连铸二冷水系统的优化与改进
- 格式:pdf
- 大小:186.15 KB
- 文档页数:3
连铸坯热装热送中的冷却水循环系统优化方案在连铸工艺中,冷却水循环系统扮演着关键的角色。
它通过对连铸坯进行冷却,有效控制坯料温度,确保铸造质量和生产效率。
本文将针对连铸坯热装热送中的冷却水循环系统提出优化方案。
一、现状问题分析在连铸坯热装热送过程中,冷却水循环系统存在一些问题。
首先,水循环系统的流量调节不够灵活,无法根据连铸坯的不同要求进行精确调整。
其次,由于冷却水中存在悬浮物和杂质,会导致管道堵塞、水泵损坏等问题。
此外,冷却水的温度也需要在一定的范围内进行控制,以保证连铸坯的质量。
二、优化方案为解决上述问题,可以采取以下优化方案:1. 系统流量调节优化引入智能流量控制器,通过传感器感知连铸坯的温度和速度等参数,精确调节冷却水的流量。
根据不同的铸造要求,自动调整水的流速,以实现坯体的均匀冷却。
同时,结合先进的调节算法,动态跟踪坯体温度变化,及时调整水温和流量,以确保铸造质量。
2. 悬浮物过滤处理在系统的进水口设置合适的过滤装置,及时去除冷却水中的悬浮物和杂质。
可以采用微孔滤网等过滤器,有效阻止固体颗粒进入系统,减少管道堵塞和水泵损坏的风险。
此外,定期对过滤器进行清洗和更换,保证其正常工作。
3. 温度控制手段改进运用先进的温度控制技术,通过空气冷却和冷却剂循环等方式,确保冷却水的温度在一定的范围内稳定控制。
可以采用温度传感器实时监测水温,通过PID控制算法进行精确调节。
同时,根据连铸坯的特点和要求,合理设定温度范围,以保证坯体的冷却效果。
4. 系统检修与维护加强冷却水循环系统的检修与维护,定期对设备进行巡检和保养,及时发现和处理问题。
定期清洗水泵、管道和冷却器,确保系统的正常运行。
此外,需要制定完善的操作规程,培训操作人员,提高其对系统的了解和应急处理能力。
三、效果与可行性分析通过以上优化方案的实施,可以取得以下效果:1. 提高冷却水循环系统的灵活性,根据连铸坯的不同要求进行精确调节,提高生产效率和产品质量。
连铸二冷水控制系统对调节阀的技术要求及选型建议连铸是炼钢生产工艺的重要设备之一。
连铸机在生产过程中,钢水从中间包到结晶器(即一冷)、二冷环节冷却,然后到拉矫机,切割机出钢。
整个过程钢水从液态变成钢坯,其中的二冷水环节最为重要,直接关系到铸坯质量的优劣。
现实生产中,很多钢厂的连铸二冷水都存在汽水雾化流量不稳定,以及小流量控制精度不够、无法稳定调节或大水量上不去的情况,难以实现最佳冷却效果。
特别是在需水量相对小的优钢生产时,二冷水调节的不稳定,严重影响钢坯的质量,以致产生许多废钢,在一定程度上制约了生产效率的提高和生产能力的提升。
目前,二冷水控制系统执行机构部分采用调节阀,通过PID调节方式控制其开度,从而控制二冷水水量。
可以说,调节阀是二冷水控制系统的核心部分。
然而,国内钢铁企业在相当长的时间里,大都使用“下进上出”结构的栓塞型单座阀。
但由于单座阀在结构上的局限性,下进上出的S型流体通道,介质因流动方向的改变,湍流、扰动不可避免,不仅对阀本体的阀塞、阀杆、阀腔以及阀后管道产生物理侵蚀,减少阀及管道寿命,还会因阀后流体的不稳定,无法满足工艺生产的要求。
而从控制性能的角度来看,单座阀作为典型的控制阀,其控制性能虽然优于球阀,但仍然存在相当范围的“死区”,通常0-20%的开度时,流量变化不明显,在兼顾大水量选择管径的前提下,难以满足小开度控制小水量时的精度要求。
但如果选择小一点的管径,则很可能无法满足大水量的要求。
基于此,二冷水控制系统对调节阀提出了更高的要求:1.控制稳定,震荡波动小,提高系统可控性。
2.线性度高,有效调节范围大,既能满足大需水量的要求,又能在极小开度时精确控制小流量。
3.响应速度快,能迅速达到系统计算的需水量,充分发挥PID控制系统的作用,使水量的给定达到最优。
德国Schubert&Salzer公司生产的滑窗式结构的调节阀(简称滑窗阀,下同)随着成套设备进入国内工业领域,在钢铁生产中涉及电炉转炉氧枪、转炉给水、连铸冷却、制氧气体等流量、压力、温度控制场合,以其独特结构而具有的卓越性能得到用户的一致认可。
连铸高效化生产中的水系统改造引言在连铸过程中,水系统是关键的组成部分,直接关系到连铸生产的效率和质量。
然而,随着生产工艺的不断发展和技术的进步,传统的水系统往往无法满足连铸高效化生产的要求。
因此,对水系统进行改造和优化是非常必要的。
本文将针对连铸高效化生产中的水系统进行改造,提出一些改进的措施和建议,并阐述改造后水系统所带来的优势和效益。
1. 分析现有水系统存在的问题在连铸过程中,水系统常常面临以下问题:1.流量不均衡:传统水系统中,水流的分配往往不均匀,导致部分区域出现冷却不足或过度冷却的情况,影响连铸质量。
2.能耗高:传统水系统中,水的供应和循环需要大量的能源支持,造成能耗较高。
3.操作繁琐:传统水系统的操作复杂,需要人工介入调整,维护工作量大。
4.水质难保证:连铸过程对水质有较高的要求,传统水系统无法保证水质的稳定性和可靠性。
2. 水系统改造的措施和建议为了解决现有水系统存在的问题,以下是针对连铸高效化生产的水系统改造的一些建议和措施:2.1. 优化水流分配通过分析连铸过程中的温度分布和冷却需求,采取合理的水流分配方案。
可以借助流体模拟软件进行模拟计算,以确保水的均匀分配,并减少冷却死区的产生。
2.2. 引入智能控制系统引入智能控制系统,对水系统的供水和循环进行自动控制,实时监测温度和流量等参数,自动调整水流量和水温,提高水系统工作效率,并减少能耗和操作人工。
2.3. 采用节能型设备选用高效节能的水泵和水循环设备,降低能耗,提高连铸生产的能源利用效率。
2.4. 强化水质控制引入水质监测装置,实时监测水质指标,通过逆渗透、过滤等技术手段对水质进行处理,保证水质的稳定性和可靠性。
同时,定期进行水质检测和维护工作,保证水系统的正常运行。
2.5. 加强维护管理建立完善的水系统维护管理制度,制定操作规范和维护计划,定期进行设备检修和清洗,保证水系统的运行稳定性和可靠性。
3. 改造后水系统的优势和效益通过对连铸高效化生产中的水系统进行改造和优化,可以实现以下优势和效益:1.提高连铸质量:优化的水流分配和水温控制,保证了连铸过程中的均匀冷却,提高连铸板坯的质量和表面光洁度。
连铸钢坯二次冷却制度的优化研究(河北唐银钢铁有限公司,河北唐山064000)在国民经济发展中,钢铁生产处于重要地位,是重要的支柱产业,对国民经济的健康发展有着重大的影响。
连铸是钢铁工业的核心生产环节,对对于提高钢铁生产效率和质量都有直接的影响,长期以来一直是钢铁工业的热门研究内容。
在钢铁生产中二次冷却制度对于连铸的质量有着重要影响。
在实际的连铸生产中,很多企业都存在着二次冷却不规范问题,影响了连铸钢坯的质量。
本文从二次冷却制度的特点和常见问题进行论述,提出了几点优化建议。
标签:连铸钢坯;二次冷却;优化连铸钢坯的质量决定因素包括众多方面,主要衡量标准是表面质量和内部质量。
连铸钢坯的完成,需要经过能量的释放和热量的传递,从液态钢变为固态钢。
这一过程,对冶炼工艺和设备都有极高的要求。
在控制好冶炼工艺和设备后,最为重要过程就是二次冷却了。
能否生产出合格的连铸钢坯,全部由二次冷却过程决定。
因此,二次冷却制度极为重要。
1 连铸二次冷却的作用和特点连铸钢坯的生产过程,主要是通过对流传热和传导、辐射等方式,使钢水中的热能释放出去,转为固态钢坯。
释放的热量主要是显热、潜热、过热这三部分的能量。
过热是从液态钢水的浇铸温度TC到液相温度T1时,所释放出来的热量。
而潜热则是从液相温度T1到固线温度Ts时送释放的热量。
显热是从固相温度Ts到普通的环境温度T0这一冷却过程释放的热量。
2 连铸钢坯质量与二次冷却的紧密关系二次冷却对连铸钢坯的质量有着重要影响。
连铸钢坯的生产过程中,影响其质量的因素主要包括了钢水温度、拉速、铸坯断面以及结晶器和钢种等。
在操作工艺和铸机设备条件固定的情况下,所有影响钢坯质量的因素中,只有二次冷却这一因素可以人为控制。
如果二次冷却弱冷时,会降低铸坯的凝固速度,虽然生产率有所下降,但可以在高温下生产钢坯,有利保证钢坯的质量。
当二次冷却遇到强冷时,可以加快铸坯的凝固速度和拉速,让铸机保持较高的生存率,但容易产生各种裂纹,使铸坯存在缺陷。
R9m方坯连铸二次冷却工艺的优化发布时间:2006年12月7日1 前言山东石横特钢集团有限公司(简称石横特钢)现有R9m四机四流连铸机1台,浇注钢种有:碳素结构钢、合金结构钢、高碳钢、焊条钢等,生产150mm×150mm方坯供高速线材车间,其质量要求严格。
而方坯连铸二次冷却与铸坯质量有密切关系,在生产优钢过程中,由于二次冷却制度不当,出现一些铸坯缺陷:(1)内部裂纹,在二冷区,如果各段冷却不均匀,部分回温太大,或冷却强度大,都会导致内部裂纹。
(2)铸坯菱变(脱方),二冷区铸坯四个面的非对称性冷却,造成某两个面比另外两个面冷却得更快,在冷面产生沿对角线的应力,加重铸坯扭转,产生菱变。
(3)铸坯鼓肚,如二次冷却太弱,铸坯表面温度过高,钢的高温强度较低,在钢水静压力作用下,凝固壳就会发生蠕变而产生鼓肚。
(4)表面裂纹,由于二冷不当,矫直时铸坯表面温度低于900℃,刚好位于“脆性区”,再有AlN、Nb(CN)等质点存在,容易在振痕波谷处产生表面裂纹。
2 二次冷却工艺优化2.1 连铸坯配水基本原则铸坯出结晶器后,随二冷水喷向铸坯,凝固壳厚度加厚,其依据规律为:δ = K(τ)1/2 (1)式中δ——铸坯厚度;K——凝固系数;τ——凝固时间。
由式(1)可知:铸坯厚度δ是随凝固时间τ的平方根而增加,凝固壳厚度达到一定时,坯壳传热成为坯壳增长的限制环节,坯壳厚度越大,传热阻力增加,温差也越大。
因而冷却水量应随铸坯厚度δ的增加而降低,即二冷水量Q与铸坯厚度δ成反比。
所以不同位置的水量Q与(τ)-1/2成正比。
而τ ∝s/v(s为结晶器液面到二冷区某一点的长度,v为拉速),所以:Q ∝(s/v)-1/2 (2)当拉速v一定时,二冷水量Q与结晶器液面到二冷区某一点的长度s的平方根成反比,由此得到结论:二冷配水冷却水量沿铸坯方向从上到下应是逐渐减少的。
2.2 不同钢种二冷水的设定对于不同钢种,因其冷却特性不同,其二冷配水制度应该不同。
炼钢厂连铸冷却水现状及改进措施分析摘要:冷却水系统在连铸机生产中起着重要的作用,文章针对西钢钒炼钢厂冷却水系统现状及其存在的问题,提出解决方案,保证了供水水质,降低新水及除盐水补水量,实现了节能降耗、降本增效。
关键词:冷却水;连铸;水质;节能攀钢集团西昌钢钒有限公司炼钢厂现有1 650 mm、1 930 mm两台连铸机,其冷却水分为除盐水系统、净循环系统、浊循环水系统三类。
冷却水系统是板坯连铸机的重要组成部分,冷却效果及其均匀性直接影响连铸坯的质量和连铸机的寿命。
尤其是结晶器冷却水和二冷水,结晶器冷却水水质的好坏直接影响铜板的使用寿命,二冷水冷却不匀是板坯产生变形、鼓肚、中心裂纹等缺陷的重要原因之一。
1 除盐水系统1.1 工艺流程工艺流程如图1所示。
结晶器冷却用水采用除盐水,西钢钒公司采用安宁河地表水为水源,河水经混凝、澄清和过滤处理后通过泵加压送至一级除盐水系统做超滤源水,采用超滤预处理+反渗透处理获得,供水水质情况如表1所示。
冷却水运行时先利用补水泵组将整条管道充满水,压力达到0.3 MPa时,停补水泵组,启动结晶器供水泵,供水水压为1.1 MPa,回水经过自清洗过滤器,利用余压进入板式换热器进行冷却。
1.2 系统组成主要包括供水泵组、冷媒水供水泵组、补水泵组、稳压罐、自清洗过滤器、板式换热器等。
①供水泵。
1 650 mm连铸机采用三台离心式水泵,泵组运行方式两用一备;1 930 mm连铸机采用两台离心式水泵,泵组运行方式一用一备。
冷媒水供水泵采用三台离心式水泵,为板式换热器提供冷却水,泵组运行方式两用一备。
②补水泵。
补水泵组采用CGIR型泵系列单级单吸抗汽蚀离心泵。
③调压罐。
1 650 mm、1 930 mm结晶器供水系统各配置一个稳压罐,主要是补充系统水的损耗及稳定系统压力,液位作为补水泵启停的自动控制信号。
④可拆式板式换热器。
由许多有波纹槽的金属换热板片按一定间隔排列,四周通过密封垫片密封,并用夹紧螺柱压紧而成,其角上的孔构成了连续的通道,介质从入口进入各自通道,在通道内逆流流动,通过热传递将热介质温度降低,冷介质温度升高返回冷却塔循环使用。
连铸坯热装热送中的冷却水循环系统改进连铸坯热装热送是钢铁工业生产过程中的一项重要环节,对于保证钢坯质量和提高生产效率具有重要作用。
在连铸坯热装热送过程中,冷却水循环系统的稳定性和高效性对整个生产过程至关重要。
为了改进连铸坯热装热送中的冷却水循环系统,我们提出了一些优化改进的方案,以达到更好的运行效果和生产效益。
一、问题分析连铸坯热装热送过程中,冷却水循环系统存在一些问题,主要包括:1. 循环水温度升高:由于连铸坯的高温辐射和传导,冷却水受热后温度升高,导致冷却效果下降。
2. 冷却水压力不稳定:由于系统中存在漏水、阻力过大等问题,导致冷却水压力在运行过程中波动较大,无法满足生产需求。
3. 水质污染问题:连铸坯生产过程中产生大量热量,冷却水循环系统中会积聚金属粉尘、颗粒物等杂质,对设备和产品质量造成影响。
二、改进方案为了解决上述问题,我们提出了以下改进方案:1. 安装冷却水冷却器:在循环系统中新增冷却水冷却器,通过冷却器对冷却水进行强制冷却,能够有效降低冷却水温度,提高冷却效果。
2. 定期检修维护:定期对冷却水循环系统进行检修和维护,检查管道是否存在泄漏,清理过滤器和冷却器的堵塞物,保证系统的稳定运行。
3. 配置水质监测设备:安装水质监测设备,对冷却水的水质进行定期监测,及时发现水质问题,采取相应的处理措施,保证水质的洁净。
4. 优化管道布局:对冷却水循环系统的管道进行布局优化,避免管道过长或过多,减小水流阻力,提高冷却水的流动性和压力稳定性。
5. 使用高效冷却水泵:更换高效节能的冷却水泵,提高水泵的工作效率和稳定性,减少能源的消耗。
三、改进效果与优势通过以上改进方案的实施,可以取得以下效果与优势:1. 冷却效果明显提升:安装冷却水冷却器后,冷却水的温度降低,冷却效果明显提升,有效保证钢坯的质量要求。
2. 冷却水压力稳定:通过管道布局的优化和冷却水泵的使用,冷却水的压力保持稳定,避免了压力波动对生产造成的不良影响。
连铸坯热装热送中的冷却水循环系统优化连铸是钢铁生产过程中重要的工艺环节,而冷却水循环系统在连铸坯热装热送中起到了至关重要的作用。
为了优化该系统的性能,提高连铸坯质量和生产效率,以下是对连铸坯热装热送中的冷却水循环系统优化的详细分析。
一、系统概述连铸坯热装热送中的冷却水循环系统由循环水泵、冷却器、冷却水管道、水箱等组成。
其主要功能是将高温的连铸坯冷却成一定温度以便顺利进行后续工序。
二、优化目标1. 提高冷却水的循环效率,减少水的消耗。
2. 控制冷却水的温度稳定性,以确保连铸坯冷却效果。
3. 降低系统运行的能耗,减少生产成本。
三、优化措施1. 水泵系统优化a. 选择高效节能的循环水泵,提高水泵的效率,降低能耗。
b. 采用变频控制技术,根据实际冷却需求调整水泵的运行速度,减少能耗。
2. 冷却器优化a. 选用大面积高效的冷却器,增大冷却面积,提高冷却效果。
b. 定期清洗冷却器,防止堵塞,保证冷却器的正常工作。
3. 冷却水管道优化a. 采用优质材料制作冷却水管道,减少泄漏,提高系统的运行稳定性。
b. 对冷却水管道进行维护和检修,确保水流畅通,减少阻力。
4. 水箱优化a. 设计合理的水箱容积,以满足系统的冷却需求,避免水位过高或过低。
b. 定期清洗水箱,清除杂质,保证水质的清洁和流通性。
5. 温控系统优化a. 安装合适的温度传感器,及时监测冷却水的温度。
b. 配置PID控制系统,根据实时温度数据对冷却水的供水和回水进行调节,保持稳定的温度,提高冷却效果。
四、优化效果通过以上优化措施的实施,连铸坯热装热送中的冷却水循环系统可以达到如下效果:1. 提高冷却水的循环效率,减少水的消耗,降低生产成本。
2. 控制冷却水的温度稳定性,确保连铸坯冷却效果,提高产品质量。
3. 降低系统运行的能耗,减少能源消耗,减轻环境负担。
总结:通过对连铸坯热装热送中的冷却水循环系统进行优化,我们可以有效提高连铸坯的质量和生产效率。
在实施优化措施的同时,需要注意系统的运行状态,并进行定期的维护和检修,以确保系统的正常运行。