瞬变电磁详细原理
- 格式:ppt
- 大小:991.00 KB
- 文档页数:23
煤矿瞬变电磁法的基本原理
煤矿瞬变电磁法是一种地球物理勘探技术,其基本原理是利用变化的电磁场在地下物质中引起的感应电流的变化来推断地下结构和地质特征。
瞬变电磁法的原理可以归结为以下几个步骤:
1. 发射电磁场:在地表上放置一个发射线圈,通过电流激发线圈产生变化的电磁场。
2. 感应电流产生:地下物质对电磁场的变化会产生感应电流。
地下物质的电导率和磁导率决定了感应电流的大小和分布。
3. 接收电磁信号:在地表上放置接收线圈,接收感应电流产生的变化信号。
4. 数据采集和处理:将接收到的信号传输到数据采集设备上,然后通过数学模型和计算方法对数据进行处理,将其转化为地下结构和电性特征的信息。
根据瞬变电磁法的原理,可以通过分析感应电流的变化来推断地下的物质性质和特征,如地层的厚度、电导率和磁导率等,进而对煤矿区域进行勘探和评估。
瞬变电磁法探测原理瞬变电磁法,即Transient Electromagnetic Method(简称TEM),是利用不接地回线或接地线源向地下发送一次脉冲场,以激励地层介质感生电磁场,在一次脉冲场间歇期间利用同一回线或电偶极接收感应电磁场。
其物理基础是电磁感应原理,据此理论在电导率和磁导率均匀的大地上,铺设输入阶跃电流的回线,当发送回线中电流突然断开时,在下半空间就要被激励起感应涡流场以维持在断开电流前存在的磁场,此瞬间的电流集中在回线附近的地表,并按指数规律衰减。
在发送一次脉冲磁场的间歇期间,观测由地下地质体受激励引起的涡流产生的随时间变化的感应电磁场(或称响应场)。
地层介质被激励所感应的二次涡流场强弱决定于地层介质所耦合的一次脉冲磁场磁力线的多少,二次场的大小与地下介质的电性有关:低阻地质体感应二次场衰减较慢,二次场电压较大;高阻地质体感应二次场衰减较快,二次场电压较小。
根据二次场衰减曲线的特征,就可以判断地下地质体的电性、性质、规模和产状等,由于瞬变电磁仪接收的信号是二次涡流场的电动势(纯异常响应),对二次电位进行归一化处理后。
根据归一化二次电位值的变化特征,可间接地探测各种地质构造问题。
因此,瞬变电磁作为一种时间域的人工源地球物理电磁感应探测方法,是根据地质构造本身存在的物性差异来间接判断有关地质现象的一种有效的地质勘探手段。
瞬变电磁场在大地中主要以“烟圈“扩散形式传播,在这一过程中,电磁能量直接在导电介质中传播而消耗,由于趋肤效应,高频部分主要集中在地表附近,且其分布范围是源下面的局部,较低频部分传播到深处,且分布范围逐渐扩大。
从烟圈效应的观点看,早期瞬变电磁场是由近地表的感应电流产生的,反应浅部电性分布,晚期瞬变电磁场是由深部的感应电磁场产生的,反应深部的电性分布。
因此,观测和研究大地瞬变电磁场随时间的变化规律,可以探测大地电位的垂向变化。
矿井瞬变电磁法原理与地面电磁法原理基本相同,所不同的是矿井瞬变电磁法是在井下巷道内进行瞬变电磁场呈全空间分布,接收线圈接收的信号是来自发射线圈上下两个方向全空间岩石电性的综合反映。
第三节瞬变电磁法(TEM)一、方法原理瞬变电磁法是利用不接地回线或接地线源通以脉冲电流为场源,以激励探测目的物感应二次电流,在脉冲间歇测量二次场随时间变化的响应。
当发射回线中的电流突然断开时,在介质中激励出二次涡流场(激发极化场),二次场从产生到结束的时间是短暂的,这就是“瞬变”名词的由来。
在二次涡流场的衰减过程中,早期以高频为主,反映的是浅层信息,晚期以低频为主,反映的是深层地下信息。
研究瞬变电磁场随时间变化规律,即可探测不同导电性介质的垂向分布。
瞬变电磁法的探测深度与回线线圈的大小、匝数有关,线圈越大、匝数越多,探测的深度就越深。
瞬变电磁法的观测是在脉冲间隙中进行,不存在一次场源的干扰,这称之为时间上的可分性,脉冲是多频率的合成,不同的延时观测的主频率不同,相应的时间场在地层中的传播速度不同,调查的深度也就不同,这称之为空间的可分性。
由这两种可分性导致瞬变电磁法有以下特点:把频率域法的精确度问题转化成灵敏度问题,加大功率,灵敏度可以增大信噪比,加大勘探深度;在高阻围岩地区不会产生地形起伏影响的假异常;在低阻围岩地区由于是多道观测,早期道的地形影响也较易分辨;可以采用同点组合(同一回线、重叠回线等)进行观测,使与探测目标的耦合最好,取得的异常强,形态简单,分层能力强;线圈点位、方位或接收距要求相对不严格,测地工作简单,功效高;有穿透低阻覆盖层的能力,探测深度大;剖面测量与测深工作同时完成,提供了更多有用信息,减少了多解性。
二、地球物理前提由于瞬变电磁法是观测断电后由一次脉冲激励出的二次涡流场随时间的变化规律,二次涡流场随时间的衰减快慢和强弱与被探测介质(道碴、混凝土、岩石等)及介质状态(含水与干燥、完整与破裂)有关,TEM法衰减曲线的变化过程反映了检测点由高频到低频、由浅层到深层的地质信息变化过程。
检测的参数是各层规一化的电阻率,对实测的衰减曲线进行反演拟合,绘制地下电性分层及分层的电阻率柱状图,进而以反演拟合曲线为基础,绘制成曲线簇断面图、等值线断面图及电性分级断面图。
瞬变电磁法原理瞬变电磁法(Transient Electromagnetic method,简称TEM)是一种地球物理勘探方法,利用瞬变电磁场在地下介质中传播的特性,来获取地下介质的电性信息。
瞬变电磁法原理的核心在于利用瞬变电磁场的感应效应,通过对地下介质中的电导率进行探测,从而揭示地下构造和岩矿成矿体的信息。
瞬变电磁法的原理可以简单概括为,在地面上设置一个发射线圈,通过传输电流产生瞬变电磁场,这个瞬变电磁场会穿透地下介质并感应出地下介质中的电磁响应。
接收线圈则用来接收地下介质中的电磁响应,通过分析接收信号的变化,可以推断地下介质的电导率分布情况,从而得到地下介质的电性信息。
瞬变电磁法原理的核心在于瞬变电磁场的感应效应。
当发射线圈传输电流时,会在地下产生一个瞬变电磁场,这个瞬变电磁场会穿透地下介质,并感应出地下介质中的电磁响应。
地下介质中的电磁响应受到地下介质电导率的影响,不同的地下介质具有不同的电导率,因此它们会对瞬变电磁场产生不同的响应。
通过接收线圈接收地下介质中的电磁响应,并分析接收信号的变化,就可以推断地下介质的电导率分布情况。
瞬变电磁法原理的关键在于对接收信号的分析。
接收线圈接收地下介质中的电磁响应,这个响应信号包含了地下介质电导率的信息。
通过对接收信号的分析,可以得到地下介质的电导率分布情况,从而揭示地下介质的电性信息。
瞬变电磁法通过对地下介质的电性信息进行探测,可以帮助地质勘探人员了解地下构造和岩矿成矿体的情况,为资源勘探和地质灾害预测提供重要的科学依据。
总之,瞬变电磁法原理是利用瞬变电磁场的感应效应,通过对地下介质的电性信息进行探测,来揭示地下构造和岩矿成矿体的信息。
通过对发射线圈传输的瞬变电磁场和接收线圈接收的电磁响应进行分析,可以得到地下介质的电导率分布情况,从而揭示地下介质的电性信息。
瞬变电磁法在资源勘探和地质灾害预测中具有重要的应用价值,是一种非常有效的地球物理勘探方法。
瞬变电磁法1、概述顺便电磁法(TEM)属于时间域电磁法,它是的原理是根据地壳中岩石或者矿体的导电性及介电性等电学性质的差异,以不接地的回线或者是连接地线通上脉冲电流为场源,地下发射一次脉冲磁场,在一次脉冲磁场间歇期间利用线圈或接地电极观测地下介质中引起的二次感应涡流场,从而探测介质电阻率的一种方法。
其基本工作方法是:于地面或空中设置通以一定波形电流的发射线圈,从而在其周围空间产生一次电磁场,并在地下导电岩矿体中产生感应电流:断电后,感应电流由于热损耗而随时间衰减,有一个瞬变的过程。
可以通过判断和分析二次的时空变化特征,来判断地下地质体的电性特征,找出其位置,产状和埋深等特征。
具有可以同时的具有时间和空间的可分性、探测深度达、分辨率高、信息丰富等优点。
近几十年来,我国科学技术快速进步,经济迅猛发展,各项基础建设稳步展开,对于各种矿产资源、能源、地下水资源等的需求快速增加。
同时,各项建设中遇到了许多工程问题,如公路建设中的地下空洞、煤田开采中的陷落柱、隧道开挖中的突水问题等等。
这些因素在一定程度上制约着我国经济的发展,而顺便电磁法的出现,利用其测量方面的优势,已经发展成为探测油气、金属和非金属矿产的一种重要方法,并且在深部地质构造研究,工程勘察、油气、矿产、水、地热勘探等领域得到了广泛的应用。
可以很好地保证资源供给,减少经济损失,加快建设进度。
2、研究现状2.1、研究历史对勘测工程工作的种种困难,把瞬变电磁法应用到地质勘探中的想法在上世纪30年代就有人提出来。
最初的时域电磁法是利用到了L.W.Blan在1993年获得专利,用电磁脉冲激发提供电偶极形成电场。
随后在前苏联有人提出了瞬变电磁测深法。
在50年代,前苏联、加拿大、美国等国已经开始就瞬变电磁法的理论与应用技术进行了深入的研究,同时期由J.R.Wait 提出了使用瞬变电磁场法寻找导电矿体的理念。
前苏联也基本已经建立了瞬变电磁法与野外施工的技术方法,更在70、80年代开展了大量的测量工作,特别是在二维和三维测量的方面就有了很大的进步,这使的瞬变电磁法在地质勘探上运用有了很大的发展。
一、瞬变电磁法原理1. 频率域原理(图1a)图1 a表示频率域电磁法连续变化的初始场在导体中产生的二次场方向反抗初始场的变化。
b表示时间域电磁法在发射电流关断之前的稳定的初始场。
C表示时间域电磁法在发射电流关断之后在导体中感应的涡流及其产生的二次场。
Tx是发射线圈,Rx是接收线圈2. 时间域原理图1(b)表示稳定电流产生稳定磁场(关断前),在导体中不产生涡流。
图1(c)表示稳定磁场突然关断,便产生磁场反对关断,此磁场称为一次场。
该一次场在导体中感应出变化的涡流,该变化涡流产生二次场,即瞬变场。
瞬变场(涡流)在导体中分布符合趋肤效应,即高频在表面,低频在内部,瞬变场随时间按指数衰减,即高频衰减快,低频衰减慢。
瞬变场幅度和衰减的快慢取决于导体的电导率值和大小,即导体的时间常数(以后讲)。
所以观测瞬变场的幅度及其随时间衰减过程便可确定导体的电导率和大小。
二、如何实现上述原理1. 产生初始场和二次场图2 初始场和瞬变场形成过程及衰减发射机向发射线框输入脉冲电流A,A不变时在发射线周围产生稳定的初始场(见图1b),当发射电流A突然关断时,则发射线圈产生瞬时变化的初始磁场并向地下穿透。
在穿透过程中若遇到导电介质便在其中产生涡流(感应电流),涡流又产生二次场(瞬变场)(图1c)。
在发射电流A突然关断的瞬间,由于发射线圈的感抗作用,A不能立即关断,要经历一段时间,称其为关断时间t off。
t off之后开始观测二次场(图2a,图2e)。
在t off之后发射线圈还有一个弱震荡过程,为避免振荡过程影响,在PROTEM的接收回路中设置有噪声抑制(图4),此外接收线圈还要离开发射线圈一定距离。
2.仪器装置图3 瞬变电磁仪装置图图4 瞬变电磁仪接收机电路框图(以PROTEM为例)3.感应探头和磁通门磁力仪探头:磁通门探头测量的是导电介质中涡流产生的磁场,感应线圈探头测量的是磁场变化率。
对于探测块状的、高导硫化矿体而言,在初始磁场作用下其产生的二次磁场较强,衰减慢,磁通门探头优于感应线圈探头。
瞬变电磁法工作布置瞬变电磁法(Transient Electromagnetic Method,TEM)是一种非常重要的地球物理勘探方法,广泛应用于矿产资源勘探、地下水资源调查、环境地质调查等领域。
本文将介绍瞬变电磁法的工作原理和布置方式。
瞬变电磁法是利用电磁感应原理进行测量的一种方法。
它通过在地面上放置一个发射线圈和一个接收线圈,通过发射线圈产生的瞬变电流激发地下的瞬变电磁场,然后通过接收线圈测量地下的瞬变电磁场响应。
根据地下介质的电导率差异,可以得到地下结构的信息。
在进行瞬变电磁法勘探时,需要合理布置发射线圈和接收线圈。
一般情况下,发射线圈和接收线圈应该保持一定的距离,以避免相互干扰。
同时,为了获得更好的测量效果,线圈的位置和方向也需要进行合理选择。
通常情况下,线圈应该布置在待勘探区域的中心位置,并且线圈的方向应该与地下结构的走向垂直。
在实际应用中,瞬变电磁法的工作布置需要考虑多种因素。
首先,需要根据勘探目的确定勘探区域的范围和布点密度。
对于大面积的勘探区域,可以采用网格状布点方式,以获得更全面的地下信息。
其次,根据地下介质的特点选择合适的发射线圈和接收线圈。
对于高电导率的地下介质,可以选择低频率的线圈;而对于低电导率的地下介质,可以选择高频率的线圈。
此外,还需要考虑地下介质的深度和复杂程度,以确定合适的测量参数。
瞬变电磁法的工作布置还需要考虑数据采集和处理的问题。
在进行数据采集时,需要保证线圈的稳定性和准确性,避免外界干扰对测量结果的影响。
在数据处理方面,需要进行合理的滤波和校正,以提高数据的质量和可靠性。
同时,还需要采用适当的解释方法,将测量数据转化为地下结构的信息。
瞬变电磁法是一种重要的地球物理勘探方法,通过合理的工作布置可以获得准确可靠的地下信息。
在实际应用中,需要根据勘探目的和地下介质的特点选择合适的线圈和测量参数,并进行数据采集和处理。
通过瞬变电磁法的应用,可以为矿产资源勘探、地下水资源调查等领域提供重要的支持和指导。
瞬变电磁法瞬变电磁法是利用不接地回线或接地线源向地下发射一次脉冲磁场,在一次脉冲磁场间歇期间利用线圈或接地电极观测地下介质中引起的二次感应涡流场,从而探测介质电阻率的一种方法.瞬变电磁法也称时间域电磁法(Time domain electromagnetic methods),简称TEM,它是利用不接地回线或接地线源向地下发射一次脉冲磁场,在一次脉冲磁场间歇期间,利用线圈或接地电极观测二次涡流场的方法。
简单地说,瞬变电磁法的基本原理就是电磁感应定律。
其基本工作方法是:于地面或空中设置通以一定波形电流的发射线圈,从而在其周围空间产生一次电磁场,并在地下导电岩矿体中产生感应电流:断电后,感应电流由于热损耗而随时间衰减。
衰减过程一般分为早、中和晚期。
早期的电磁场相当于频率域中的高频成分,衰减快,趋肤深度小;而晚期成分则相当于频率域中的低频成分,衰减慢,趋肤深度大。
通过测量断电后各个时间段的二次场随时间变化规律,可得到不同深度的地电特征瞬变电磁法探测具有如下优点⑴由于施工效率高,纯二次场观测以及对低阻体敏感,使得它在当前的煤田水文地质勘探中成为首选方法;⑵瞬变电磁法在高阻围岩中寻找低阻地质体是最灵敏的方法,且无地形影响;⑶采用同点组合观测,与探测目标有最佳耦合,异常响应强,形态简单,分辨能力强;⑷剖面测量和测深工作同时完成,提供更多有用信息。
根据瞬变电磁法对低阻体反应敏感的特点,将其用于煤矿井下水文勘查还是近几年的事情。
瞬变电磁法是一种极具发展前景的方法,可查明含水地质如岩溶洞穴与通道、煤矿采空区、深部不规则水体等。
瞬变电磁法在提高探测深度和在高阻地区寻找低阻地质体是最灵敏的方法,具有自动消除主要噪声源,且无地形影响,同点组合观测,与探测目标有最佳耦合,异常响应强,形态简单,分辨能力强等优点。
瞬变电磁法的勘探原理是利用人工在发射线圈加以脉冲电流,产生一个瞬变的电磁场,该磁场垂直发射线圈向两个方向传播,通常是在地面布设发射线圈,依据半空间的传播原理,把地面以上的忽略。
瞬变电磁法在井田边界附近区域探测中的应用瞬变电磁法(Transient Electromagnetic Method,简称TEM)是一种地球物理勘探方法,利用瞬时电流激发地下的感应电磁场,通过测量地面上的感应电磁场响应来获取地下介质的电阻率信息,是一种用于勘探地下电性特性的有效方法。
在油田勘探中,瞬变电磁法具有很大的应用潜力,特别是在井田边界附近区域的探测中,可以提供重要的地质信息,为油田勘探和开发提供精准的地质信息。
1. 瞬变电磁法原理及特点瞬变电磁法是一种非侵入性的勘探方法,其原理是通过在地面上放置激发线圈,传输瞬时电流到地下,激发感应电磁场,然后通过接收线圈测量感应电磁场的响应。
瞬变电磁法的特点包括测深度较大、分辨率高、成像清晰等优点,适用于不同地质条件下的勘探。
2. 瞬变电磁法在井田边界附近区域的应用在油田勘探中,瞬变电磁法在井田边界附近区域的应用具有重要的意义。
井田边界是油田勘探和开发的重要区域,地下结构复杂,地质信息丰富,瞬变电磁法能够提供井田边界附近地下介质的电性特性分布信息,为油田勘探和开发提供重要的地质依据。
井田边界附近常常存在地下水文地质问题,瞬变电磁法可以很好地探测地下水文地质条件,为井田勘探和开发提供水文地质信息。
瞬变电磁法在井田边界附近区域的应用对于油田勘探和开发具有重要意义。
3. 瞬变电磁法在井田边界附近区域的工作流程瞬变电磁法在井田边界附近区域的工作流程通常包括前期调研、数据采集、数据处理和解释等环节。
需要对勘探区域的地质情况进行充分的了解,包括井田边界的地质构造、地下水文地质条件等信息。
通过设置激发线圈和接收线圈,采集感应电磁场的数据,通常采用交错布设的方式,以提高数据的分辨率和准确性。
然后,对采集到的数据进行处理和解释,包括数据滤波、数据反演、成像等过程,最终得到地下介质的电性特性分布图像,为油田勘探和开发提供地质信息。
瞬变电磁法在井田边界附近区域的探测中具有重要的应用价值,能够为油田勘探和开发提供重要的地质信息,为井田勘探和开发提供精准的地质信息,是油田勘探和开发中不可或缺的一种勘探方法。