是否是一元二次方程时,首先判断方程是整式方程,若是整式方程,再把方程进行化简,化简后是含有一个未知数,并且未知数的最高次数是2,在判断时,一定要注意二次项系数不是0.8.C【分析】根据二次函数图像与x 轴没有交点说明240b ac -<,建立一个关于k 的不等式,解不等式即可.【详解】∵二次函数277y kx x =--的图象与x 轴无交点,∴2040k b ac ≠⎧⎨-<⎩即049280k k ≠⎧⎨+<⎩解得74k <-故选C .【点睛】本题主要考查一元二次方程根的判别式和二次函数图像与x 轴交点个数的关系,掌握根的判别式是解题的关键.9.A【解析】直接根据顶点式写出顶点坐标是(1,3).故选A.10.A【详解】函数图象的平移法则为:左加右减,上加下减;根据这个平移法则,抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为y=3(x+2)2﹣1.故选A.考点:二次函数图象的平移法则.11.4【解析】【分析】根据一元二次方程的解的定义,将x=﹣2代入已知方程,通过一元一次方程来求a的值.【详解】解:根据题意知,x=﹣2满足方程ax2+7x﹣2=0,则4a﹣14﹣2=0,即4a﹣16=0,解得,a=4.故答案是:4.【点睛】考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.12.7【解析】【分析】首先根据关于原点对称的点的坐标特点可得a、b的值,然后在计算a+b的值.【详解】解:∵点P(﹣20,a)与点Q(b,13)关于原点对称,∴b=20,a=﹣13,∴a+b=20﹣13=7,故答案是:7.【点睛】考查了关于原点对称的点的坐标特点,关键是掌握两个点关于原点对称时,它们的坐标符号相反.13.90°【解析】∵D是等腰直角三角形ABC内一点,BC是斜边,∴∠BAC=90°,∵将△ABD绕点A按逆时针方向旋转到△ACD′的位置,∴∠DAD′=∠BAC=90°.故答案为90°.点睛:本题考查了旋转的性质,先由等腰直角三角形的性质得出∠BAC=90°,再根据对应点与旋转中心所连线段的夹角等于旋转角即可作答.14.18【分析】利用相似三角形的相似比,列出方程,通过解方程求出旗杆的高即可.【详解】∵同一时刻物高与影长成正比例∴1.5:2.5=旗杆的高:30∴旗杆的高为18米.【点睛】本题考查了相似三角形的应用,解题的关键是掌握相似三角形的性质.15.8.【详解】垂径定理,勾股定理.连接OA,∵OC⊥AB,AB=24,∴AD=AB=12,在Rt△AOD中,∵OA=13,AD=12,∴.∴CD=OC﹣OD=13﹣5=8.16.1:3:5.【解析】【分析】由题可知△ADF∽△AEG∽△ABC,因而得到相似比,从而推出面积比.【详解】解:∵DF∥EG∥BC,∴△ADF∽△AEG∽△ABC,∵AD=DE=EB,∴得到三角形的相似比是1:2:3,因而面积的比是1:4:9,=3x,S四边形EBCG 设△ADF的面积是x,则△AEG,△ABC的面积分别是4x,9x,则S四边形DEGF=5x,∴S1:S2:S3=1:3:5.故答案是:1:3:5.【点睛】考查了相似三角形的判定和性质,熟练掌握相似三角形面积的比等于相似比的平方是解题的关键.17.(1)x1=-1,x2=3(2)x1=-1,x2=-3【解析】【分析】(1)用因式分解的十字相乘法求解比较简便;(2)用因式分解的提公因式法求解比较简便.【详解】解:(1)(x﹣3)(x+1)=0,x﹣3=0或x+1=0,解得x=3或x=﹣1;(2)移项,得(x+3)2﹣2(x+3)=0,∴(x+3)(x+3﹣2)=0∴(x+3)(x+1)=0∴x1=﹣3,x2=﹣1.【点睛】考查了一元二次方程的解法,选择适当的方法解一元二次方程可事半功倍.解一元二次方程的方法有:直接开平方法,公式法,配方法,因式分解法等.18.(1)证明见解析;(2)10.【详解】试题分析:(1)由AD//BC可得∠ADB=∠DBC,又因为∠A=∠BDC,所以可以证明△ABD∽△DCB;(2)由(1)得:AB ADDC DB=,将已知线段长度代入即可求出BD.试题解析:解:(1)∵AD//BC,∴∠ADB=∠DBC,又∵∠A=∠BDC,∴△ABD∽△DCB;(2)由(1)得△ABD∽△DCB,∴AB AD DC DB=,即12815DB=,∴BD=10.点睛:(1)判定两个三角形相似,优先找两组角相等条件.19.(1)详见解析;(2)详见解析;【分析】(1)根据旋转变换的定义作出点A,B,C变换后的对应点,再顺次连接即可得;(2)根据位似变换的定义作出点A,B,C变换后的对应点,再顺次连接即可得.【详解】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求.【点睛】考查作图﹣位似变换与旋转变换,解题的关键是熟练掌握位似变换与旋转变换的定义与性质.20.(1)3;(2)BE=DF,BE⊥DF.【分析】(1)根据旋转的性质可得AE=AF,AD=AB,然后根据DE=AD﹣AE计算即可得解;(2)根据旋转可得△ABE和△ADF全等,根据全等三角形对应边相等可得BE=DF,全等三角形对应角相等可得∠ABE=∠ADF,然后求出∠ABE+∠F=90°,判断出BE⊥DF.【详解】解:(1)∵△ADF按顺时针方向旋转一定角度后得到△ABE,∴AE=AF=4,AD=AB=7,∴DE=AD﹣AE=7﹣4=3;(2)BE、DF的关系为:BE=DF,BE⊥DF.理由如下:∵△ADF按顺时针方向旋转一定角度后得到△ABE,∴△ABE≌△ADF,∴BE=DF,∠ABE=∠ADF,∵∠ADF+∠F=180°﹣90°=90°,∴∠ABE+∠F=90°,∴BE⊥DF,∴BE、DF的关系为:BE=DF,BE⊥DF.【点睛】考查了旋转的性质,正方形的性质,是基础题,熟记旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.21.(1)要保证每天盈利6000元,同时又使顾客得到实惠,那么每千克应涨价5元;(2)若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多.【分析】(1)设每千克水果涨了x元,那么就少卖了20x千克,根据市场每天销售这种水果盈利了6000元,同时顾客又得到了实惠,可列方程求解;(2)利用总利润y=销量×每千克利润,进而求出最值即可.【详解】(1)设每千克应涨价x 元,则(10+x )(500﹣20x )=6000解得x =5或x =10,为了使顾客得到实惠,所以x =5.(2)设涨价z 元时总利润为y ,则y =(10+z )(500﹣20z )=﹣20z 2+300z +5000=﹣20(z 2﹣15z )+5000=22252252015500044z z ⎛⎫--+-+ ⎪⎝⎭=﹣20(z ﹣7.5)2+6125当z =7.5时,y 取得最大值,最大值为6125.答:(1)要保证每天盈利6000元,同时又使顾客得到实惠,那么每千克应涨价5元;(2)若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多.【点睛】考核知识点:二次函数的的应用.根据题意列出等量关系是解题的关键.22.(1)y =﹣x 2﹣4x +5;(2)15.【解析】【分析】(1)首先解方程求得m 和n 的值,得到A 和B 的坐标,然后利用待定系数法即可求得解析式;(2)首先求得C 和D 的坐标,作DE ⊥y 轴于点E ,根据S △BCD =S 梯形OCDE ﹣S △DEB ﹣S △OBC 求解.【详解】解:(1)解方程x 2﹣6x +5=0,解得:x 1=1,x 2=5,则m =1,n =5.A 的坐标是(1,0),B 的坐标是(0,5).代入二次函数解析式得:105b C c -++=⎧⎨=⎩,解得:45b c =-⎧⎨=⎩,则函数的解析式是y =﹣x 2﹣4x +5;(2)解方程﹣x 2﹣4x +5=0,解得:x 1=﹣5,x 2=1.则C 的坐标是(﹣5,0).y =﹣x 2﹣4x +5=﹣(x 2+4x +4)+9=﹣(x +2)2+9则D 的坐标是(﹣2,9).作DE ⊥y 轴于点E ,则E 坐标是(0,9).则S 梯形OCDE =12(OC +DE )•OE =12×(2+5)×9=632,S △DEB =12BE •DE =12×4×2=4,S △OBC =12OC •OB =12×5×5=252,则S △BCD =S 梯形OCDE ﹣S △DEB ﹣S △OBC =632﹣4﹣252=15.【点睛】考查了待定系数法求函数的解析式以及图形的面积的计算,正确作出辅助线转化为易求面积的图形的和、差是关键.23.(1)证明见解析;(2)证明见解析;(3)四边形BEDF 可以是菱形.理由见解析;AC 绕点O 顺时针旋转45°时,四边形BEDF 为菱形.【详解】试题分析:(1)当旋转角为90°时,∠AOF=90°,由AB ⊥AC ,可得AB ∥EF ,即可证明四边形ABEF 为平行四边形;(2)根据平行四边形的性质证得△AOF ≌△COE 即可;(3)EF ⊥BD 时,四边形BEDF 为菱形,可根据勾股定理求得AC=2,则OA=1=AB ,又AB ⊥AC ,即可求得结果.(1)当∠AOF=90°时,AB ∥EF ,又∵AF∥BE,∴四边形ABEF为平行四边形.(2)∵四边形ABCD为平行四边形,在△AOF和△COE中∵∠FAO=∠ECO,AO=CO,∠AOF=∠ECO∴△AOF≌△COE(ASA)∴AF=EC;(3)四边形BEDF可以是菱形.理由:如图,连接BF,DE由(2)知△AOF≌△COE,得OE=OF,∴EF与BD互相平分.∴当EF⊥BD时,四边形BEDF为菱形.在Rt△ABC中,∴OA=1=AB,又∵AB⊥AC,∴∠AOB=45°,∴∠AOF=45°,∴AC绕点O顺时针旋转45°时,四边形BEDF为菱形.考点:旋转的性质,全等三角形的判定和性质,平行四边形的判定和性质,菱形的判定,勾股定理点评:本题知识点较多,综合性强,是中考常见题,难度不大,学生需熟练掌握平面图形的基本概念.24.(1)MG=95t;(2)t=2秒时,S四边形ACNM最小=845cm2;(3)△BMN与△ABC相似,t的值为2011秒或43秒.【解析】【分析】(1)先利用勾股定理求出AB =10,再判断出△BGM ∽△BCA ,得出比例式即可得出结论;(2)先表示出MN ,最后利用三角形的面积差即可建立函数关系式,即可得出结论;(3)先表示出BM ,BN ,再分两种情况,利用相似三角形得出比例式建立方程求解即可得出结论.【详解】解:(1)由运动知,BM =3t ,在Rt △ABC 中,AC =6,BC =8,∴AB =10,∵MG ⊥BC ,∴∠MGB =90°=∠ACB ,∵∠B =∠B ,∴△BGM ∽△BCA ,∴MG BM CA AB =,∴3610MG t =,∴MG =95t ;(2)由运动知,CN =2t ,∴BN =BC ﹣CN =8﹣2t ,由(1)知,MG =95t ,∴S 四边形ACNM =S △ABC ﹣S △BNM =12BC ×AC ﹣12BN ×MG =×8×6﹣12(8﹣2t )×95t =95(t ﹣2)2+845,∵0<t <103,∴t =2秒时,S 四边形ACNM 最小=845cm 2;(3)由(1)(2)知,BM =3t ,BN =8﹣2t ,∵△BMN 与△ABC 相似,∴①当△BMN ∽BAC 时,BM BN AB BC=,∴382 108t t-=,∴t=2011秒,②当△BMN∽△BCA时,BM BN BC AB=,∴382 810t t-=,∴t=43秒,即:△BMN与△ABC相似,t的值为2011秒或43秒.【点睛】相似形综合题,主要考查了勾股定理,三角形的面积公式,相似三角形的判定和性质,用方程是思想解决问题是解本题的关键.25.(1)y=﹣x2+2x+3;(2)P点坐标为(1,0)或(2,0);(3)33y x44=+或44y x33=+.【分析】(1)利用待定系数法求出抛物线的解析式.(2)平行四边形的对边相等,因此EF=OD=2,据此列方程求出点P的坐标.(3)利用中心对称的性质求解:平行四边形是中心对称图形,其对称中心为两条对角线的交点(或对角线的中点),过对称中心的直线平分平行四边形的面积,因此过点A与 ODEF 对称中心的直线平分 ODEF的面积.【详解】解:(1)∵点A(﹣1,0)、B(3,0)在抛物线y=ax2+bx+3上,∴309330a ba b-+=⎧⎨++=⎩,解得a1{b2=-=.∴抛物线的解析式为:y=﹣x2+2x+3.(2)在抛物线解析式y=﹣x2+2x+3中,令x=0,得y=3,∴C(0,3).设直线BC的解析式为y=kx+b,将B(3,0),C(0,3)坐标代入得:3k b0{b3+==,解得k1{b3=-=.∴直线BC的解析式为y=﹣x+3.设E点坐标为(x,﹣x2+2x+3),则P(x,0),F(x,﹣x+3).∴EF=y E﹣y F=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x.∵四边形ODEF是平行四边形,∴EF=OD=2.∴﹣x2+3x=2,即x2﹣3x+2=0,解得x=1或x=2.∴P点坐标为(1,0)或(2,0).(3)平行四边形是中心对称图形,其对称中心为两条对角线的交点(或对角线的中点),过对称中心的直线平分平行四边形的面积,因此过点A与 ODEF对称中心的直线平分ODEF的面积.①当P(1,0)时,点F坐标为(1,2),又D(0,2),设对角线DF的中点为G,则G(12,2).设直线AG的解析式为y=k1x+b1,将A(﹣1,0),G(12,2)坐标代入得:2222k b0{3k b2-+=+=,解得223k4{3b4==.∴所求直线的解析式为:33 y x44 =+.②当P(2,0)时,点F坐标为(2,1),又D(0,2).设对角线DF的中点为G,则G(1,3 2).设直线AG的解析式为y=k2x+b2,将A(﹣1,0),G(1,32)坐标代入得:2222k b03k b2-+=⎧⎪⎨+=⎪⎩,解得223k43b4⎧=⎪⎪⎨⎪=⎪⎩.∴所求直线的解析式为44 y x33 =+.综上所述,所求直线的解析式为33y x44=+或44y x33=+.21。
山东省济南市历下区2024-2025学年九年级上学期11月期中考试数学试题一、单选题1.2024年巴黎奥运会,中国体育健儿勇夺91枚奖牌,如图是本届奥运会的领奖台,其左视图是()A .B .C .D .2.已知点()13,A y -,()21,B y -和()32,C y 都在反比例函数()0ky k x=>的图象上,则1y ,2y 和3y 的大小关系是()A .312y y y <<B .213y y y <<C .123y y y <<D .321y y y <<3.如图1是某班级的花架,图2是其侧面示意图,已知AB CD EF ∥∥,36cm AC =,35BD DF =,则AE 的长为()A .48cmB .60cmC .96cmD .120cm4.10月16日是世界粮食日.某校组织了粮食安全公益活动,现有“节粮宣讲员”、“光盘示范员”和“爱粮监督员”三类志愿者岗位身份,小霞和小艺从中任选一类,则她们恰好选到同一类岗位的概率是()A .14B .13C .12D .235.函数y kx k =-和()210k y k x+=-≠在同一平面直角坐标系中的图象可能是()A .B .C .D .6.“黄金比例分割法”是启功先生研究的一套楷书结构法,是将正方形按照黄金分割的比例来分割,形成“黄金格”(如图,四条与边平行的线的交点都是黄金分割点),汉字的笔画至少要穿过两个黄金分割点才美观.若正方形“黄金格”的边长为8cm ,四个黄金分割点组成的正方形的边长为()A .()4cmB .()16cmC .(12cm-D .(24cm-7.如图,直线y x =-与双曲线()0ky k x=≠交于A ,B 两点,已知OA =表达式为()A .3y x=B .3y x=-C .9y x=D .9y x=-二、填空题8.如图,圭表是度量日影长度的一种天文仪器,垂直于地面的直杆叫“表”,水平放置于地面上刻有刻度以测量影长的标尺叫“圭”.当正午太阳照射在表上时,日影便会投影在圭面上,冬至日影最长,夏至日影最短.圭面上冬至线与夏至线之间的距离AB 的长为3.5m ,则表高为()(参考数据:冬至时,0.5≈表高影长;夏至时,3≈表高影长)A .2.1mB .2.4mC .56m .D .5.8m三、单选题9.如图,点光源O 射出的光线沿直线传播,将胶片上的建筑物图片AB 投射到与胶片平行的屏幕上,形成影像CD .已知3cm AB =,胶片与屏幕的距离EF 为定值,设点光源到胶片的距离OE 长为x (单位:cm ),CD 长为y (单位:cm ),y 随x 的变化而变化,且当60x =时,43y =,则y 与x 的函数关系可表示为()A .4360y x =B .233y x =+C .24003y x=+D .2580y x=10.已知反比例函数()22a y a x-=≠,点()11,M x y 和()22,N x y 是反比例函数图象上的两点.若对于12x a =,256x ≤≤,都有12y y >,则a 的取值范围是()A .502a -<<或522a <<B .532a -<<且2a ≠,0a ≠C .532a -<<-或02a <<D .5522a -<<且2a ≠,0a ≠四、填空题11.若()304n m m =≠,则n mm+=.12.近年来,济南环境保护效果显著,越来越多的候鸟选择来济过冬.为了解候鸟的情况,生物学家采用“捕获—标记—再捕获”的方法估计候鸟的数量.先随机捕捉40只候鸟,戴上标记卡并放回,经过一段时间后,重复进行5次捕捉.记录数据如下表,由此估计该区域约有只候鸟.累计捕捉数量(只)100200350420480带有标记卡数量(只)132444526013.坐落于济南市大明湖的超然楼是一座拥有700年历史的名楼,《周髀算经》中有“偃矩以望高”的测高方法,“矩”在古代指两条边呈直角的曲尺(即图中的ABC ),小明受到启发,利用“矩”测量超然楼DE 的高度.通过调整自己的姿势和“矩”的摆放位置,使AC 保持水平,点A 、B 、D 在同一直线上,90AFE DEF ∠=∠=︒,测得0.15m AB =,0.2m BC =, 1.7m AF =,37.5m EF =,则超然楼的高度DE =m .14.如图,点P ,Q ,R 在反比例函数()0ky x x=>的图象上,分别过这三个点作x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为1S ,2S ,3S .若OE ED DC ==,2320S S +=,则k =.15.如图,在ABCD 中,4AB =,6AD =,45A ∠=︒,点E 为边AD 上的一个动点,连接EC 并延长至点F ,使得12CF CE =,以EB ,EF 为邻边构造BEFG ,连接CG ,则CG 的最小值为.五、解答题16.如图,一次函数4y kx =+的图象与反比例函数()0my x x=<的图象交于A ,B 两点,与y 轴交于点C ,()1,3B -,连接OA ,OB .(1)求k 和m 的值;(2)求AOB V 的面积.17.图1是小亮沿广场道路AB 散步的示意图,线段CD 表示直立在广场上的灯柱,点C 表示照明灯的位置,已知小亮身高1.5m ,6m CD =.(1)如图2,小亮站在E 处时与灯柱的距离9m ED =,则此时小亮的影长AE =m ;(2)如图3,小亮继续行至G 处时,发现其影长KG 恰为身高的一半,求此时小亮与灯柱的距离.18.如图,在平面直角坐标系中,ABC V 的顶点坐标分别是()2,6A ,()6,2B ,()10,0C .(1)以原点O 为位似中心画111A B C △,使它与ABC V 位似.若1112A B AB =在第一象限内画出111A B C △;(2)在(1)的条件下,求点1A的坐标.19.如图1,直角尺是机械行业中检验工件垂直度的常用工具.如图2,在矩形ABCD中,直角尺的顶点G在CD上滑动,当点E落在BD上时,另外两个顶点恰好与A,B重合.若==,求BD的长.BE AE22420.2024年8月8日是中国第16个“全民健身日”.为提高学生身体素质,积极倡导全民健身,某校开展了一分钟跳绳比赛.数学兴趣小组随机抽取了部分学生成绩,并对数据进行统计整理,以下是不完整的统计图表.一分钟跳绳成绩统计表成绩等级一分钟跳绳次数频数x≥nA160x≤<75B120160x≤<69C80120x<36D80请根据以上信息,完成下列问题.(1)随机抽取的学生人数为人,统计表中的n=,统计图中B等级对应扇形的圆心角为度;(2)该校共有800人参加比赛,请你估计该校成绩达到B等级及以上的有多少人?(3)该比赛服务组有两名男生和两名女生,现从中随机挑选两名同学负责跳绳发放工作,请用树状图法或列表法求出恰好选中“一男一女”的概率.21.如图1,在平面直角坐标系中,直线y x b =+与双曲线()10ky k x=≠交于()4,1A m +,(),3B m -.(1)求一次函数和反比例函数的表达式;(2)根据图象,直接写出关于x 的不等式kx b x+<的解集;(3)如图2,将直线y x b =+向上平移a 个单位长度得到直线l ,直线l 与反比例函数()2130y x x=-<的图象交于C ,D 两点,与双曲线1k y x =在第一象限内交于点E ,连接BD ,EA ,若四边形ABDE 是平行四边形,求a 的值.22.2024年9月,济南港—寿光港集装箱业务的首船作业,标志着小清河复航业务再结硕果.集装箱搬运车是为了更高效地对集装箱进行搬运和叠放,当液压撑杆与吊臂垂直且吊臂完全伸展开时,集装箱搬运车的抓手可以达到最大高度.如图1是抓手达到最大高度时的示意图,四边形ABCD 为矩形,5m AB =,0.9m BC =,AE BF ⊥,延长FB DC ,交于点H , 1.2m CH =.(1)求此时液压撑杆AE 的长;(2)已知吊臂BF 最长为9.5m ,抓手0.5m FG =,某批集装箱的长宽高如图2所示,使用该款搬运车最多能将集装箱在地面上叠放几层?请通过计算说明.23.小光根据学习函数的经验,探究函数11y x =-的图象与性质.(1)刻画图象①列表:下表是x ,y 的几组对应值,其中a =,b =;x …4-2-1-0122334544332234 (11)x -…15-13-12-1-2-a4-4321b13…②描点:如图所示;③连线:请用平滑的曲线顺次连接.(2)认识性质观察图象,完成下列问题:①当1x >时,y 随x 的增大而;②函数11y x =-的图象的对称中心是.(填写点的坐标)(3)类比探究①小光发现,函数11y x =-的图象可以由反比例函数1y x =的图象经过平移得到.请结合图象说明平移过程;②函数43y x =-的图象经平移可以得到函数42=+y x 的图象,请说明平移过程.24.(1)在ABC V 和DEC 中,AB AC =,DE DC =,90BAC EDC ∠==︒.①如图1,当CE 与AC 重合时,BEAD=;②如图2,DEC 绕点C 逆时针旋转一定角度,连接AD ,BE ,BEAD的值是否改变?请说明理由;(2)如图3,正方形ABCD 的边长为2,E 为边AB 上一动点,以CE 为斜边在正方形ABCD 内部作等腰直角CFE △,90CFE ∠=︒,连接AF ,BF ,当AFE ABF ∠=∠时,求BE 的长.25.某数学兴趣小组学习了反比例函数后,进一步研究反比例函数8y x=的图象,他们在平面直角坐标系内选定点133,2P ⎛⎫- ⎪⎝⎭,过点P 作直线,并将图象沿该直线按一定的操作翻折,探究过程如下:【动手操作】操作1:如图1,过点P 作x 轴的平行线l ,将直线l 上方的反比例函数图象沿直线l 翻折得到新图象,与第一、三象限未翻折的图象组成“X 图象”.操作2:如图2,过点P 作y 轴的平行线m ,将直线m 左侧的反比例函数图象沿直线m 翻折得到新图象,与第一、三象限未翻折的图象组成“Y 图象”.操作3:如图3,过点P 作直线n :152y x =-+,将第一象限内反比例函数的图象在直线n 下方的部分沿直线n 翻折得到新图象,与直线n 下方的图象组成的封闭图象是“Z 图象”.试卷第11页,共11页【解决问题】(1)如图1,求“X 图象”与x 轴的交点C 的坐标;(2)过x 轴上一点(),0Q t 作y 轴的平行线,与“Y 图象”交于点M ,N .若3MN QN =,求t 的值;(3)如图3,反比例函数()80y x x =>的图象与直线n 交于点E ,F ,已知点G 和点H 是“Z 图象”上的两个动点,当以点E ,G ,F ,H 为顶点的四边形面积最大时,直接写出点G 和点H 的坐标.。
上海市徐汇中学2024-2025学年九年级上学期数学期中考试试卷一、单选题1.下列各组线段中,成比例线段的组是()A .0.2cm,0.3cm,4cm,6cmB .1cm,3cm,4cm,8cmC .3cm,4cm,5cm,8cmD .1.5cm,2cm,4cm,6cm2.下列命题一定正确的是()A .两个等腰三角形一定相似B .两个等边三角形一定相似C .两个直角三角形一定相似D .两个含有30°角的三角形一定相似3.把抛物线y=﹣x 2+1向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A .y=﹣(x+3)2+1B .y=﹣(x+1)2+3C .y=﹣(x ﹣1)2+4D .y=﹣(x+1)2+44.如图,在ABC V 中,DE BC ∥,2AD =,3BD =,10AC =,则AE 的长为()A .3B .6C .5D .45.如图,梯形ABCD 中,AB CD ∥,AC ,BD 交于O ,下列等式正确的是()A .AOD AOB S ADS AB=△△B .COD AOB S CDS AB=△△C .AOD BOA S DOS OB= D .AOD BOC S DOS OC=△△6.如图,是二次函数2y ax bx c =++图象的一部分,直线1x =-是对称轴,且经过点(2,0).有下列判断:①20a b -=;②1640a b c -+<;③9a b c a -+=-;④若1(3,)A y -,2(1.5,)B y 是抛物线上两点,则12y y >.其中正确的是()A .①③B .①④C .①③④D .②③④二、填空题7.已知:1:3x y =,那么():x y y +=.8.如果地图上A 、B 两处的图距是4cm ,表示这两地的实际距离是200km ,那么实际距离是500km 的两地在地图上的图距是cm .9.已知点P 是线段AB 上的一点,且2AP AB PB =⋅,如果2AB =,那么AP =.10.若两个相似三角形的周长比为2:3,则它们的面积比是.11.如图,直线AD ,BC 交于点O ,AB EF CD ∥∥,若5AO =,2OF =,3FD =,则BE EC的值为.12.抛物线()212y x =-+与y 轴交点的坐标为.13.已知抛物线y=ax 2+bx+c (a >0)的对称轴是直线x=2,且经过点P (3,1),则a+b+c 的值为.14.如图,DE 是ABC V 的中位线,点F 在DB 上,2DF BF =,连接EF 并延长,与CB 的延长线交于点M .若8BC =,则线段CM 的长为.15.如图1是装了液体的长方体容器的主视图(数据如图),将该容器绕地面一棱进行旋转倾斜后,水面恰好接触到容器口边缘,如图2所示,此时液面宽度AB.16.如图,点P 是ABC V 的重心,点D 是边AC 的中点,PE AC ∥交BC 于点E ,DF BC ∥交EP 于点F .若四边形CDFE 的面积为6,则ABC 的 面积为17.如图,Rt △OAB 的顶点A (﹣2,4)在抛物线y =ax 2上,将Rt △OAB 绕点O 顺时针旋转90°,得到△OCD ,边CD 与该抛物线交于点P ,则点P 的坐标为.18.如图,在等腰直角ABC V 中,2AC =,M 为边BC 上任意一点,连接AM ,将ACM △沿AM 翻折得到AC M '△,连接BC '并延长交AC 于点N ,若点N 为AC 的中点,则CM 的长为.三、解答题19.如图,AD BE ,BD CE .(1)试说明OA OBOB OC=;(2)若4OA =,12AC =,求OB 的长.20.在ABC 中,2AB =,将ABC 绕点B 逆时针旋转得到MBN ,且CN BM ∥,MA 的延长线与CN 交于点P ,若3AM =,152CN =.(1)求证:ABM CBN ∽;(2)求AP 的长.21.如图,抛物线2y a(x 1)4=-+与x 轴交于点A ,B ,与轴交于点C ,过点C 作CD ∥x轴,交抛物线的对称轴于点D ,连结BD ,已知点A 坐标为(-1,0).(1)求该抛物线的解析式;(2)求梯形COBD 的面积.22.在初中物理中我们学过凸透镜的成像规律.如图MN 为一凸透镜,F 是凸透镜的焦点.在焦点以外的主光轴上垂直放置一小蜡烛AB ,透过透镜后呈的像为CD .光路图如图所示:经过焦点的光线AE ,通过透镜折射后平行于主光轴,并与经过凸透镜光心的光线AO 汇聚于C 点.若焦距4OF =,物距6OB =,小蜡烛的高度1AB =,求蜡烛的像CD 的长度以及像CD 与透镜MN 之间的距离.23.已知,如图,在梯形ABCD 中,AD BC ∥,90BCD ∠=︒,对角线AC 、BD 相交于点E ,且AC BD ⊥.(1)求证:2CD BC AD =⋅;(2)点F 是边BC 上一点,连接AF ,与BD 相交于点G ,如果BAF DBF ∠=∠,求证:22AG BGBDAD =.24.如图,在平面直角坐标系xOy 中,抛物线()20y ax bx c a =++>与x 轴相交于点()1,0A -和点B ,与y 轴交于点C ,对称轴为直线1x =.(1)求点C 的坐标(用含a 的代数式表示);(2)连接AC 、BC ,若ABC V 的面积为6,求此抛物线的表达式;(3)在第(2)小题的条件下,点Q 为x 轴正半轴上一点,点G 与点C ,点F 与点A 关于点Q 成中心对称,当CGF △为直角三角形时,求点Q 的坐标.25.在ABC V 中,45ACB ∠=︒,点D (与点B 、C 不重合为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .(1)如果AB AC =.如图①,且点D 在线段BC 上运动.试判断线段CF 与BD 之间的位置关系,并证明你的结论.(2)如果AB AC ≠,如图②,且点D 在线段BC 上运动.(1)中结论是否成立,为什么?(3)若正方形ADEF 的边DE 所在直线与线段CF 所在直线相交于点P ,设AC =3BC =,CD x =,求线段CP 的长.(用含x 的式子表示)。
广东省深圳市深圳实验中学中学部2024-2025学年九年级上学期期中数学试卷一、单选题1.下列四种化学仪器的示意图中,是轴对称图形的是()A .B .C .D .2.计算3...a a a a ⎛⎫ ⎪⎝⎭⋅⋅⋅144424443个的结果是()A .5aB .6a C .3a a +D .3a a 3.关于x 的方程2441x x -=-的根的情况是()A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .无实数根4.若二元一次联立方程式53283x y y x -=⎧⎨=-⎩的解为x a y b =⎧⎨=⎩,则a b +之值为何?()A .28-B .14-C .4-D .145.如图,函数11y x =-和函数22y x=的图象相交于点(),1M m ,(),2N n -,若12y y <,则x 的取值范围是()A .12x -<<B .1x <-或0<<2C .10x -<<或0<<2D .10x -<<或>26.下面是“作一个角使其等于AOB ∠”的尺规作图方法.(1)如图,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;(2)作射线O A '',以点O '为圆心,OC 长为半径画弧,交O A ''于点C ';以点C '为圆心,CD 长为半径画弧,两弧交于点D ¢;(3)过点D ¢作射线O B '',则A O B AOB '''∠=∠.上述方法通过判定C O D COD '''△≌△得到A O B AOB '''∠=∠,其中判定C O D COD '''△≌△的依据是()A .三边分别相等的两个三角形全等B .两边及其夹角分别相等的两个三角形全等C .两角及其夹边分别相等的两个三角形全等D .两角分别相等且其中一组等角的对边相等的两个三角形全等7.同一条公路连接A ,B ,C 三地,B 地在A ,C 两地之间.甲、乙两车分别从A 地、B 地同时出发前往C 地.甲车速度始终保持不变,乙车中途休息一段时间,继续行驶.下图表示甲、乙两车之间的距离y (km )与时间x (h )的函数关系.下列结论正确的是()A .甲车行驶8h 3与乙车相遇B .A ,C 两地相距220kmC .甲车的速度是70km /hD .乙车中途休息36分钟8.如图,在Rt ABC △中,90ABC ∠=︒,4AB =,2BC =,BD 是边AC 上的高.点E ,F 分别在边AB ,BC 上(不与端点重合),且DE DF ⊥.设AE x =,四边形DEBF 的面积为y ,则y 关于x 的函数图象为()A .B .C .D .二、填空题9.正十二边形的每一个外角等于度.10.烷烃是一类由碳、氢元素组成的有机化合物质,如图是这类物质前四种化合物的分子结构模型图,其中灰球代表碳原子,白球代表氢原子.第1种如图①有4个氢原子,第2种如图②有6个氢原子,第3种如图③有8个氢原子,……按照这一规律,第10种化合物的分子结构模型中氢原子的个数是.11.如图,ABCD 中,2BC =,点E 在DA 的延长线上,3BE =,若BA 平分EBC ∠,则DE =.12.某学校在4月23日世界读书日举行“书香校园,全员阅读”活动.小明和小颖去学校图书室借阅书籍,小明准备从《西游记》、《骆驼祥子》、《水浒传》中随机选择一本,小颍准备从《西游记》、《骆驼祥子》、《朝花夕拾》中随机选择一本,小明和小颖恰好选中书名相同的书的概率是.13.如图,ABC V ,90ACB ∠=︒,5CB =,10CA =,点D ,E 分别在AC AB ,边上,AE =,连接DE ,将ADE V 沿DE 翻折,得到FDE V ,连接CE ,CF .若CEF △的面积是BEC V 面积的2倍,则AD =.三、解答题14.()0π31-+-15.先化简,再求值:212139a a a +⎛⎫-÷ ⎪+-⎝⎭,其中1a =.16.中国新能源产业异军突起.中国车企在政策引导和支持下,瞄准纯电、混动和氢燃料等多元技术路线,加大研发投入形成了领先的技术优势,2023年,中国新能源汽车产销量均突破900万辆,连续9年位居全球第一.在某次汽车展览会上,工作人员随机抽取了部分参展人员进行了“我最喜欢的汽车类型”的调查活动(每人限选其中一种类型),并将数据整理后,绘制成下面有待完成的统计表、条形统计图和扇形统计图类型人数百分比纯电m 54%混动n %a 氢燃料3%b 油车5%c请根据以上信息,解答下列问题:(1)本次调查活动随机抽取了_____人;表中a =______,b =______;(2)请补全条形统计图;(3)请计算扇形统计图中“混动”类所在扇形的圆心角的度数;(4)若此次汽车展览会的参展人员共有4000人,请你估计喜欢新能源(纯电、混动、氢燃料)汽车的有多少人?17.某商店购进A 、B 两种纪念品,已知纪念品A 的单价比纪念品B 的单价高10元.用600元购进纪念品A 的数量和用400元购进纪念品B 的数量相同.(1)求纪念品A 、B 的单价分别是多少元?(2)商店计划购买纪念品A 、B 共400件,且纪念品A 的数量不少于纪念品B 数量的2倍,若总费用不超过11000元,如何购买这两种纪念品使总费用最少?18.如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,ABD CDB ∠=∠,BE AC ⊥于点E ,DF AC ⊥于点F ,且BE DF =.(1)求证:四边形ABCD 是平行四边形;(2)若AB BO =,当ABE ∠等于多少度时,四边形ABCD 是矩形?19.已知反比例函数(0)k y x x=>的图象与正比例函数()30y x x =≥的图象交于点()2,A a ,点B 是线段OA 上(不与点A 重合)的一点.(1)求反比例函数的表达式;(2)如图1,过点B 作y 轴的垂线,l l 与(0)k y x x=>的图象交于点D ,当线段3BD =时,求点B 的坐标;(3)如图2,将点A 绕点B 顺时针旋转90︒得到点E ,当点E 恰好落在(0)k y x x =>的图象上时,求点E 的坐标.20.综合与探究:如图,90AOB ∠=︒,点P 在AOB ∠的平分线上,PA OA ⊥于点A .(1)【操作判断】如图①,过点P 作PC OB ⊥于点C ,根据题意在图①中画出PC ,图中APC ∠的度数为______度;(2)【问题探究】如图②,点M 在线段AO 上,连接PM ,过点P 作PN PM ⊥交射线OB 于点N ,求证:2OM ON PA +=;(3)【拓展延伸】点M 在射线AO 上,连接PM ,过点P 作PN PM ⊥交射线OB 于点N ,射线NM 与射线PO 相交于点F ,若3ON OM =,求OP OF的值.。
重庆南开中学2024-2025学年度上学期期中考试初2025届数学试题(全卷共三个大题,满分150分,考试时间120分钟)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.1.17−的相反数是( ).A.17− B.17C. −7D. 7【答案】B【解析】【分析】本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,只有符号不同的两个数是互为相反数, 0的相反数是0.【详解】解:17−的相反数是17,故选:B.2. 下列化学仪器示意图中,是轴对称图形的是()A. 蒸馏烧瓶B. 烧杯C. 圆底烧瓶D. 分液漏斗【答案】C【解析】【分析】本题考查了轴对称图形的定义,熟练掌握轴对称图形的定义是解答本题的关键.根据轴对称图形的定义逐项分析即可.【详解】解:选项A、B、D均不能找到这样的一条直线,使图形沿该直线对折后直线两旁的部分能够完全重合,所以不是轴对称图形,选项C能找到这样的一条直线,使图形沿该直线对折后直线两旁的部分能够完全重合,所以是轴对称图形.故选C .3. 二次函数()20y ax bx c a ++≠的图象如图所示,则下列选项正确的是( )A. 0a >B. 0b >C. 240b ac −<D. 0c >【答案】A【解析】 【分析】本题考查根据二次函数图象判断各项系数和式子的符号,熟练掌握二次函数图象与系数的关系是解题的关键.根据抛物线的开口方向和对称轴的位置确定a 、b 的符号,由抛物线与x 轴的交点个数确定∆的符号,由抛物线与y 轴的交点位置确定c 的符号,即可得出答案.【详解】解:A 、∵抛物线的开口向上,∴0a >,故此选项符合题意;B 、∵抛物线的对称轴在y 轴右侧,∴02b a−>, ∵0a >,∴0b <,故此选项不符合题意;C 、∵抛物线与x 轴的两个交点,∴240b ac ∆=−>,故此选项不符合题意;D 、∵抛物线与y 轴的交点在负半轴上,∴0c <,故此选项不符合题意;故选:A .4. 将ABC 沿BC 方向平移至DEF ,点A ,B ,C 的对应点分别是D ,E ,F ,使得:5:3BC EC =,则ABC 与GEC 的周长之比为( )A. 2:3B. 2:5C. 5:3D. 3:5【答案】C【解析】 【分析】本题考查平移的性质,相似三角形的判定与性质,熟练掌握平移的性质、相似三角形的判定与性质是解题的关键.根据平移的性质得到AB GE ∥,从而可得到ABC GEC △∽△,利用相似三角形周长于相似比可得答案. 【详解】解:∵ABC 沿BC 方向平移至DEF ,∴AB DE ∥,即AB GE ∥,∴A EGC ∠=∠,B GEC ∠=∠,∴ABC GEC △∽△,∴ABC 与GEC 的周长之比:5:3BCEC =, 故选:C .5. 中国选手郑钦文顺利入围2024年WTA 年终总决赛女子单打项目,该项目第一阶段采用组内循环赛制,即每两名选手之间比赛一场.现计划安排28场组内循环赛,共有几名选手参加组内循环赛?设一共有x 名选手参加组内循环赛,根据题意可列方程为( )A. ()128x x −=B. ()128x x +=C. ()11282x x +=D. ()11282x x −= 【答案】D【解析】【分析】此题主要考查了有实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.设一共有x 名选手参加组内循环赛,则每个队参加()1x −场比赛,则共有()112x x −场比赛,可以列出一个一元二次方程. 【详解】解:由题意可列方程为:()11282x x −=, 故选:D .6. 估计+)A. 6和7之间B. 7和8之间C. 8和9之间D. 9和10之间【答案】D【解析】【分析】本题考查二次根式的混合运算,无理数的估算,解题的关键是熟练掌握二次根式的运算法则.先利用二次根式的运算法则将原式化简,再对无理数进行估算.【详解】解:++,3<<∵67∴9310+<故选:D.7. 南南用相同的小圆圈按照一定的规律摆成了“中”字,第①个图形中有10个小圆圈,第②个图形中有16个小圆圈,第③个图形中有22个小圆圈,…,按照此规律排列下去,则第⑧个图形中小圆圈的个数是()A. 42B. 52C. 46D. 58【答案】B【解析】【分析】考查了图形的变化类问题,解题的关键是仔细观察图形并找到进一步解题的规律,难度不大.仔细观察图形变化,找到图形变化规律,利用规律求解.×+=个小圆圈,【详解】第①个图形中一共有16410×+=个小圆圈,第②个图形中一共有26416×+=个小圆圈,第③个图形中一共有36422…,∴第n 个图形中一共有()64n +个小圆圈,∴第⑧个图形中小圆圈的个数是86452×+=,故选:B .8. 如图,AB 是O 的直径,AE 、CE 、CB 为O 的弦,132AO =,12AE =,则sin BCE ∠=( )A. 512B. 1312C. 513D. 125【答案】C【解析】【分析】本题考查了圆周角定理,求一个角的正弦值,勾股定理;根据AB 是O 的直径,得出90AEB ∠=°,再运用勾股定理算出5BE ,再结合 EBEB =,则BCE BAE ∠=∠,所以5sin sin 13BE BCE BAE AB ∠=∠==,即可作答. 【详解】解:连接BE ,如图:∵AB 是O 的直径,∴90AEB ∠=°, ∵132AO =, ∴13AB =,在Rt ABE △中,5BE ,∵ EBEB =,∴BCE BAE ∠=∠, ∴5sin sin 13BE BCE BAE AB ∠=∠==, 故选:C . 9. 如图,在正方形ABCD 中,O 是对角线BD 的中点,E 为正方形内的一点,连接BE ,CE ,使得CB CE =,延长BE 与ECD ∠的角平分线交于点F .若BEC α∠=,连接OF ,则FOD ∠的度数为( )A. 290α−°B. 1452α°+C. 1902α°−D. 245α−°【答案】A【解析】 【分析】连接DF ,先证明∴()SAS CEF CDF ≌,得到CEF CDF ∠=∠,从而得180CDF CEF α∠=∠=°−,继而90BFD ∠=°,然后利用直角 三角形的性质,得出OF OB =,从而有45OFB OBF α∠=∠=−°,然后由三角形外角的性质可求解.【详解】解:连接DF ,如图,∵正方形ABCD∴BC CD =,45CBD CDB ∠=∠=°,∵CB CE =∴CE CD =,CBE BEC α∠=∠=, ∴45DBE α∠=−°,∵CF 是ECD ∠角平分线∴ECF DCF ∠=∠ ∵CF CF =,ECF DCF ∠=∠,CE CD =, ∴()SAS CEF CDF ≌∴CEF CDF ∠=∠,∴180CDF CEF α∠=∠=°−∴18045135BDFCDF CDB αα∠=∠−∠=°−−°=°− ∴1354590BDF DBE αα∠+∠=°−+−°=° ∴90BFD ∠=°∵O 是对角线BD 的中点,∴OF OB =∴45OFB OBF α∠=∠=−° ∴4545290FOD OFB OBF ααα∠=∠+∠=−°+−°=−° 故选:A .【点睛】本题考查正方形的性质,直角三角形的性质,等腰三角形的性质,三角形外角的性质,全等三角形的判定与性质,证明90BFD ∠=°是解题的关键.10. 给定三个互不相等的代数式,先将任意两个代数式作差(相同的两个代数式只作一次差),再将这些差“绝佳操作”.例如:对于m ,n ,p 作“绝佳操作”,得到m n m p n p −+−+−.下列说法:①对2,4−,5作“绝佳操作”结果是18;②对m ,n ,p 作“绝佳操作”的结果一共有8种;③对22a ,66a −,42a 作“绝佳操作”的结果为28,则a的值为1−或1−;其中正确的个数为( )A. 0B. 1C. 2D. 3【答案】B【解析】【分析】本题考查新定义和绝对值化简,解一元二次方程,理解万岁新定义是解题的关键,注意分类讨论. 利用绝对值的性质进行逐个计算判断即可. 【详解】解:①()242545−−+−+−−的的18=,故①正确;②当m n p >>时,则22m n m p n p m n m p n p m p −+−+−=−+−+−=−,当m p n >>时,则22m n m p n p m n m p n p m n −+−+−=−+−−+=−,当n m p >>时,则22m n m p n p m n m p n p n p −+−+−=−++−+−=−, 当n p m >>时,则22m n m p n p m n m p n p n m −+−+−=−+−++−=− 当p m n >>时,则22m n m p n p m n m p n p p n −+−+−=−−+−+=−当p n m >>时,则22m n m p n p m n m p n p p m −+−+−=−+−+−+=− ∴对m ,n ,p 作“绝佳操作”的结果一共有6种,故②错误;③当226642a a a >−>−时,则()()()22266242664228a a a a a a −−+−−+−−−=,化简得:2260a a −−=,解得:1a =+1a =−; 当224266a a a >−>−时,则()()()22266242664228a a a a a a −−+−−+−−−=, 化简得:2340a a −−=,解得:4a =(舍去)或1a =−;当266242a a a −>>−时,则()()()22266242664228a a a a a a −−+−−+−−−=, 化简得:6828a −=,解得:6a =(舍去); 当266422a a a −>−>时,则()()()22266242664228a a a a a a −−+−−+−−−=, 化简得:23100a a −+=,∵()234110310∆=−−××=−<∴无解;当242266a a a −>>−时,则()()()22266242664228a a a a a a −−+−−+−−−=, 化简得:8a −=,解得:8a =−(舍去), 当242662a a a −>−>时,则()()()22266242664228a a a a a a −−+−−+−−−=, 化简得:4828a −+=,解得:5a =−(舍去),综上,a 的值为11−,故③错误;∴只有①正确,共1个,二、填空题:(本题共8个小题,每小题4分,共32分)请将每个小题的答案直接填在答题..卡.中对应的横线上. 11. 计算:()01tan3012−°−−=________. 【答案】12##0.5 【解析】【分析】本题主要考查实数混合运算,零指数幂,负整理指数幂,特殊角的三角函数,解题的关键是掌握分负整数指数幂、零指数幂的规定,熟记特殊锐角的三角函数值.【详解】解:()01tan3012−°−−112 =−−112=− 12=. 故答案为:12. 12. 正八边形每个外角的度数为_____.【答案】45°##45度【解析】【分析】本题主要考查了正多边形外角和定理,根据任何一个多边形的外角和都是360°求解即可.【详解】解:因为任何一个多边形的外角和都是360°,所以正八边形的每个外角的度数是:360845°÷=°.故答案为:45°.13. 为了全面推进素质教育,助力学生健康成长,公能学校开设了多门选修课程.其中南南和开开想从刺绣、糖画、国家疆土、巧匠工坊中选修一门课程,两名同学恰好选修同一门课程的概率为________. 【答案】14【解析】【分析】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.画树状图展示所有16种等可能的结果数,再找出他们两人恰好选修同一门课程的结果数,然后根据概率公式求解.【详解】解:用A 、 B 、C 、D 分别表示刺绣、糖画、国家疆土、巧匠工坊,画树状图如图,共有16种等可能的结果,其中他们两人恰好选修同一门课程的结果数为4, 所以他们两人恰好选修同一门课程的概率为:41164=. 14. 如图,点A 在反比例函数()0k yk x=≠图象上,过点A 作AB x ⊥轴于点B ,连接OA ,若ABO 的面积为2,则k =________.【答案】4【解析】【分析】本题考查反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于k .本知识点是中考的重要考点,同学们应高度关注.根据在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是122k =,再根据反比例函数的图象位于第二象限即可求出k 的值. 【详解】解:根据题意可知:221AOB S k == , 又反比例函数的图象位于第一象限,0k >,则4k =.故答案为:4.15. 若二次函数232y x x =−+过点(),3m ,则代数式2262023m m −+=________. 【答案】2025【解析】【分析】本题考查的是抛物线的性质.掌握“点在抛物线上,则点的坐标满足函数解析式”是解本题的关键.由于抛物线经过点(),3m ,则231m m −=,把2262023m m −+整理后整体代入即可. 【详解】∵二次函数232y x x =−+过点(),3m , ∴2323m m −+=, ∴231m m −=,∴()222620232320232120232025m m m m −+=−+=×+=. 故答案为:2025.16. 关于x 的一元一次不等式组()341221x x x x m − ≤−+≥−+至少有2个整数解,且关于y 的分式方程13222m y y−=−−−的解为非负整数,则符合条件的整数m 的值之和为________. 【答案】2 【解析】【分析】本题考查了分式方程的解,以及解一元一次不等式组,掌握相应的计算方法是关键. 先解不等式组,确定m 的取值范围25<≤m ,再把分式方程去分母转化为整式方程,解得22m y −=,由分式方程有非负整数解,确定出的值,即可解答.【详解】解:()341221x x x x m − ≤−+≥−+①② 解①得:2x ≤, 解②得:23m x −≥, ∴223m x −≤≤, ∵不等式组至少有2个整数解, ∴213m −≤, 解得:5m ≤;13222m y y−=−−−, 去分母得:1243m y −=−+, 解得:2my =, ∵分式方程的解为非负整数,且2y ≠ ∴0m ≥且4m ≠的偶数, 又∵5m ≤ ∴2m =,0∴符合条件的整数m 的值之和为202+=. 故答案:2.17. 如图,在矩形ABCD 中,4=AD ,点E 为AB 中点,将矩形沿着EF 所在的直线翻折至矩形ABCD 所在的平面,点B ,C 的对应点分别是B ′,C ′,B E ′与CD 交于点G ,使得CF GF =,连接AB ′,B F ′,AF ,若25B G GF ′=,则GF =________;AB F S ′= ________.【答案】 ①. 5 ②. 985【解析】【分析】过点G 作GH C F ′⊥,则四边形B C HG ′′是矩形,根据矩形的性质,结合折叠的性质可得4GH B C ′′==,GF GE =,令5GF CF a ==,则2B G C H a ′′==,5CF C F a ′==,可知3HF C F C H a ′′=−=,根据勾股定理即可求解,则2B G ′=,7BE B E ′==,令AB ′与CD 交于点O ,过点B ′作B M CD ′⊥,则90D B MO ′∠=∠=°,再证明B OG B AE ′′△∽△,DOA MOB ′△∽△,结合相似三角形的性质求得2855B M AD ′==,由1122AB F AOF B OF S S S OF AD OF B M ′′′=+=⋅+⋅△△△,即可求解. 【详解】解:在矩形ABCD 中,4AD BC ==,AB CD =,90B C D ∠==∠=°,AB CD ∥,则BEF DFE ∠=∠,由折叠可知,BE B E ′=,CF C F ′=,4BC B C ′′==,90C C ′∠=∠=°,90EB C B ′∠=∠=°,BEF B EF ′∠=∠,则B EF DFE ′∠=∠, ∴GF GE =,为过点G 作GH C F ′⊥,则四边形B C HG ′′是矩形, ∴4GHB C ′′==,B G C H ′′=, ∵25B G GF ′=,CF GF =,令5GFCF a ==,则2B G C H a ′′==,5CF C F a ′==, ∴3HF C F C H a ′′=−=,由勾股定理可得:222GH GF HF =−,即:()()222453a a =−,解得:1a =,∴5GF =,则2B G ′=,7BEB E ′==, 令AB ′与CD 交于点O ,过点B ′作B M CD ′⊥,则90D B MO ′∠=∠=°,∵点E 是AB 的中点,∴7AE BE ==,即14ABCD ==, ∵AB CD ∥,∴B OG B AE ′′△∽△,B G B O GF OA ′′==∴OG B GAE B E ′=′,即277OG =, ∴2OG =,∴7OF OG GF =+=,则2OD CD OF CF =−−=, ∵DOA MOB ′∠=∠ ∴DOA MOB ′△∽△,∴25B M B O AD OA ′′==,则2855B M AD ′==, ∴1118987422255AB F AOF B OF S S S OF AD OF B M ′′′=+=⋅+⋅=××+=, 故答案为:5,985. 【点睛】本题考查矩形与折叠问题,勾股定理,相似三角形的判定及性质,平行线分线段成比例等知识点,熟练掌握相关图形的性质是解决问题的关键.18. 一个四位数M 各数位上的数字均不为0,若将M 的千位数字和个位数字对调,百位数字和十位数字对调,得到新的四位数N ,则称N 为M 的“翻折数”,规定()11M NF M +=.例如:1235的“翻折数”为5321,()12355321123559611F +==,则()2678F =________;若()5001200101M x y =+++(M ,y 为整数,59x ≤≤,18y ≤≤),M 的“翻折数”N 能被17整除,则()F M 的最大值为________. 【答案】 ①. 1040 ②. 757 【解析】【分析】根本题主要考查了有理数的混合运算,二元一次方程的解,列代数式,本题是阅读型题目,准确理解题干中的定义和公式并熟练应用是解题的关键.据()11M NF M +=代入求解()2678F 即可;首先表示出s 和t 的“翻折数”,然后求出3153x y ++的取值范围,进而分类讨论求得x ,y 的值,然后代入()11M NF M +=求解即可. 【详解】根据题意可得,()267887622678104011F +==;∵()5001200101M x y =+++(M ,y 为整数59x ≤≤,18y ≤≤), ∴M 的千位数字为6,百位数字为210x −,十位数字为1y +,个位数字为1, ∴M 的“翻折数”N 为()()10001001102106y x +++−+201001006x y =++()175593153x y x y =+++++,∵59x ≤≤,18y ≤≤, ∴333153150x y ≤++≤, ∵M 的“翻折数”N 能被17整除, ∴3153x y ++能被17整除, ∵x ,y 都是整数, ∴3153x y ++是整数,∴431533x y +=+,51,68,85,102,119,136,∴当431533x y +=+时,x ,y 无整数解, 当131535x y +=+时,13x y = = (舍去)或62x y = =,当831536x y +=+时,x ,y 无整数解, 当531538x y +=+时,x ,y 无整数解, 当2315310x y +=+时,36x y == (舍去)或85x y = = ,当9315311x y +=+时,x ,y 无整数解, 当6315313x y +=+时,x ,y 无整数解,∴当62x y = =时,()5001200610216231M =+×+×+=,1326N =,()6231132668711F M +==, 当85x y = =时,()5001200810516661M =+×+×+=,1666N =,()6661166675711F M +==, ∴()F M 的最大值为757, 故答案为:1040,757.三、解答题:(本大题共8个小题,第19题8分,其余每题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡...中对应的位置上. 19. 计算:(1)()22()m m n m n +−+(2)2214123a a a a −+÷ +【答案】(1)2n −; (2)321a a +−. 【解析】【分析】本题考查了整式的运算和分式的混合运算.解题的关键是掌握整式和分式混合运算顺序和运算法则.(1)利用完全平方公式和单项式乘多项式展开,再合并即可;(2)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果即可. 【小问1详解】解:()22()m m n m n +−+2222(2)m mn m mn n =+−++22222m mn m mn n =+−−− 2n =−;【小问2详解】解:2214123a a a a −+÷ + 2221413a a a a a+−÷+ ()()()321·2121a a a a a a ++=+− 321a a +=−. 20. 为了全面了解学生对校史的掌握情况,公能学校开展了校史知识竞赛.现从七、八年级的学生中各随机抽取20名学生的比赛成绩(百分制)进行收集、整理、描述、分析.所有学生的成绩均高于60分(成绩得分用x 表示,共分为四组:A .90100x <≤;B .8090x <≤;C .7080x <≤;D .6070x <≤;),下面给出了部分信息: 七年级20名学生的竞赛成绩为:68,76,78,79,84,85,86,86,86,86, 88,89,89,91,91,94,94,95,95,100.八年级20名学生的竞赛成绩在B 组的数据为:80,83,86,87,87,89,89. 七、八年级所抽学生的校史知识竞赛成绩统计表年级 七年级 八年级 平均数8787中位数 87 b众数 a92根据以上信息,解答下列问题:(1)填空:a =________;b =________;m =________;(2)根据以上数据分析,你认为在此次知识竞赛中,该校七、八年级中哪个年级学生对校史的掌握情况更好?请说明理由(写出一条理由即可);(3)公能学校七年级有500名学生、八年级有600名学生参加此次校史知识竞赛,请估计七、八年级参加此次知识竞赛的成绩优秀(90)x >的学生共有多少人? 【答案】(1)86;87;40(2)八年级学生安全知识竞赛成绩较好,理由见解析 (3)415 【解析】【分析】(1)根据众数和中位数定义求a 、b 值,先求出B 组人数占的百分比为35%,即可由%110%15%35%m =−−−求出m 值;(2)根据两个年级成绩的平均数相同,但八年级的中位数高于七年级,可得出结论; (3)用各年级的总人数乘以年级的优秀率,再相加,列式计算即可求解. 【小问1详解】解:在七年级20名学生的竞赛成绩中86出现的次数最多,故众数86a =; ∵八年级20名学生的竞赛成绩在B 组的数据为:80,83,86,87,87,89,89. ∴B 组人数占的百分比为:7100%35%20×=, ∵C 组人数占的百分比为15%,D 组人数占的百分比为10%, ∴A 组人数占的百分比为%110%15%35%40%m =−−−=,即40m =. ∴八年级20名学生竞赛成绩的中位数在B 组,的∴把八年级20名学生的竞赛成绩从小到大排列,排在中间的两个数分别是87,89,故中位数8789872b +=, 故答案:86;87;40. 【小问2详解】解:八年级学生安全知识竞赛成绩较好,理由如下:因为两个年级成绩的平均数相同,但八年级的中位数高于七年级,所以得到八年级学生安全知识竞赛成绩较好(答案不唯一); 【小问3详解】 解:750060040%20×+× 175240+415=(人), 答:估计该校七、八年级参加此次安全知识竞赛成绩优秀()90x >的学生人数大约是415人.【点睛】本题考查众数,中位数,统计表,扇形统计图,用样本估计总体,掌握相关统计量的意义以及计算方法是解答本题的关键.21. 在学习了平行四边形与正方形的相关知识后,智慧小组进行了更深入的探究.他们发现,如图所示的正方形ABCD ,分别取BC ,CD 的中点M ,N ,连接AM ,DN 交于点E ,过B 作AM 的垂线,交AM 于点Q ,交AD 于点P .则四边形BPDN 是平行四边形.(1)用尺规完成以下基本作图:过B 作AM 的垂线,交AM 于点Q ,交AD 于点P (只保留作图痕迹).(2)根据(1)中所作图形,智慧小组发现四边形BPDN 是平行四边形成立,并给出了证明,请补全证明过程.证明:∵四边形ABCD 是正方形,∴AD CD BC ==,90ADC C ∠=∠=°,AD BC ∥.又∵M ,N 分别为BC ,CD 的中点,∴12DM CD =,12CN BC =,∴ ① ,在ADM 与DCN 中,为AD CD ADM C DM CN =∠=∠ =∴()ADM DCN SAS ≌.∴ ② .又∵90CDN ADN ∠+∠=°,∴90DAM ADN ∠+∠=°,∴90AED ∠=°,又∵BP AE ⊥,∴90AQP AED ∠=∠=°,∴ ③ .又∵DP BN ∥ ∴四边形BPDN 是平行四边形.进一步思考,智慧小组发现任取BC ,CD 的上点N ,M (M 不与C ,D 重合),DM CN =,连接AM ,DN ,过B 作AM 的垂线,交AD 于点P ,则四边形BPDN 是 ④ .【答案】(1)见解析 (2)DM CN =;DAM CDN ∠=∠;∥BP DN ;进一步思考:四边形BPDN 是平行四边形 【解析】【分析】(1)利用尺规基本作图——经过直线外一点作已知直线的第一线作法作出图形即可;(2)先证明()SAS ADM DCN ≌,得到DAM CDN ∠=∠.从而证得90AQP AED ∠=∠=°,即可得到∥BP DN .又由正方形的性质得DP BN ∥,即可得出结论;进一步思考:证明()SAS ADM DCN ≌,得到DAM CDN ∠=∠,再证明∥BP DN ,又由正方形的性质得DP BN ∥,即可得出结论. 【小问1详解】解:如图所示,BP 就是所求作的经过点B 垂直于AM 于Q ,交AD 于P 的直线,【小问2详解】证明:∵四边形ABCD 是正方形,∴AD CD BC ==,90ADC C ∠=∠=°,AD BC ∥. 又∵M ,N 分别为BC ,CD 的中点, ∴12DM CD =,12CN BC =, ∴DM CN =,在ADM 与DCN 中,AD CD ADM C DM CN =∠=∠ =∴()SAS ADM DCN ≌. ∴DAM CDN ∠=∠. 又∵90CDN ADN ∠+∠=°, ∴90DAM ADN ∠+∠=°, ∴90AED ∠=°, 又∵BP AE ⊥,∴90AQP AED ∠=∠=°, ∴∥BP DN . 又∵DP BN ∥∴四边形BPDN 是平行四边形. 进一步思考:如图,∵四边形ABCD 是正方形,∴AD CD BC ==,90ADC C ∠=∠=°,AD BC ∥. 在ADM 与DCN 中,AD CD ADM C DM CN =∠=∠ =∴()SAS ADM DCN ≌. ∴DAM CDN ∠=∠. 又∵90CDN ADN ∠+∠=°, ∴90DAM ADN ∠+∠=°, ∴90AED ∠=°, 又∵BP AE ⊥,∴90AQP AED ∠=∠=°, ∴∥BP DN . 又∵DP BN ∥∴四边形BPDN 是平行四边形. 故答案为:平行四边形.【点睛】本题考查正方形的性质,全等三角形的判定与性质,尺规基本作图—作垂线,平行四边形的判定.熟练掌握正方形的性质,和平行四边形的判定是解题的关键.22. 重庆金沙天街某家蛋糕店推出了“流沙羊角”和“开心果羊角”两款特色蛋糕.(1)购买1个“流沙羊角”和1个“开心果羊角”需要37元,购买1个“流沙羊角”和2个“开心果羊角”需要54元,求“流沙羊角”和“开心果羊角”的单价分別为多少元?(2)国庆节当天,蛋糕店进行促销活动,将“流沙羊角”的单价降低了2m 元,“开心果半角”单价降低了m 元,节日当天“流沙羊角”的销量是“开心果羊角”销量的1.2倍,且“流沙羊角”的销售额为960元,“开心果羊角”的销售额为750元,求m 的值.【答案】(1)“流沙羊角”的单价为20元,“开心果羊角”的单价为17元 (2)2 【解析】【分析】本题考查二元一次方程组的应用,分式方程的应用,正确列出方程组或方程是解题的关键. (1)设“流沙羊角”的单价为x “开心果羊角”的单价为y 元,根据购买1个“流沙羊角”和1个“开心果羊角”需要37元,购买1个“流沙羊角”和2个“开心果羊角”需要54元,列出方程组,求解即可. (2)根据销量等于销售额除以销售单价,以“流沙羊角”的销量是“开心果羊角”销量的1.2倍,列出分式方程求解即可. 【小问1详解】解:设“流沙羊角”的单价为x 元,“开心果羊角”的单价为y 元,根据题意,得37254x y x y +=+= , 解得:2017x y = =, 答:“流沙羊角”的单价为20元,“开心果羊角”的单价为17元. 【小问2详解】 解:根据题意,得960750 1.220217m m=×−−, 解得:2m =,经检验,2m =是方程的解且符合题意, ∴m 的值为2.23. 如图1,在菱形ABCD 中,5AB =,8BD =,动点P 从点A 出发,沿着A B C −−的路线运动,到达C 点停止,过点P 作PQ BD ∥交菱形的另一边于点Q .设动点P 行驶的路程为x ,点P 、Q 的距离为y .(1)请直接写出y 关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出函数y 的图象,并写出函数y 的一条性质;(3)函数11y x b 2=+与函数y 只有一个交点,求b 的取值范围. 【答案】(1)()()80558165105x x y x x ≤≤ =−+<≤ ; (2)作图见解析,当05x ≤≤时,y 随x 的增大而增大;当510x <≤时,y 随x 的增大而减小; (3)50b −≤<或112b =. 【解析】【分析】(1)分点P 在AAAA 上和点P 在BC 上两种情况讨论,利用相似三角形的判定及性质构造等量关系,即可得到答案;(2)根据(1)所得函数关系式,利用描点法画图,再写出该函数的性质即可;(3)结合函数图象,将()5,8、()0,0和()10,0代入11y x b 2=+,分别求出b 的值,即可得出b 的取值范围.【小问1详解】解:如图,点P 在AAAA 上时,05x ≤≤,∵PQ BD ∥, ∴APQ ABD ∽,∴AP PQ AB BD =即58x y=, ∴85y x =, ∵5AB =,如图,点P 在BC 上时,∵四边形ABCD 是菱形, ∴5BC AB ==, ∴10PC x =−,当点P 在BC 上时,510x <≤, ∵PQ BD ∥, ∴CPQ CBD ∽,∴CP PQ CB BD =即1058x y −=, ∴8165y x =−+,综上可知,y 关于x 的函数表达式为()()80558165105x x y x x ≤≤ =−+<≤ 【小问2详解】解:由(1)所得关系式可知,x0 5 8 10 y83.2函数图象如下:性质:当05x ≤≤时,y 随x 的增大而增大;当510x <≤时,y 随x 的增大而减小;(答案不唯一) 【小问3详解】解:如图,由图象可知,函数11y x b 2=+的图象在3l 和2l 之间时,与函数y 只有一个交点, 将()5,8代入11y x b 2=+,得:1852b =×+,解得:112b =, 将()0,0代入11y x b 2=+,得:0b =, 将()10,0代入11y x b 2=+,得:5b =−, ∴b 的取值范围为50b −≤<或112b =.【点睛】本题考查了菱形的性质,相似三角形的判定及性质,求一次函数解析式,描点法画函数图象,一次函数图象和性质,两直线交点问题等知识,利用数形结合和分类讨论的思想解决问题是关键.24. 如图,M 为沙坪坝区物流中心,N ,P ,Q 为三个菜鸟驿站,N 在M 的正南方向4.3km 处,Q 在M 的正东方向,P 在Q 的南偏西37°方向2.5km 处,N 在P 南偏西64°方向.(sin370.60°≈,cos370.80°≈,tan370.75°≈,sin640.90°≈,cos640.44°≈,tan64 2.05°≈)(1)求驿站P ,驿站N 之间的距离(结果精确到0.1km ); (2)“双11”期间,派送员从沙坪坝区物流中心M 出发,以30km/h 的速度沿着M N P Q ———的路线派送快递到各个驿站,派送员途径N ,P 两个驿站各停留6min 存放快递,请计算说明派送员能否在40min 内到达驿站Q ?【答案】(1)5.2km (2)能,理由见解析 【解析】【分析】本题考查解直角三角形的应用,将实际问题转化成解直角三角形的问题,利用解直角三角形的 知识求解是解题的关键.(1)过点P 作PA MN ⊥于A ,PB MQ ⊥于B ,先解Rt PBQ △,求得2km PB =,再证明2km AM PB ==,从而得出 2.3km AN =,然后解Rt PAN △,即可求解. (2)求出派送员所需总时间,再与40min 比较即可得出答案. 【小问1详解】解:过点P 作PA MN ⊥于A ,PBMQ ⊥于B ,如图,根据题意,得37BPQ PQD ∠=∠=°,64PNA NPC ∠=∠=°, 4.3km MN =, 2.5km PQ =, 在Rt PBQ △中,∵cos PB BPQ PQ∠=, ∴()cos 2.5cos37 2.50.802km PBPQ BPQ =⋅∠=×°≈×=, ∵PA MN ⊥,PBMQ ⊥,90NMQ ∠=°,∴四边形AMBP 是矩形, ∴2km AM PB ==,∴()4.32 2.3km AN MN AM =−=−=,在Rt PAN △中,∵cos PNA ∠∴()2.3 2.3 5.2km cos cos 640.44ANPNPNA ==≈≈∠°,答:驿站P ,驿站N 之间的距离约为5.2km . 【小问2详解】解:∵30km/h 0.5km/min =,∴()()4.3 5.2 2.50.56236min ++÷+×=, ∵36min<40min ,∴派送员能在40min 内到达驿站Q .25. 如图1,在平面直角坐标系中,直线112y x =−+与抛物线()230y ax x a =−+≠交于A ,B 两点,且点A 在x 轴上,直线与y 轴交于点C .(1)求抛物线的表达式;(2)P 是直线AB 上方抛物线上一点,过P 作PQ y ∥轴交直线AB 于点Q ,求PQ AQ 的最大值,并求此时点P 的坐标;(3)在(2)PQ AQ 的最大值的条件下,连接BP ,将抛物线沿射线BA 方向平移,使得点A 在新抛物线的对称轴上,M 是新抛物线上一动点,当MAB BPQ ∠=∠时,直接写出所有符合条件的点M 的坐标.【答案】(1)2134y x x =−−+(2)PQ AQ +的最大值为4,()2,4P −(3)点M 的坐标为()2,2或 【解析】【分析】(1)先由一次函数解析式求出点()2,0A ,再把()2,0A 代入23y ax x =−+,求出a 值即可;(2)延长PQ 交y 轴于D ,证明OAC DAQ ∽,得AC OC AQ DQ =1DQ =,求得DQ AQ =,再设21,34P x x x −−+ ,则1,12Q x x−+ ,则211242PQ x x =−−+,112QD x =−+,所以()21244PQ AQ PQ QD PD x +=+==−++,利用二次函数最值即可求解. (3)根据平移的性质求得抛物线平移后的解析式为2114y x x =−++,再分两种情况:当点M 在直线AB 上方时,当点M 在直线AB 下方时,分别求解即可. 【小问1详解】解:对于直线112y x =−+, 令0y =,则1102x −+=,解得:2x =, ∴()2,0A ,把()2,0A 代入23y ax x =−+,得0423a −+, 解得:14a =−, ∴抛物线的表达式2134y x x =−−+. 【小问2详解】解:延长PQ 交y 轴于D ,对于直线112y x =−+, 令0x =,则1y =, ∴CC (0,1), ∵()2,0A∴AC ==∵PQ y ∥轴,即QD OC ∥, ∴OAC DAQ ∽∴AC OC AQ DQ =1DQ=,∴DQ AQ =, 设21,34P x x x −−+ ,则1,12Q x x −+,∴2211113124242PQ x x x x x=−−+−−+=−−+,112QD x =−+∴()221132444PQ AQ PQ QD PD x x x =+==−−+=−++ ∵104−< ∴当2x =−时,PQ AQ +的最大值为4; ∴()2,4P −. 【小问3详解】解:联立,2134112y x x y x =−−+=−+, 解得:1143x y =− = ,2220x y = = ,∴()4,3B −,由(2)知,在PQ AQ +的最大值的条件下,抛物线的顶点为点()2,4P −,对称为直线PQ , 当2x =−时,则()12122y =−×−+=, ∴()2,2Q −, 则2PQ =,PB QB∴BPQ BQP ∠=∠, ∵将抛物线沿射线BA 方向平移,使得点A 在新抛物线的对称轴上, ∴点Q 平移后与点A 重合, ∵()2,2Q −,()2,0A ,∴抛物线沿射线BA 方向平移,是向下平移了2个单位,向右平移了4个单位,∴抛物线顶点()2,4P −平移后到点()2,2P ′,点()4,3B −平移后到点()0,1B ′,即B ′与C 重合,∴BPQ B P A ′′ ≌,抛物线平移后的解析式为()221122144y x x x =−−+=−++,∴BPQ B P A ′′∠=∠, ∵()0,1B ′,()2,2P ′,∴P B =′=′∵()0,1B ′,()2,0A ,∴AB ′=,∴P B AB ′′′=, ∴B AP B P A ′′′′∠=∠, 当点M 在直线AB 上方时,∵MAB BPQ ∠=∠, ∴MAB B P A ′′∠=∠, ∴点M 与点P ′重合, ∴()2,2M ,当点M 在直线AB 下方时,设21,14M x x x−++, 过点M 作ME PQ ∥,交AB 于E ,交x 轴于N ,则MEA BQP ∠=∠,1,12E x x−+, 则AOC ANE △∽△,∴AC OCAE EN=,则E AE EN AC =⋅=, ∵MAB BPQ ∠=∠, ∴BPQ MAE △∽△,∴BQ PQ ME AE=,则BQ ME PQ AE =,=,整理得:32E M y y =−, 即:231111224x x x −+=−−++,解得:x =(x =,此时,M y =∴M , 综上,符合条件的点M 的坐标为()2,2或. 【点睛】本题属二次函数综合题目,主要去向不明了待定系数法求抛物线解析式,抛物线的性质,抛物线的平移,相似三角形的判定与性质,综合性较强,熟练掌握相关性质是解题的关键.26. 在ABC 中,AC BC =,D 为线段AB 上一点,连接CD .(1)如图1,若30B ∠=°,AC AD =,过A 作AE CD ⊥于O ,交BC 于E ,2CE =,求线段BE 的长;(2)如图2,过点B 作BF CD ⊥交CD 延长线于点F ,以BC 为斜边在ABC 的右侧作等腰直角三角形BCG ,过点G 作GH AB ∥,交DC 的延长线于点H ,HC FB =.猜想线段AD ,BD ,CD 的数量关系,并证明你的猜想;(3)如图3,60ACB ∠=°,过A 作AQ BC ⊥于Q ,作ACB ∠的角平分线交AQ 于M ,取CM 的中点N ,连接QN .点K 为直线BC 上的动点,连接NK ,将QKN 沿着NK 所在直线翻折至ABC 所在平面得到Q KN ′ ,连接MQ ′,取MQ ′中点P ,连接CP .将12CD 绕着点D 顺时针旋转至直线AB 上方DR 处,使得BDR ACD ∠=∠.当CP 取得最小值时,连接AP ,PR ,AR ,当ARP △以AP 为腰的等腰三角形时,请直接写出DR AP的值. 【答案】(1)(2)AD BD =+(3 【解析】【分析】(1)利用等腰三角形的性质得120ACB ∠=°,75ACD ∠=°,得45DCE ∠=°,根据线段垂直平分线性质,得2CE DE ==,得90CED ∠=°,即得BE = (2)过点C 作CI AB ⊥于I ,得AI BI =,根据等腰直角BCG 中,90BG CG BGC =∠=°,,BF CD ⊥,得点G 、C 、F 、B 在以BC 为直径的圆上,得GCH GBF ∠=∠,结合HC FB =,得()SAS GCH GBF ≌,得GF GH BGF CGH =∠=∠,, 得90FGH ∠=°,证明45IDC H ∠=∠=°,得DI =,根据BI BD DI =+,AD AI DI =+,即得AD BD =+;(3)证明当'Q 与C 重合时,点P 与点N 重合,PC 取得最小值,当AP AR =时,设CD 中点为T ,连接RT BR CR ,,,由对称性知,点R 在ABC ∠的平分线上,得CR AR =,由BDR ACD ∠=∠,得60CDR CAD ∠=∠=°,根据RT DT CT ==,得DTR 是等边三角形,得30RCT ∠=°,90CRD ∠=°,得tan DR DCR CR ∠=;②延长CM 交AB 于L ,过B 作BS AC ∥,交DR 延长线于S ,连接CS ,则AL BL =,60CBS ACB ∠=∠=°,得60CBS CDS ∠=∠=°,得B 在过C 、D 、S 三点的圆上,得60CSD CBD ∠=∠=°,得 CDS 是等边三角形,当D 与点B 重合时,T 与Q 重合,点R 在BS 上,根据150NQB NQR ∠=∠=°,BQ RQ NQ NQ ==,,得()SAS BQN RQN ≌,得BN RN =,得AN RN =,设ABC 的边长为2,则1AL =,CL =,根据23CM CL =,N 是CM 中点,得NL =,得AN =DR AP =【小问1详解】解:AC BC = ,30B ∠=°。
广西南宁市广西大学附属中学2024-2025学年九年级上学期数学期中考试试题一、单选题1.中国“二十四节气”已被正式列入联合国教科文组织人类非物质文化遗产代表作品录,下列四幅作品分别代表“立春”“谷雨”“白露”“大雪”,其中是中心对称图形的是()A .B .C .D .2.下列几何体是由4个棱长为1的小正方体搭成的,其中左视图面积等于3的是()A .B .C .D .3.下列说法不正确的是()A .抛掷一枚硬币,硬币落地时正面朝上是随机事件B .把4个球放入二个抽屉中(每个抽屉中必须有球),其中一个抽屉中至少有2个球是必然事件C .任意打开九年级下册数学教科书,正好是97页是确定性事件D .“经过有交通信号灯的路口,遇到红灯”是随机事件4.我国森林面积逐年地加,2022年森林覆盖面积为2.2亿公顷,2024年森林覆盖面积达2.3亿公顷,设森林覆盖面积年平均增长率为x ,则所列方程正确的是()A .22.2(1) 2.3x +=B .22.2(1) 2.3x -=C .2.2(12) 2.3x -=D .2.2(12) 2.3x +=5.如图,以O 为圆心,任意长为半径画弧,与射线OA 交于点B ,再以B 为圆心,BO 长为半径画弧,两弧交于点,C 画射线OC ,则tan AOC ∠的值为()A .12B .3C D 6.已知一个扇形的面积是24π,弧长是2π,则这个扇形的半径为()A .24B .22C .12D .67.如图,在正方形网格中,图中阴影部分的两个图形是一个经过旋转变换得到另一个的,其旋转中心可能是()A .点AB .点BC .点CD .点D8.若4x =是关于x 的一元二次方程240x mx +-=的一个根,则另一个根是()A .1x =B .1x =-C .3x =D .3x =-9.如图,在ABC V 中,点D 在A 上,2BD AD =,DE BC ∥交AC 于E ,则下列结论不正确的是()A .3BC DE =B .BD CEBA CA=C .ADE ABC△△∽D .13ADE ABCS S = 10.如图,点A 在反比例函数112(0)y x x=>的图象上,过点A 作AB x ⊥轴,垂足为B ,交反比例函数24(0)y x x=>的图象于点C ,P 为y 轴上一点,连接PA PC ,,则APC △的面积为()A .8B .6C .4D .211.如图,AB 是⊙O 的弦,OC ⊥AB ,垂足为点C ,将劣弧 AB 沿弦AB 折叠交于OC 的中点D ,若AB =O 的半径为()A .B .C .D .12.已知抛物线23y x bx =-++的顶点坐标为()1,4,若关于x 的一元二次方程230x bx t -++-=(为实数)在15x -≤≤范围内有两个不同的实数根,则实数t 的取值范围是()A .124t -≤<B .4t <C .120t -<≤D .04t ≤<二、填空题13.已知O 的半径为4cm ,点P 到圆心O 的距离为3cm ,则点P 在O (填内、上、外).14.在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有4个红球,每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在0.25左右,则白球的个数约为.15.如图,在平面直角坐标系中,已知点B 的坐标为()3,4-,射线OB 与y 轴正半轴的夹角为α,则sin α的值为.16.如图,在平面直角坐标系中,直线()10y ax b a =+≠与双曲线()20ky k x=≠交于点()1,A m -,()2,1B -.则满足12y y ≤的x 的取值范围.17.如图,在期末体育测试中,小朱掷出的实心球的飞行高度y (米)与水平距离x (米)之间的关系大致满足二次函数21381055y x x =-++,则小朱本次投掷实心球的成绩为18.如图,在等边△ABC 中,6AB =,点P 是边BC 上的动点,将△ABP 绕点A 逆时针旋转60o 得到△ACQ ,点D 是AC 边的中点,连接DQ ,则DQ 的最小值是.三、解答题19()1112022tan 602π-⎛⎫-+-+-︒ ⎪⎝⎭20.解方程:()230x x --=.21.如图,在边长为1的小正方形组成的网格中,ABC V 的顶点在格点(网格线的交点)上,以点O 为原点建立平面直角坐标系,点B 的坐标为1,0.(1)将ABC V 向左平移5个单位长度,得到111A B C △,画出111A B C △;(2)以点O 为位似中心,将111A B C △放大到两倍(即新图与原图的相似比为2),得到222A B C △,在所给的方格纸中画出222A B C △;(3)若点M 是AB 的中点,经过(1)、(2)两次变换,M 的对应点M 2的坐标是.22.为全面增强中学生的体质健康,某学校开展“阳光体育活动”,开设了:A .跳绳;B .篮球;C .排球;D .足球,这4门选修课,要求每名学生只能选择其中的一项参加.全校共有100名男同学选择了A 项目,为了解选择A 项目男同学的情况,从这100名男同学中随机抽取了30人在操场进行测试,并将他们的成绩x (个/分钟)绘制成频数分布直方图.(1)若抽取的同学的测试成绩落在160165x ≤<这一组的数据为160,162,161,163,162,164,则该组数据的中位数是______,众数是______;(2)根据题中信息,估计选择B 项目的男生共有______人,扇形统计图中D 项目所占圆的圆心角为______度;(3)学校准备推荐甲、乙、丙、丁四名同学中的2名参加全区的跳绳比赛,请用画树状图法或列表法计算出甲和乙同学同时被选中的概率.23.如图,四边形ABCD 内接于⊙O ,BD 是⊙O 的直径,AE ⊥CD 于点E ,DA 平分∠BDE .(1)求证:AE 是⊙O 的切线;(2)如果AB=4,AE=2,求⊙O 的半径.24.有这样一个问题:探究函数62y x =-的图象与性质并解决问题,小明根据学习函数的经验,对问题进行了探究.下面是小明的探究过程,请补充完整:(1)62y x =-的自变量x 的取值范围是_______.(2)取几组y 与x 的对应值,填写在如表中.x…4-2-1-01 1.2 1.25 2.75 2.834568…y…1 1.52367.5887.563m1.51…m 的值为_______;(3)如图,在平面直角坐标系xOy 中,描出补全后的表中各组对应值所对应的点,并画出该函数的图象;(4)获得性质,解决问题:①通过观察、分析、证明,可知函数62y x =-的图象是_______图形(选填“轴对称”或“中心对称”);②过点()()1,06P n n <<作直线l x ∥轴,与函数62y x =-的图象交于点M ,N (点M 在点N 的左侧),求PN PM -的值_______.25.综合与实践【问题情境】在综合与实践课上,老师出示了这样一个情境:在ABC V 中,AB CB =,AC AB ≠,=45ABC ∠︒,将ABC V 绕点A 逆时针旋转得到ADE V ,点D ,E 的对应点分别是点B ,C .【初探感知】(1)如图1,E ∠=____________︒;【深入领悟】(2)如图2,当线段DE 经过点C 时,求证:AD BC ⊥;【融会贯通】(3)如图3,在旋转的过程中,当点D 落在BC 的延长线上时,过点E 作EG BD ∥,交BA 的延长线于点G .请你判断线段AG 和CD 的数量关系,并说明理由.26.2024年“广西三月三·八桂嘉年华”盛大开幕,远在北京的小明慕名而来.热情好客的广西人给他敬了一碗糯米酒.爱思考的他发现:酒碗的截面图如图1所示,碗体呈抛物线状(碗体厚度不计),点E 是抛物线的顶点,碗底高1cm EF =,碗口宽DC 与碗底宽AB 平行.当碗中装满酒时,酒面宽DC =,此时酒的最大深度6cm EG =.以F 为原点,水平线A 为x 轴,直线EF 为y 轴,建立平面直角坐标系如图2所示.请你结合初中所学,解决小明提出的问题:(1)求出图2中抛物线的解析式;(2)喝掉部分酒后,其酒面下降了1cm 至线段MN 处,试求此时酒面MN 的宽度;(3)将酒碗绕点B 缓缓倾斜倒出部分酒,如图3,当30ABK ∠=︒时停止,求此时的酒面CH 的值.。
浙教版九年级(上)期中数学试卷一、选择题:本大题共10小题,每小题3分,共30分1.已知3x=7y(y≠0),则下列比例式成立的是()A.B.C.D.2.如图,E,F,G为圆上的三点,∠FEG=50°,P点可能是圆心的是()A.B.C.D.3.掷一枚质地均匀的标有1,2,3,4,5,6六个数字的立方体骰子,骰子停止后,出现可能性最大的是()A.大于4的点数B.小于4的点数C.大于5的点数D.小于5的点数4.抛物线y=2x2﹣1的图象经过点A(﹣3,y1),B(1,y2),C(4,y3),则y1,y2,y3大小关系是()A.y1<y2<y3B.y1<y3<y2C.y2<y1<y3D.y3<y2<y15.在直角坐标平面内,点A的坐标为(1,0),点B的坐标为(a,0),圆A的半径为2.下列说法中不正确的是()A.当a=﹣1时,点B在圆A上B.当a<1时,点B在圆A内C.当a<﹣1时,点B在圆A外D.当﹣1<a<3时,点B在圆A内6.如图,△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠CAA′的度数是()A.50°B.70°C.110°D.120°7.如图,⊙O的半径为5,AB为弦,若∠ABC=30°,则的长为()A.5B.πC.D.π8.一条抛物线y=ax2+bx+c的顶点为(2,m),m<0,且与x轴有两个交点,其中一个交点是(5,0),则对a、b、c描述正确的是()A.a>0、b<0、c>0B.a>0、b<0、c<0C.a<0、b>0、c>0D.a<0、b>0、c<09.如图,△ABC内接于半径为的半⊙O,AB为直径,点M是的中点,连接BM交AC于点E,AD平分∠CAB交BM于点D,且D为BM的中点,则BC的长为()A.B.C.D.10.二次函数y=x2+px+q,当0≤x≤1时,设此函数最大值为8,最小值为t,w=s﹣t,(s 为常数)则w的值()A.与p、q的值都有关B.与p无关,但与q有关C.与p、q的值都无关D.与p有关,但与q无关二、填空题(本大题共6小题,每小题4分,共24分.请把答案填在题中的横线上)11.当x=0时,函数y=2x2+4的值为.12.如图,直线l1∥l2∥l3,直线AC依次交l1、l2、l3于A、B、C三点,直线DF依次交l1、l2、l3于D、E、F三点,若,DE=2,则EF=.12题14题15题13.已知线段AB=2,如果点P是线段AB的黄金分割点,且AP>BP,那么AP的值为.14.如图,在5×3的网格图中,每个小正方形的边长均为1,设经过图中格点A,C,B三点的圆弧与BD交于E,则图中阴影部分的面积为.(结果保留π)15.如图,将平行四边形ABCD绕点A顺时针旋转,其中B,C,D分别落在点E,F,G 处,且点B,E,D,F在一直线上,BC=2,若点E是BD的中点,则AB的长度为.16.已知二次函数y=ax2+bx+1(a≠0)的图象的顶点在第二象限,且过点(1,0).当a﹣b为整数时,ab=.三、解答题:(本大题共7小题,共66分)17.已知x:y=2:3,求:(1)的值;(2)若x+y=15,求x,y的值.18.已知二次函数y=x2+bx+c过(1,0),(0,﹣3).(1)求该二次函数的解析式;(2)若﹣1≤x≤1,求y的取值范围.19.一只不透明的袋子中装有1个白球、2个黄球和3个红球,每个球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球;①判断摸到什么颜色的球可能性最大?②求摸到黄颜色的球的概率;(2)如果把白球拿出来,将剩下的5个球摇匀,从中任意摸出2个球,求摸到2个都是黄颜色球的概率.20.某公司对办公大楼一块墙面进行如图所示的图案设计.这个图案由四个全等的直角三角形和一个小正方形拼接而成的大正方形,设小正方形的边长m,直角三角形较短直角边长n,且n=m﹣2,大正方形的面积为S.(1)求S关于m的函数关系式;(2)若小正方形边长不大于3,当大正方形面积最大时,求m的值.21.如图,BC是⊙O的直径,点A、D在⊙O上,AH⊥BC于H.(1)若,求证:CH=HO;(2)若BC=10,AC=6;①求AH的长;②若DB∥OA,求DB的长.22.在平面直角坐标系中,设二次函数y1=x2+bx+c,y2=﹣x2+bx﹣c(b,c是实数).(1)若函数y1的图象经过点(r,g),求证函数y2的图象经过点(﹣r,﹣g).(2)设函数y1和函数y2的最值分别为m和n;①若函数y1的图象先向右平移2个单位,再向下平移2个单位得到函数y3,若函数y3的最值为k,若k=n,求b,c的值.②若m=n且函数y1的图象经过点(p,q)和(p+6,q)两点,求q的值.23.如图,AB是⊙O的直径,弦CD⊥AB于点E,G是上一点,AG,DC的延长线交于点F,连接AD,GD,GC.(1)求证:∠CGF=∠AGD.(2)已知∠DGF=120°,AB=4.①求CD的长.②若,求△CDG与△ADG的面积之比.浙教版九年级(上)期中数学试卷参考答案与试题解析一.选择题1.B.2.C.3.D.4.C.5.B.6.D.7.D.8.解:由题意得:,解得,由c﹣4a<0得,﹣5a﹣4a<0,故a>0,则b<0,c<0,故选:B.9.如图,△ABC内接于半径为的半⊙O,AB为直径,点M是的中点,连接BM交AC于点E,AD平分∠CAB交BM于点D,且D为BM的中点,则BC的长为()∵AB是直径,∴∠AMB=90°,∠ACB=90°,∴∠CAB+∠CBA=90°,∵=,∴∠CBM=∠ABM,∵∠CAD=∠BAD,∴∠DAB+∠DBA=(∠CAB+∠CBA)=45°,∴∠ADB=180°﹣(∠DAB+∠DBA)=135°,∵∠ADM=180°﹣∠ADB=45°,∴MA=MD,∵DM=DB,∴BM=2AM,设AM=x,则BM=2x,∵AB=2,∴x2+4x2=20,∴x=2(负根已经舍弃),∴AM=2,BM=4,∵•AM•BM=•AB•MH,∴MH=,∴OH=,∵,∴OM⊥AC,∴AF=FC,∵OA=OB,∴BC=2OF,∵∠OHM=∠OF A=90°,∠AOF=∠MOH,OA=OM,∴△OAF≌△OMH(AAS),∴OF=OH=,∴BC=2OF=.故选:C.10.二次函数y=x2+px+q,当0≤x≤1时,设此函数最大值为8,最小值为t,w=s﹣t,(s为常数)则w的值()A.与p、q的值都有关B.与p无关,但与q有关C.与p、q的值都无关D.与p有关,但与q无关解:∵二次函数y=x2+px+q=(x+)2+,∴该抛物线的对称轴为x=﹣,且a=1>0,当x=﹣<0,∴当x=1时,二次函数有最大值为:1+p+q=8,即p+q=7,∴当x=0时,二次函数有最小值为:q=t,即t=7﹣p,当x=﹣>1,∴当x=0时,二次函数有最大值为:q=8,∴当x=1时,二次函数有最小值为:1+p+q=t,即t=9+p,当0≤﹣<此时当x=1时,函数有最大值1+p+q=8,当x=﹣时,函数有最小值q﹣=t,即t=7﹣p﹣,<﹣≤1,当x=0时,函数有最大值q=8,当x=﹣时,函数有最小值q﹣=t,即t=8﹣,x=﹣=,当x=0或1时.函数有最大值q=8,当x=﹣时,函数有最小值q﹣=t,即t=8﹣∵w=s﹣t,∴w的值与p有关,但与q无关,故选:D.二.填空题(共6小题)11.4.12.EF= 1.5.13.﹣1.14.π﹣.(结果保留π)解:连接AD,AE,∵AD=AB==,BD==,∴AD2+AB2=BD2,∴∠BAD=90°,∴△ABD是等腰直角三角形,∵∠ACB=90°,∴AB是圆的直径,∴∠AEB=90°,∴BE⊥AE,∴∠ABE=∠BAE=45°,∴弧BE所对的圆心角为90°,∴图中阴影部分的面积=﹣×=﹣.15.AB的长度为.【分析】过点A作AH⊥BE于H,由平行四边形的性质和旋转的性质可证BD=BC=2,由等腰三角形的性质可得EH=BH=,由勾股定理可求AH的长,即可求解.解:如图,过点A作AH⊥BE于H,∴AH===,∴AB===,∴△ABE∽△BDC,∴,∴AB2=1×2,∴AB=16.已知二次函数y=ax2+bx+1(a≠0)的图象的顶点在第二象限,且过点(1,0).当a ﹣b为整数时,ab=.解:依题意知a<0,,故b<0,且b=﹣a﹣1,a﹣b=a﹣(﹣a﹣1)=2a+1,于是﹣1<a<0,又∵a﹣b为整数,∴2a+1=0,解得,a=﹣,∴b=﹣a﹣1=﹣(﹣)﹣1=﹣,∴ab=(﹣)×(﹣)=,故答案为:.三.解答题17.(1)==﹣2;(2)∴x=6,y=9.18.(1)则二次函数解析式为y=x2+2x ﹣3;(2)故当﹣1≤x≤1时,y的取值范围为﹣4≤y≤0.19.解:(1)①∴摸到红球的可能性最大;②摸到黄颜色的球的概率是=;(2)∴摸到2个都是黄颜色球的概率为=.20.解:(1)∴S关于m的函数关系式为S=5m2﹣12m+8(m>2);(2)由(1)知,S=5m2﹣12m+8=5(m﹣1.2)2+0.8,∴当大正方形面积最大时,m=3.21.【解答】(1)证明:∵,∴∠AOB=2∠AOC,∴∠AOC=×180°=60°,∵AO=CO,∴△AOC是等边三角形,∵AH⊥BC于H,∴CH=HO;(2)解:①∵BC是⊙O的直径,∴∠CAB=90°,∴AB===8,∵BC•AH=AB•AC,∴AH===4.8;②连接CD交OA于E,则∠BDC=90°=∠AHO,∵DB∥OA,∴∠CBD=∠AOC,∴△AHO∽△CDB,∴,∴,∴CD =9.6,根据勾股定理得,DB===2.8.22.在平面直角坐标系中,设二次函数y1=x2+bx+c,y2=﹣x2+bx﹣c(b,c是实数).(1)若函数y1的图象经过点(r,g),求证函数y2的图象经过点(﹣r,﹣g).(2)设函数y1和函数y2的最值分别为m和n;①若函数y1的图象先向右平移2个单位,再向下平移2个单位得到函数y3,若函数y3的最值为k,若k=n,求b,c的值.②若m=n且函数y1的图象经过点(p,q)和(p+6,q)两点,求q的值.解:(1)∵函数y1的图象经过点(r,g),∴g=r2+br+c,∴﹣g=﹣r2﹣br﹣c,把x=﹣r代入y2=﹣x2+bx﹣c得,y2=﹣r2﹣br﹣c=﹣g,∴函数y2的图象经过点(﹣r,﹣g);(2)函数y1的图象先向右平移2个单位,再向下平移2个单位得到函数y3=(x﹣2)2+b (x﹣2)+c﹣2,即y3=x2+(b﹣2)x+2﹣2b+c,∵函数y3的最值为k,且k=n,∴=,整理得4﹣4b=0,解得b=1,∴y3=x2﹣x+c,y2=﹣x2+x﹣c,∴函数y2的图象与函数y3的图象关于x轴对称,∴k=n=0,∴=0,∴4c=b2=1,∴c=;(3)∵函数y1和函数y2的最值分别为m和n,∴m=,n=,∵m=n,∴=,∴8c=2b2,即c=,∴y1=x2+bx+=(x+)2,∵函数y1的图象经过点(p,q)和(p+6,q)两点,∴﹣==p+3,∴y1=(x﹣p﹣3)2,∴q=(p﹣p﹣3)2=9.23.如图,AB是⊙O的直径,弦CD⊥AB于点E,G是上一点,AG,DC的延长线交于点F,连接AD,GD,GC.(1)求证:∠CGF=∠AGD.(2)已知∠DGF=120°,AB=4.①求CD的长.②若,求△CDG与△ADG的面积之比.【解答】(1)证明:连接AC,∵AB是⊙O的直径,弦CD⊥AB于点E,∴DE=CE,∴AD=AC,∴∠ADC=∠ACD,∵四边形ADCG是圆内接四边形,∴∠CGF=∠ADC,∵∠AGD=∠ACD,∴∠CGF=∠AGD;(2)解:①连接BD,∵∠∠DGF=120°,∴∠AGD=180°﹣120°=60°,∴∠ACD=∠ABD=∠AGD=60°,∴△ACD是等边三角形,∵AB是直径,∴∠ADB =90°,∴sin∠ABD==,∵AB=4,∴CD=AD=2;②∵∠DAG=∠F AD,∠AGD=∠ADC,∴△ADG∽△AFD,∴,∵,AD=CD=2,∴=,∴DF=3,AF•AG=AD2=12,∴CF=DF﹣CD=,∵∠GCF=∠DAF,∠F=∠F,∴△FCG∽△F AD,∴=,∴FG•F A=FC•FD==9,∴=,即=,∴,∵=,∴,∴=.。
北京景山学校2024—2025学年上学期期中考试九年级数学试题一、单选题1.第33届夏季奥林匹克运动会将于2024年7月26日-8月11日在法国巴黎举行,下列四个本届运动会项目图标中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2.将2420x x ++=左边配成完全平方后,得方程()A .()242x +=B .()222x +=C .()224x +=D .()244x +=3.如图,在O 中,C 是 AB 的中点,点D 是O 上一点.若40BOC ∠=︒,则ADC ∠的度数为()A .10︒B .20︒C .40︒D .80︒4.在一个不透明的口袋中装有3个白球,4个红球和5个黑球,它们除颜色外都相同,从中随机摸出一个球,恰好是白球的概率为()A .14B .34C .512D .135.如图,A ,B ,C 是某社区的三栋楼,若在AC 中点D 处建一个5G 基站,其覆盖半径为200m ,则这三栋楼中在该5G 基站覆盖范围内的是()A .A ,B ,C 都不在B .只有B C .只有A ,CD .A ,B ,C6.如图,抛物线2y ax bx c =++与x 轴交于点()10-,,对称轴为直线1x =,则下列结论中正确的是()A .0a >B .当1x >时,y 随x 的增大而增大C .0c <D .3x =是一元二次方程20ax bx c ++=的一个根7.如图,在正三角形网格中,以某点为中心,将MNP △旋转,得到111M N P △,则旋转中心是()A .点AB .点BC .点CD .点D8.计算机处理任务时,经常会以圆形进度条的形式显示任务完成的百分比,下面是同一个任务进行到不同阶段时进度条的示意图:当任务完成的百分比为x 时,线段..MN 的长度记为()d x .下列描述正确的是()A .当12x x >时,()()12d x d x >B .当()()12d x d x >时,12x x >C .当121x x =+时,()()12d x d x =D .当122x x =时,()()122d x d x =二、填空题9.抛物线23(1)2y x =--+的顶点坐标是.10.若m 是方程240x x +-=的一个实数根,则代数式22024m m ++的值为.11.如图,O 的直径AB 垂直于弦,38CD CAB ∠=︒,则BCD ∠=︒.12.南宋数学家杨辉所著《田亩比类乘除捷法》中记载:“直田积八百六十四步,只云长阔共六十步,问长及阔各几步.”译文:一块矩形田地的面积是864平方步,它的长和宽共60步,问它的长和宽各是多少步?设这块矩形田地的长为x 步,根据题意可列方程为.13.如图,AB 是半圆O 的直径,点C ,D 在半圆O 上.若∠ABC =50°,则∠BDC 的度数为°.14.下表显示了同学们用计算机模拟随机投针实验的某次实验的结果.投针次数n 100020003000400050001000020000针与直线相交的次数m 45497014301912238647699548针与直线相交的频率p =m n0.4540.4850.47670.4780.47720.47690.4774下面有三个推断:①投掷1000次时,针与直线相交的次数是454,针与直线相交的概率是0.454;②随着实验次数的增加,针与直线相交的频率总在0.477附近,显示出一定的稳定性,可以估计针与直线相交的概率是0.477;③若再次用计算机模拟此实验,则当投掷次数为10000时,针与直线相交的频率一定是0.4769.其中合理的推断的序号是:.15.若抛物线2y x bx c =++的顶点在x 轴上,且关于x 的不等式2x bx c m ++<的解集为13x -<<,则m 的值为.16.车间里有五台车床同时出现故障.已知第一台至第五台修复的时间如下表:车床代号ABC D E修复时间(分钟)1372359若每台车床停产一分钟造成经济损失10元,修复后即可投入生产.(1)若只有一名修理工,且一名修理工每次只能修理一台机床,则下列三个修复车床的顺序:①D A C E B →→→→;②D B E A C →→→→;③C A E B D →→→→中,经济损失最少的是(填序号);(2)若由两名修理工同时修复车床,且每台机床只由一名修理工修理,则最少经济损失为元.三、解答题17.解方程:2680x x -+=.18.下面是某学习小组设计的“过圆外一点作圆的切线”的尺规作图过程.已知:O 及圆外一点P .求作:过点P 且与O 相切的直线.作法:如图,①连接OP ,分别以O ,P 为圆心,大于12OP 长为半径画弧,两弧交于M ,N 两点;②作直线MN ,与OP 交于点Q ,以Q 为圆心,以OQ 长为半径作圆,交O 于A ,B 两点;③作直线PA ,PB .则直线PA ,PB 是所求作的O 的切线.根据该小组设计的尺规作图过程:(1)使用直尺和圆规,按照上述作法补全图形;(保留作图痕迹)(2)完成下面的证明.证明:连接OA ,MP ,MO ,NP ,NO ,∵MP MO =,NP NO =,∴MN 是OP 的垂直平分线,()(填推理的依据)∴Q 为OP 中点,QP QO =,∴OP 为Q 的直径,∴90PAO ∠=︒,()(填推理的依据)∵A 点在O 上,∴PA 是O 的切线.()(填推理的依据)19.如图,D 是等边三角形ABC 内一点,将线段AD 绕点A 顺时针旋转60︒,得到线段AE ,连接CD ,BE .(1)求证:AEB ADC ≌ ;(2)连接DE ,若96ADC ∠=︒,求BED ∠的度数.20.如图所示,每个小正方形的边长为1个单位长度,AOB V 的顶点均在格点上,点A 、B 的坐标分别是3,2,()1,3B .(1)点A 关于点O 中心对称的点的坐标为;(2)AOB V 绕点O 顺时针旋转90︒后得到11A OB △,在图中画出11A OB △,并写出点1B 的坐标;(3)求点B 运动的路径的长度.21.在平面直角坐标系xOy 中,抛物线2y x bx c =++经过点()0,3A -,()1,0B -.(1)求该抛物线的表达式;(2)在平面直角坐标系中画出抛物线的图象;(3)点1,1是抛物线上一点,若130y -<<,结合图象,直接写出1x 的取值范围.22.已知关于x 的一元二次方程2(2)10x m x m +-+-=.(1)求证:方程总有两个实数根;(2)若0m <,且此方程的两个实数根的差为3,求m 的值.23.阅读对话,解答问题.(1)分别用m ,n 表示好好从珊珊、帆帆袋子中抽出卡片上标有的数字,请用列表法写出(),m n 的所有取值;mn 1234(2)求在(),m n 的所有取值中使关于x 的一元二次方程220x mx n -+=有实数根的概率P .24.如图1所示的某种发石车是古代一种远程攻击的武器,将发石车置于山坡底部O 处,以点O 为原点,水平方向为x 轴方向,建立如图2所示的平面直角坐标系,将发射出去的石块当作一个点看,其飞行路线可以近似看作抛物线()220y a x k =-+的一部分,山坡OA 上有一堵防御墙,其竖直截面为ABCD ,墙宽2BC =米,BC 与x 轴平行,点B 与点O 的水平距离为28米、垂直距离为6米.(1)若发射石块在空中飞行的最大高度为10米,①求抛物线的解析式;②试通过计算说明石块能否飞越防御墙;(2)若要使石块恰好落在防御墙顶部BC 上(包括端点B 、C ),求a 的取值范围,25.如图,以四边形ABCD 的对角线BD 为直径作圆,圆心为O ,过点A 作AE CD ⊥的延长线于点E ,已知DA 平分BDE ∠.(1)求证:AE 是O 的切线.(2)若AE =8CD =,求O 的半径和AD 的长.26.在平面直角坐标系xOy 中,已知抛物线()250y ax bx a =+-<.(1)若抛物线过点()45-,.①求该抛物线的对称轴;②已知>0,当222m x m -≤≤+时,13y -≤≤,求a 的值.(2)若()()123(532A y B y C y ---,),,,,在抛物线上,且满足312y y y <<,当抛物线对称轴为直线x t =时,直接写出t 的取值范围.27.已知在Rt ABC △中,90ACB ∠=︒,AC BC =,CD AB ⊥于D ,E 为线段BC 上的一动点,连接ED ,将ED 绕点E 逆时针旋转90︒,得到线段EF ,连接AF 交直线..CD 于点G .(1)当E 与C 重合时,如图1,求证:AG FG =;(2)当E 与C 不重合时,如图2,则(1)中的结论是否成立?若成立请证明,若不成立请说明理由;AC ,直接写出CG长的最大值.(3)若228.对于平面直角坐标系xOy中的图形M和点P给出如下定义:Q为图形M上任意一点,若P,Q两点间距离的最大值和最小值都存在,且最大值是最小值的2倍,则称点P为图形M的“二分点”.已知点N(3,0),A(1,0),B(0,C1).(1)①在点A,B,C中,线段ON的“二分点”是;②点D(a,0),若点C为线段OD的“二分点”,求a的取值范围;(2)以点O为圆心,r为半径画圆,若线段AN上存在⊙O的“二分点”,直接写出r的取值范围.。
江西省景德镇市2024-2025学年上学期11月九年级数学期中考试数学试卷一、单选题1.下列方程是关于x 的一元二次方程的是()A .11x x-=B .()221x x x -=-C .2210x xy -+=D .210x -=2.一个菱形的面积是120,其中一条对角线的长为10,则另一条对角线长是()A .10B .12C .24D .263.化学课上张老师在讲解《物质的变化与性质》时,为了增加课堂的趣味性,特意准备了四张卡片,卡片上分别写有:酒精挥发、水结成冰、铁生锈、粮食酿酒,将四张卡片背面朝上放在讲台上(背面完全一样),老师让小华从中抽取一张,则小华抽到显示化学变化的卡片的概率是()A .12B .13C .14D .344.如果一个三角形两边的长分别等于一元二次方程217660x x -+=的两个实数根,那么这个三角形的第三边长可能是()A .19B .18C .17D .165.如图1,是古希腊时期的帕提侬神庙(Parthenon ),如图把虚线表示的矩形画出图2中的ABCD ,以矩形ABCD 的宽为边在其内部作正方形AEFD ,我们惊奇的发现点E 是AB 的黄金分割点,则BEAB=()A B C D .126.如图,在ABCD 中,4AB =,AD AB >,60ABC ∠=︒,45DAC ∠=︒,点P 在边AD 上运动且不与点A 、D 重合,连接BP ,取BP 的中点E ,过点P 作PF AC ⊥,垂足为点F ,连接EF ,则EF 的最小值为()A .2B .1C .32D .22二、填空题7.若52a b =,则a b b-=.8.对一批灯泡进行抽检,统计合格灯泡的只数,得到合格灯泡的频率见下表:抽取只数/只501001505001000200010000合格频率0.820.830.820.840.840.840.84估计从该批次灯泡中任抽一只灯泡是合格品的概率为.9.在平面直角坐标系中,将ABC V 的每一个顶点的横纵坐标均乘以2-,得到新的A B C ''' ,若24A B C S '''=△,则ABC S =.10.我国南宋数学家杨辉在1275年提出的一个问题:“直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少一十二步),问阔及长各几步?若设阔(宽)为x 步,则可列方程.11.如图,四边形ABCD 为正方形,点E 是BC 延长线上一点,且AC EC =,连接AE ,交CD 于点F ,则DAE ∠的度数为⋅12.如图,矩形ABCD 的长为8,宽为4,点E 在边BC 上,3BE =,在AD 上找一点P ,使AEP △为等腰三角形,则DP 的长为.三、解答题13.解方程(1)2670x x --=(2)210x x --=14.如图,在四边形ABCD 中,90C D ∠=∠= ,E 为CD 的中点,AE BE =,求证:四边形ABCD 为矩形.15.今年暑假,我市各中小学试行“阳光分班”方案,以树立教育公平为基本方向,实现机会均等,确保每个孩子享有公平而有质量的教育.某校七年级共设4个教学班,班号依次为1、2、3、4,分班过程分两批完成,第一批由家长代表抽签确定各班学生,第二批抽签确定各班学生对应的班主任.(1)充亮被抽到1班是_____事件(填“必然”“随机”)(2)求充亮和班主任计老师分到同一个班的概率(请用画树状图或列表的方法求解).16.如图,四边形ABCD 为菱形,120BCD ∠=︒,过点D 作DE BC ⊥交BC 延长线于点E ,请仅用无刻度直尺,按下列要求作图;(1)如图1,在边CD 上找一点F ,使13CF CD =;(2)如图2,在边AD 上找一点G ,使13AG CD =.17.请用配方法讨论关于x 的一元二次方程2220x x c --+=的根的情况.18.如图所示的小孔成像实验中,若物距EO 为12cm ,像在光屏上且像距FO 为18cm ,蜡烛火焰成倒立的像CD 的高度为9cm ,则:(1)点燃的蜡烛的火焰高度AB 是多少?(2)若将蜡烛沿着正对小孔的方向靠近小孔移动4cm ,光屏位置保持不变,则此时火焰星倒立的像的高度CD 为多少?19.已知关于x 的方程2230x x m -+-=有两个不相等的实数根.(1)求m 的取值范围;(2)化简:2m --.20.以下是我市热点新闻,请你从中挖掘数学信息,解决相关问题:(1)热点新闻1:2024年国庆期间,我市某景区接待游客约64.8万人次,接待游客量再创新高,继续推动我市旅游业高质量发展.数据显示,2022年该景区接待游客约45万人次,若该景区每年接待游客人数的增长率相同,则年平均增长率为多少?(2)热点新闻2:2024“望陶杯”江西省首届“NBA”篮球选拔赛在景德镇市成功举办,经历小组赛、淘汰赛的多轮角逐,黑猫集团代表队夺得了本次比赛的冠军.小组赛赛制为单循环制(每两队之间赛一场),已知小组赛共进行比赛28场,则此次参赛一共有多少个球队?21.在Rt ABC △中,90ACB ∠=︒,60BAC ∠=︒,D 为BC 的中点,过点D 作AC 的平行线交AB 于点E ,过点A 作CE 的平行线交DE 的延长线于点F .(1)求证:四边形ACEF 为菱形;(2)连接BF ,若2AC =,求BF 的长.22.追本溯源题(1)是北师大版初中数学九年级上册第57页复习题,请你完成解答,提炼方法后,完成题(2)、题(3).(1)解方程()()215140x x ---+=时,我们可以将1x -看成一个整体,设1x y -=,则原方程可化为2540y y -+=,解得11y =,24y =.当1y =,即11x -=,解得2x =;当4y =,即14x -=,解得5x =.所以原方程的解12x =,25x =.请你利用这种方法解方程:()()23543530x x +-++=.方法应用:(2)已知a 、b 、c 为ABC V 的三边,若()()22222340a b a b +-+-=,2c =,请判断ABC V 的形状,说明理由.(3)已知x 为实数且满足()()2221120x x x x -+--+-=,请直接写出21x x -+的值.23.马超同学在学完相似三角形的性质后对截任意三角形边的线段展开了如下探究:如图①,ABC V 中,点D 、E 分别是边AB 、AC 的中点,连接BE 、CD 、线段BE 、CD 交于点F ,已知ABC V 的面积为12.(1)ABE S = __________;:DF FC =__________;(2)ADFE S =四边形_____;如图②,ABC V 中,点D 为边AB 上的动点,过点D 作射线分别交边AC 及边BC 的延长线于点E 、F ,此时,马超同学发现,线段DF 与ABC V 的三边(或其延长线)都产生了交点,他把线段DF 称为的ABC V 的截线段;深入探究:(3)截线段上的三个交点D 、E 、F 与ABC V 的三个顶点A 、B 、C 所组成的线段(特别是交点所在边所形成的线段如AD 、:DB BF 、FC 等)之间是否存在某种数量关系?爱思考的马超同学立刻展开探究;根据已有的知识经验,为了找线段之间的关系,可尝试先考虑线段的比,因此,可尝试构造平行线从而得到相似三角形,进而得出线段之间比的关系:对任意ABC V ,过点A 作∥AG DF 交线段BF 的延长线于点G ,易得AD GFDB FB=,通过多次对比,马超得出了1AD BF CEDB FC EA⋅⋅=的重要结论,请根据图②沿着马超的思路尝试着证明该结论;通过以上结论,马超同学发现了一个有趣的事实,对于结论1AD BF CEDB FC EA⋅⋅=,该结论从结构上看,作为分子的三条线段首字母为ABC V 的三个顶点(A 、B 、C 顺序排列),而作为分母的三条线段的第二个字母恰为上方三个字母的延续如()AB BC CA 、、,而如字母D 、F 、E 恰为线段AB 、BC 、CA 边上(或延长线上)的点.方法应用:(4)如图③,ABC V 中,D 、E 、H 为边AB 、AC 、BC 上的点,34AD DB =,3AE EC=,若点H 为BC 的中点,连接AH 交线段DE 于点G ,请直接写出AGGH的值.。
浙江省杭州市上城区开元中学2024-2025学年九年级上学期期中数学试卷一、单选题1.下列各式中,y 是x 的二次函数的是()A .213y x =-B .23y x =-C .23y x =-D .y =2.一个不透明盒子里,共装有10个白球,5个红球,5个黄球,这些球仅颜色不同.小明从中任取一球,下列说法错误..的是()A .摸到白球的可能性最大B .摸到红球和黄球的可能性相同C .摸到白球的可能性为12D .摸到白球、红球、黄球的可能性都为133.已知O 的半径是4,3OP =,则点P 与O 的位置关系是()A .点P 在圆上B .点P 在圆内C .点P 在圆外D .不能确定4.如图,O 是四边形ABCD 的外接圆,连接OB OD ,,若110BCD ∠=︒,则BOD ∠的大小为()A .110︒B .120︒C .130︒D .140︒5.已知点()13,A y -,()22,B y -和()34,C y 都在二次函数()()210y a x a =+<的图象上,则()A .123y y y >>B .213y y y >>C .231y y y >>D .312y y y >>6.在Rt ABC △中,斜边4AB =,=60B ∠︒,将ABC V 绕点B 按顺时针方向旋转60︒,顶点C 运动的路线长是()A .π3B .2π3C .πD .4π37.一种大模型飞机模型表演中,已知该种飞机登陆后滑行的距离y (单位:米)与滑行时间(单位:秒)之间的函数关系表达式为2802y t t =-,则该种模型飞机登陆后滑行停止所需要的时间为()A .20秒B .25秒C .30秒D .40秒8.某超市销售一种商品,每件成本为50元,销售人员经调查发现,该商品每月的销售量y (件)与销售单价x (元)之间满足函数关系式5550y x =-+,若要求销售单价不得低于成本,为每月所获利润最大,该商品销售单价应定为多少元?每月最大利润是多少?()A .90元,4500元B .80元,4500元C .90元,4000元D .80元,4000元9.苏州园林中的月亮门是中国古典园林住宅中常见的圆弧形洞门(如图1),因圆形如月而得名.月亮门因其寓意美好且形态优美,被广泛使用.图2是小明同学家中的月亮门示意图,经测量,水平跨径AB 为2.4米,水平木条BD 和铅锤木条CD 长都为0.4米,点C 恰好落在O 上,则此月亮门的半径为()A .2.1米B .2.0米C .1.9米D .1.8米10.如图,O 中,弦AB CD ⊥,垂足为E ,F 为 CBD的中点,连接AF 、BF 、AC ,AF 交CD 于M ,过F 作FH AC ⊥,垂足为G ,以下结论:① CFDF =;②CFH BAF ∠=∠;③MF FC =;④ DF AH BF AF +=+,其中成立的个数是()A .1个B .2个C .3个D .4个二、填空题11.二次函数()223y x =-+与y 轴的交点坐标为.12.在一个不透明的袋子中装有6个白球,m 个黑球,这些球除颜色外都相同.若从袋子中随机摸出1个球,摸到白球的概率为13,则m 的值为13.陕西某民间灯会活动中,主题灯组上有一幅不完整的正多边形图案,如图,AB 与BC 为该正多边形的一组相邻边,小丽量得15BAC ∠=︒,则这个正多边形的边数为.14.如图,抛物线2y ax c =+与直线y mx n =+交于两点()()25A p B q -,,,,则不等式2ax mx c n -+≤的解集是.15.一条排水管的截面如图所示,已知排水管的半径5OA =,水面宽=6AB ,某天下雨后,水面宽度变为8,则此时排水管水面上升了.16.如图,以()0,1G 为圆心,半径为2的圆与x 轴交于A 、B 两点,与y 轴交于C ,D 两点,点E 为G 上一动点,CF AE ⊥于F ,则弦AB 的长度为;当点E 在G 的运动过程中,线段FG 的长度的最小值为.三、解答题17.已知一个二次函数的图象经过点()1,0A ,()2,0B ,()4,6C ,求这个二次函数的解析式.18.如图,为了美化校园,学校在一块靠墙角的空地上建造了一个扇形花圃,其圆心角120AOB ∠=o ,半径为6m ,求该扇形的弧长与面积.(结果保留π)19.小明和小亮玩一个游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下.小明和小亮各从中任意抽取一张.计算小明和小亮抽得的两个数字之和,如果和为奇数则小明胜,和为偶数则小亮胜.()1求小亮抽到标有数字3卡片取胜的概率;()2请判断该游戏对双方是否公平?请用列表法或树状图等方法说明理由.20.已知ABC V 在平面直角坐标系中的位置如图所示.(1)画出ABC V 绕点C 按顺时针方向旋转90︒的A B C ''△;(2)在(1)的条件下,仅使用无刻度的直尺作出A B C ''△的外接圆圆心P ,请在图中标出点P 的位置,要求保留作图痕迹,痕迹用实线表示(不写作法),并直接写出圆心P 的坐标:______.21.如图,OA OB =,AB 交O 于点C ,D ,OE 是半径,且OE AB ⊥于点F .(1)求证:AC BD =;(2)若10CD =,3EF =,求O 的半径.22.已知:如图,在半径为2的半圆O 中,半径OA 垂直于直径BC ,点E 与点F 分别在弦AB 、AC 上滑动并保持AE CF =,但点F 不与A 、C 重合,点E 不与A 、B 重合.(1)求证:BOE AOF V V ≌.(2)求四边形AEOF 的面积.(3)设OEF AE x S y == ,,写出y 与x 之间的函数关系式,求x 的取值范围.23.如图,已知抛物线223y x x =-++与x 轴交于点A ,与y 轴交于点N .其顶点为D .直线:1l y kx =+与抛物线223y x x =-++交于A ,(2,)C m 两点.(1)求k、m的值;(2)求三角形ACD的面积;△的面积的最大值.(3)若P是抛物线上位于直线AC上方的一个动点,直接写出APC24.如图,A、P、B、C是⊙O上四点,∠APC=∠CPB=60°.(1)判断△ABC的形状并证明你的结论;(2)当点P位于什么位置时,四边形PBOA是菱形?并说明理由.(3)求证:PA+PB=PC.。