电力电子技术 组合变流电路
- 格式:pps
- 大小:1.17 MB
- 文档页数:39
电力电子技术第四版课后题答案第八章第8章组合变流电路1. 什么是组合变流电路?答:组合变流电路是将某几种基本的变流电路(AC/DC、DC/DC、AC/AC、DC/DC)组合起来,以实现一定新功能的变流电路。
2. 试阐明图8-1间接交流变流电路的工作原理,并说明该电路有何局限性。
答:间接交流变流电路是先将交流电整流为直流电,在将直流电逆变为交流电,图8-1所示的是不能再生反馈电力的电压型间接交流变流电路。
该电路中整流部分采用的是不可控整流,它和电容器之间的直流电压和直流电流极性不变,只能由电源向直流电路输送功率,而不能由直流电路向电源反馈电力,这是它的一个局限。
图中逆变电路的能量是可以双向流动的,若负载能量反馈到中间直流电路,导致电容电压升高。
由于该能量无法反馈回交流电源,故电容只能承担少量的反馈能量,这是它的另一个局限。
3. 试分析图8-2间接交流变流电路的工作原理,并说明其局限性。
答:图8-2是带有泵升电压限制电路的电压型间接交流变流电路,它是在图8-1的基础上,在中间直流电容两端并联一个由电力晶体管V0和能耗电阻R0组成的泵升电压限制电路。
当泵升电压超过一定数值时,使V0导通,把从负载反馈的能量消耗在R0上。
其局限性是当负载为交流电动机,并且要求电动机频繁快速加减速时,电路中消耗的能量较多,能耗电阻R0也需要较大功率,反馈的能量都消耗在电阻上,不能得到利用。
4. 试说明图8-3间接交流变流电路是如何实现负载能量回馈的。
答:图8-3为利用可控变流器实现再生反馈的电压型间接交流变流电路,它增加了一套变流电路,使其工作于有源逆变状态。
当负载回馈能量时,中间直流电压上升,使不可控整流电路停止工作,可控变流器工作于有源逆变状态,中间直流电压极性不变,而电流反向,通过可控变流器将电能反馈回电网。
5. 何为双PWM电路?其优点是什么?答:双PWM电路中,整流电路和逆变电路都采用PWM控制,可以使电路的输入输出电流均为正弦波,输入功率因数高,中间直流电路的电压可调。
目录第1章电力电子器件 (1)第2章整流电路 (4)第3章直流斩波电路 (20)第4章交流电力控制电路和交交变频电路 (26)第5章逆变电路 (31)第6章PWM控制技术 (35)第7章软开关技术 (40)第8章组合变流电路 (42)第5章逆变电路1.无源逆变电路和有源逆变电路有何不同?答:两种电路的不同主要是:有源逆变电路的交流侧接电网,即交流侧接有电源。
而无源逆变电路的交流侧直接和负载联接。
2.换流方式各有那几种?各有什么特点?答:换流方式有4种:器件换流:利用全控器件的自关断能力进行换流。
全控型器件采用此换流方式。
电网换流:由电网提供换流电压,只要把负的电网电压加在欲换流的器件上即可。
负载换流:由负载提供换流电压,当负载为电容性负载即负载电流超前于负载电压时,可实现负载换流。
强迫换流:设置附加换流电路,给欲关断的晶闸管强迫施加反向电压换流称为强迫换流。
通常是利用附加电容上的能量实现,也称电容换流。
晶闸管电路不能采用器件换流,根据电路形式的不同采用电网换流、负载换流和强迫换流3种方式。
3.什么是电压型逆变电路?什么是电流型逆变电路?二者各有什么特点。
答:按照逆变电路直流测电源性质分类,直流侧是电压源的称为逆变电路称为电压型逆变电路,直流侧是电流源的逆变电路称为电流型逆变电路电压型逆变电路的主要特点是:①直流侧为电压源,或并联有大电容,相当于电压源。
直流侧电压基本无脉动,直流回路呈现低阻抗。
②由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关。
而交流侧输出电流波形和相位因负载阻抗情况的不同而不同。
③当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。
为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。
电流型逆变电路的主要特点是:①直流侧串联有大电感,相当于电流源。
直流侧电流基本无脉动,直流回路呈现高阻抗。
②电路中开关器件的作用仅是改变直流电流的流通路径,因此交流侧输出电流为矩形波,并且与负载阻抗角无关。
第6章 PWM 控制技术1.试说明PWM 控制的基本原理。
答:PWM 控制就是对脉冲的宽度进行调制的技术。
即通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。
在采样控制理论中有一条重要的结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同,冲量即窄脉冲的面积。
效果基本相同是指环节的输出响应波形基本相同。
上述原理称为面积等效原理以正弦PWM 控制为例。
把正弦半波分成N 等份,就可把其看成是N 个彼此相连的脉冲列所组成的波形。
这些脉冲宽度相等,都等于π/N ,但幅值不等且脉冲顶部不是水平直线而是曲线,各脉冲幅值按正弦规律变化。
如果把上述脉冲列利用相同数量的等幅而不等宽的矩形脉冲代替,使矩形脉冲的中点和相应正弦波部分的中点重合,且使矩形脉冲和相应的正弦波部分面积(冲量)相等,就得到PWM 波形。
各PWM 脉冲的幅值相等而宽度是按正弦规律变化的。
根据面积等效原理,PWM 波形和正弦半波是等效的。
对于正弦波的负半周,也可以用同样的方法得到PWM 波形。
可见,所得到的PWM 波形和期望得到的正弦波等效。
2.设图6-3中半周期的脉冲数是5,脉冲幅值是相应正弦波幅值的两倍,试按面积等效原理计算脉冲宽度。
解:将各脉冲的宽度用i(i =1, 2, 3, 4, 5)表示,根据面积等效原理可得1=m5m 2d sin U t t U ⎰πωω=502cos πωt - =0.09549(rad)=0.3040(ms)2=m525m 2d sin U t t U ωϖππ⎰=5252cos ππωt -=0.2500(rad)=0.7958(ms)3=m5352m 2d sin U t t U ωϖππ⎰=53522cos ππωt -=0.3090(rad)=0.9836(ms)4=m5453m 2d sin U t t U ωϖππ⎰=2=0.2500(rad)=0.7958(ms)5=m54m2d sin U tt Uωϖππ⎰=1=0.0955(rad)=0.3040(ms)3. 单极性和双极性PWM 调制有什么区别?三相桥式PWM 型逆变电路中,输出相电压(输出端相对于直流电源中点的电压)和线电压SPWM 波形各有几种电平?答:三角波载波在信号波正半周期或负半周期里只有单一的极性,所得的PWM 波形在半个周期中也只在单极性范围内变化,称为单极性PWM 控制方式。
电力电子技术课程教学大纲(POWERE1ECTRONIC)总学时数:40其中:实验学时数:0课外学时数:0学分数:2.5适用专业:电气工程与自动化专业一、课程的性质、目的和任务本课程是自动化专业的基础课程,它的任务是使学生掌握各类电力电子器件的工作原理,特性和主要参数及其各类变流装置发生的电磁过程,基本原理,控制方法,设计计算,实验技能以及它们的技术经济指标。
以便学生毕业后具有进一步掌握各种变流装置的能力,并为后续课“电力拖动与运动控制系统”打好基础。
二、课程教学的基本要求(一)掌握电力电子器件(主要为晶闸管,电力晶体管,可关断晶闸管、电力场效应晶体管和绝缘栅双极晶体管)的工作原理,特性和主要参数(含驱动、缓冲和保护电路)。
(二)熟练掌握单相,三相整流电路和有源逆变电路的基本原理,波形分析和各种负载对电路运行的影响,并能对上述电路进行初步的设计计算(包括触发电路与保护环节)。
(三)3.了解无源逆变、直流斩波、交流调压和交-交变频电路的工作原理,了解并掌握PWM控制技术及PW型逆变电路的基本原理和控制方法。
(四)初步了解软开关技术的基本概念和常用的组合变流电路的主要形式。
(五)初步了解电力电子学科的发展趋势。
(六)掌握基本变流装置的调试实验方法。
三、课程的教学内容、重点和难点绪论基本内容:电力电子技术的基本概念和内涵,电力电子技术发展历程,电力电子技术应用领域,本课程在国民经济中的作用意义,本课程的特点和学习方法。
基本要求:使学生了解电力电子技术的基本概念和内涵,了解本课程的重要性,认识到他所学的内容仅是电力电子学科中的最基本的内容,而本学科还有很多重要的课题有待去学习,去解决。
第一章电力电子器件一、电力电子器件概述基本内容:电力电子器件的概念和特征;电力电子系统的构成;电力电子器件的分类。
基本要求:1、了解电力电子器件的基本概念、主要特征以及主要类型;2、了解应用电力电子器件构成的系统的主要组成部分及各部分功能。
1. 电力电子技术:使用电力电子器件对电能进行变换和控制的技术。
2. 半导体变流技术:包括用电力电子器件构成电力变换电路和对其进行控制的技术,以及构成电力电子装置和电力电子系统的技术。
3. 整流:直流变交流。
4. 逆变:交流变直流。
5. 电力电子器件:是直接用于主电路电路中,实现电能的变换或控制的电子器件。
6. 主电路:是在电气设备或电力系统中,直接承担电能的变换或控制任务的电路。
7. 维持电流:使晶闸管维持导通所必需的最小电流称为维持电流。
8. 擎住电流:晶闸管刚从断态转入通态并移除触发信号后,能维持导通所需的最小电流称为擎住电流。
9. 双向晶闸管:双向晶闸可认为是一对反并联联接的普通晶闸管的集成。
10. 逆导晶闸管:是将晶闸管反并联一个二极管制作在同一管芯上的功率集成器件。
11. 光控晶闸管:又称光触发晶闸管,是利用一定波长的光照信号触发导通的晶闸管。
12. 电流关断增益:GTO最大可关断阳极电流与门极负脉冲电流最大值IGM之比称为电流关断增益。
13. 功率模块:将多个电力电子器件封装在一个模块中,称为功率模块。
14. 功率集成电路:将功率器件与逻辑、控制、保护、传感、检测、自诊断等信息电子电路制作在同一芯片上的集成电路。
15. 直流斩波电路:直流到另一固定电压或可调电压的直流电的变换电路。
16. 脉冲宽度调制:周期不变,导通时间变化,即通过导通占空比的改变来改变变压比,控制输出电压的调制方法。
17. 脉冲频率调制:导通时间不变,周期变化,导通比也能发生变化,从而达到改变输出电压目的的调制方法。
18. 双极式PWM:一个开关周期内,斩波电路所输出的负载电压极性交替变化的PWM控制方式。
19. 单极式PWM:一个开关周期内,斩波电路所输出的负载电压极性单一的PWM控制方式。
20. 正激变换器:指在开关管开通时,电源将能量直接传送给负载一种带隔离变压器的DC-DC变换器。
21. 反激变换器:指在开关管开通时电源将电能转为磁能储存在电感(变压器)中,当开关管关断时再将磁能变为电能传送到负载的一种带隔离变压器的DC-DC变换器。
2、什么叫逆变失败?逆变失败的原因是什么?答:晶闸管变流器在逆变运行时,一旦不能正常换相,外接的直流电源就会通过晶闸管电路形成短路,或者使变流器输出的平均电压和直流电动势变成顺向串联,形成很大的短路电流,这种情况叫逆变失败,或叫逆变颠覆。
造成逆变失败的原因主要有:(2分)触发电路工作不可靠。
例如脉冲丢失、脉冲延迟等。
晶闸管本身性能不好。
在应该阻断期间管子失去阻断能力,或在应该导通时不能导通。
交流电源故障。
例如突然断电、缺相或电压过低等。
估计不足,使换相的裕量时间小于晶闸管的关断时间。
换相的裕量角过小。
主要是对换相重叠角逆变失败后果会在逆变桥与逆变电源之间产生强大的环流,损坏开关器件(4分)防止逆变失败采用最小逆变角βmin防止逆变失败、晶闸管实现导通的条件是什么?关断的条件及如何实现关断?答:在晶闸管阳极——阴极之间加正向电压,门极也加正向电压,产生足够的门极电流Ig,则晶闸管导通,其导通过程叫触发。
关断条件:使流过晶闸管的阳极电流小于维持电流。
(3分)实现关断的方式:1>减小阳极电压。
2>增大负载阻抗。
3>加反向电压。
3、为什么半控桥的负载侧并有续流管的电路不能实现有源逆变?(5分)答:由逆变可知,晶闸管半控桥式电路及具有续流二极管电路,它们不能输出负电压Ud固不能实现有源逆变。
(5分)2、电压型逆变电路的主要特点是什么?(8分)(1) 直流侧为电压源或并联大电容,直流侧电压基本无脉动;(2分)(2) 输出电压为矩形波,输出电流因负载阻抗不同而不同;(3分)(3) 阻感负载时需提供无功。
为了给交流侧向直流侧反馈的无功提供通道,逆变桥各臂并联反馈二极管。
(3分)3、逆变电路必须具备什么条件才能进行逆变工作?答:逆变电路必须同时具备下述两个条件才能产生有源逆变:(1)变流电路直流侧应具有能提供逆变能量的直流电源电势Ed,其极性应与晶闸管的导电电流方向一致。
(3分)(2)变流电路输出的直流平均电压Ud的极性必须为负(相对于整流时定义的极性),以保证与直流电源电势Ed构成同极性相连,且满足Ud<Ed。
第8章组合变流电路引言8.1间接交流变流电路8.2间接直流变流电路本章小结第8章组合变流电路•引言基本的变流电路第2~5章分别介绍的AC/DC、DC/DC、AC/AC和DC/AC四大类基本的变流电路。
组合变流电路将某几种基本的变流电路组合起来,以实现一定的新功能,即构成组合变流电路。
间接交流变流电路先将交流电整流为直流电,再将直流电逆变为交流电,是先整流后逆变的组合。
间接直流变流电路先将直流电逆变为交流电,再将交流电整流为直流电,是先逆变后整流的组合。
间接交流变流电路由整流电路、中间直流电路和逆变电路构成。
分为电压型间接交流变流电路和电流型间接交流变流电路间接交流变流电路的逆变部分多采用PWM控制。
8.1.1间接交流变流电路原理8.1.2交直交变频器8.1.3恒压恒频(CVCF)电源当负载为电动机时,通常要求间接交流变流电路具有再生反馈电力的能力,要求输出电压的大小和频率可调,此时该电路又名交直交变频电路。
不能再生反馈电力的电压型间接交流变流电路的整流部分采用的是不可控整流,它只能由电源向直流电路输送功率,而不能反馈电力。
图中逆变电路的能量是可以双向流动的,若负载能量反馈到中间直流电路,将导致电容电压升高,称为泵升电压。
1)电压型间接交流变流电路图8-1 不能再生反馈的电压型间接交流变流电路使电路具备再生反馈电力的能力的方法:带有泵升电压限制电路的电压型间接交流变流电路。
当泵升电压超过一定数值时,使V0导通,把从负载反馈的能量消耗在R0上。
图8-2 带有泵升电压限制电路的电压型间接交流变流电路利用可控变流器实现再生反馈的电压型间接交流变流电路。
当负载回馈能量时,可控变流器工作于有源逆变状态,将电能反馈回电网。
图8-3 利用可控变流器实现再生反馈的电压型间接交流变流电路整流和逆变均为PWM控制的电压型间接交流变流电路。
整流和逆变电路的构成完全相同,均采用PWM控制,能量可双向流动。
输入输出电流均为正弦波,输入功率因数高,且可实现电动机四象限运行。
图8-4 整流和逆变均为PWM控制的电压型间接交流变流电路2)电流型间接交流变流电路整流电路为不可控的二极管整流时,电路不能将负载侧的能量反馈到电源侧。
图8-5 不能再生反馈电力的电流型间接交流变流电路图8-6 采用可控整流的电流型间接交流变流电路为使电路具备再生反馈电力的能力,可采用:整流电路采用晶闸管可控整流电路。
负载回馈能量时,可控变流器工作于有源逆变状态,使中间直流电压反极性。
整流和逆变均为PWM 控制的电流型间接交流变流电路通过对整流电路的PWM控制使输入电流为正弦并使输入功率因数为1。
图8-8 整流和逆变均为PWM 控制的电流型间接交流变流电路图8-7 电流型交-直-交PWM 变频电路实现再生反馈的电路图负载为三相异步电动机,适用于较大容量的场合。
8.1.2 交直交变频器晶闸管直流电动机传动系统存在一些固有的缺点:(1) 受使用环境条件制约;(2) 需要定期维护;(3) 最高速度和容量受限制等。
交流调速传动系统除了克服直流调速传动系统的缺点外还具有:(1) 交流电动机结构简单,可靠性高;(2) 节能;(3) 高精度,快速响应等优点。
采用变频调速方式时,无论电机转速高低,转差功率的消耗基本不变,系统效率是各种交流调速方式中最高的,具有显著的节能效果,是交流调速传动应用最多的一种方式。
笼型异步电动机的定子频率控制方式,有:(1) 恒压频比(U/f)控制;(2) 转差频率控制;(3) 矢量控制;(4) 直接转矩控制等。
1)恒压频比控制为避免电动机因频率变化导致磁饱和而造成励磁电流增大,引起功率因数和效率的降低,需对变频器的电压和频率的比率进行控制,使该比率保持恒定,即恒压频比控制,以维持气隙磁通为额定值。
恒压频比控制是比较简单,被广泛采用的控制方式。
该方式被用于转速开环的交流调速系统,适用于生产机械对调速系统的静、动态性能要求不高的场合。
转速给定既作为调节加减速的频率f 指令值,同时经过适当分压,作为定子电压U 1的指令值。
该比例决定了U/f 比值,可以保证压频比为恒定。
在给定信号之后设臵的给定积分器,将阶跃给定信号转换为按设定斜率逐渐变化的斜坡信号u gt ,从而使电动机的电压和转速都平缓地升高或降低,避免产生冲击。
图8-9 采用恒压频比控制的变频调速系统框图图8-9 采用恒压频比控制的变频调速系统框图给定积分器输出的极性代表电机转向,幅值代表输出电压、频率。
绝对值变换器输出u gt的绝对值u abs,电压频率控制环节根据u abs及u gt的极性得出电压及频率的指令信号,经PWM 生成环节形成控制逆变器的PWM信号,再经驱动电路控制变频器中IGBT的通断,使变频器输出所需频率、相序和大小的交流电压,从而控制交流电机的转速和转向。
2)转差频率控制在稳态情况下,当稳态气隙磁通恒定时,异步电机电磁转矩近似与转差角频率成正比。
因此,控制w s 就相当于控制转矩。
采用转速闭环的转差频率控制,使定子频率w 1=w r +w s ,则w 1随实际转速w r 增加或减小,得到平滑而稳定的调速,保证了较高的调速范围。
转差频率控制方式可达到较好的静态性能,但这种方法是基于稳态模型的,得不到理想的动态性能。
3)矢量控制异步电动机的数学模型是高阶、非线性、强耦合的多变量系统。
传统设计方法无法达到理想的动态性能。
矢量控制方式基于异步电机的按转子磁链定向的动态模型,将定子电流分解为励磁分量和与此垂直的转矩分量,参照直流调速系统的控制方法,分别独立地对两个电流分量进行控制,类似直流调速系统中的双闭环控制方式。
控制系统较为复杂,但可获得与直流电机调速相当的控制性能。
4)直接转矩控制直接转矩控制方法同样是基于动态模型的,其控制闭环中的内环,直接采用了转矩反馈,并采用砰—砰控制,可以得到转矩的快速动态响应。
并且控制相对要简单许多。
CVCF电源主要用作不间断电源(UPS) 。
UPS -Uninterruptible Power SuppliesUPS是指当交流输入电源(习惯称为市电)发生异常或断电时,还能继续向负载供电,并能保证供电质量,使负载供电不受影响的装臵。
UPS广泛应用于各种对交流供电可靠性和供电质量要求高的场合。
1)UPS 基本工作原理:图8-10 UPS 基本结构原理图市电正常时,由市电供电,市电经整流器整流为直流,再逆变为50Hz 恒频恒压的交流电向负载供电。
同时,整流器输出给蓄电池充电,保证蓄电池的电量充足。
此时负载可得到的高质量的交流电压,具有稳压、稳频性能,也称为稳压稳频电源。
市电异常乃至停电时,蓄电池的直流电经逆变器变换为恒频恒压交流电继续向负载供电,供电时间取决于蓄电池容量的大小。
图8-12 具有旁路电源系统的UPS增加旁路电源系统,可使负载供电可靠性进一步提高。
图8-11 用柴油发电机作为后备电源的UPS为了保证长时间不间断供电,可采用柴油发电机(简称油机)作为后备电源。
2)UPS 主电路结构图8-13 小容量UPS 主电路小容量的UPS ,整流部分使用二极管整流器和直流斩波器(PFC),可获得较高的交流输入功率因数,逆变器部分使用IGBT 并采用PWM 控制,可获得良好的控制性能。
图8-14 大功率UPS 主电路大容量UPS 主电路。
采用PWM 控制的逆变器开关频率较低,通过多重化联结降低输出电压中的谐波分量。
采用这种结构的变换原因:输出端与输入端需要隔离。
某些应用中需要相互隔离的多路输出。
输出电压与输入电压的比例远小于1或远大于1。
交流环节采用较高的工作频率,可以减小变压器和滤波电感、滤波电容的体积和重量。
工作频率高于20kHz 这一人耳的听觉极限,可避免变压器和电感产生噪音。
变压器整流电路滤波器直流交流交流脉动直流直流逆变电路图8-15间接直流变流电路的结构间接直流变流电路:先将直流逆变为交流,再整流为直流电,也称为直-交-直电路。
8.2.1 正激电路8.2.2 反激电路8.2.3 半桥电路8.2.4 全桥电路8.2.5 推挽电路8.2.6 全波整流和全桥整流8.2.7 开关电源图8-16 正激电路的原理图图8-17 正激电路的理想化波形Su S i L i SOt t t tU i O O O 开关S 开通后,变压器绕组W 1两端的电压为上正下负,与其耦合的W 2绕组两端的电压也是上正下负。
因此VD 1处于通态,VD 2为断态,电感L 的电流逐渐增长;S 关断后,电感L 通过VD 2续流,VD 1关断。
变压器的励磁电流经N 3绕组和VD 3流回电源,所以S 关断后承受的电压为。
iSU N N u )1(31+=1)正激电路(Forward)的工作过程B R B SB HO图8-18 磁心复位过程输出电压输出滤波电感电流连续的情况下输出电感电流不连续时i12o U N N U =2)变压器的磁心复位on31rst t N N t =开关S 开通后,变压器的激磁电流由零开始,随时间线性的增长,直到S 关断。
为防止变压器的激磁电感饱和,必须设法使激磁电流在S 关断后到下一次再开通的时间内降回零,这一过程称为变压器的磁心复位。
变压器的磁心复位时间为1)工作过程:图8-20 反激电路的理想化波形S u S i Si VD t ont offt tttU i OOO O 图8-19 反激电路原理图S 开通后,VD 处于断态,W 1绕组的电流线性增长,电感储能增加;S 关断后,W 1绕组的电流被切断,变压器中的磁场能量通过W 2绕组和VD 向输出端释放。
2)反激电路的工作模式:电流连续模式:当S 开通时,W 2绕组中的电流尚未下降到零。
输出电压关系:电流断续模式:S 开通前,W 2绕组中的电流已经下降到零。
输出电压高于式(8-3)的计算值,并随负载减小而升高,在负载为零的极限情况下,,因此反激电路不应工作于负载开路状态。
offon12i o t t N N U U =∞→o U (8-3)图8-20 反激电路的理想化波形S i Si VD t ont offt tt tOO O O 图8-19 反激电路原理图S 1与S 2交替导通,使变压器一次侧形成幅值为U i /2的交流电压。
改变开关的占空比,就可以改变二次侧整流电压u d 的平均值,也就改变了输出电压U o 。
S 1导通时,二极管VD 1处于通态,S 2导通时,二极管VD 2处于通态;当两个开关都关断时,变压器绕组N 1中的电流为零,VD 1和VD 2都处于通态,各分担一半的电流。
S 1或S 2导通时电感L 的电流逐渐上升,两个开关都关断时,电感L 的电流逐渐下降。
S 1和S 2断态时承受的峰值电压均为U i 。
1)工作过程图8-21 半桥电路原理图S 1S 2u S1u S2i S1i S2i D 1i tTttt tt t tt onU iii Li LOO O O OO OO2)数量关系由于电容的隔直作用,半桥电路对由于两个开关导通时间不对称而造成的变压器一次侧电压的直流分量有自动平衡作用,因此不容易发生变压器的偏磁和直流磁饱和。