高考全国卷文科数学带答案
- 格式:docx
- 大小:368.88 KB
- 文档页数:8
绝密★启用前2024年普通高等学校招生全国统一考试全国甲卷文科数学使用范围:陕西、宁夏、青海、内蒙古、四川注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,只将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{}1,2,3,4,5,9A =,{}1B x x A =+Î,则A B =I ( )A. {}1,2,3,4B. {}1,2,3 C. {}3,4 D. {}1,2,9【答案】A 【解析】【分析】根据集合B 的定义先算出具体含有的元素,然后根据交集的定义计算.【详解】依题意得,对于集合B 中的元素x ,满足11,2,3,4,5,9x +=,则x 可能的取值为0,1,2,3,4,8,即{0,1,2,3,4,8}B =,于是{1,2,3,4}A B Ç=.故选:A2. 设z =,则z z ×=( )A. -iB. 1C. -1D. 2【答案】D 【解析】【分析】先根据共轭复数的定义写出z ,然后根据复数的乘法计算.【详解】依题意得,z =,故22i 2zz =-=.故选:D3. 若实数,x y 满足约束条件43302202690x y x y x y --³ìï--£íï+-£î,则5z x y =-最小值为( )A. 5B.12C. 2-D. 72-【答案】D 【解析】【分析】画出可行域后,利用z 的几何意义计算即可得.【详解】实数,x y 满足43302202690x y x y x y --³ìï--£íï+-£î,作出可行域如图:由5z x y =-可得1155y x z =-,即z 的几何意义为1155y x z =-的截距的15-,则该直线截距取最大值时,z 有最小值,此时直线1155y x z =-过点A ,联立43302690x y x y --=ìí+-=î,解得321x y ì=ïíï=î,即3,12A æöç÷èø,则min 375122z =-´=-.故选:D.4. 等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=( )A. 2- B.73C. 1D.29【答案】D 【解析】的【分析】可以根据等差数列的基本量,即将题目条件全转化成1a 和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【详解】方法一:利用等差数列的基本量由91S =,根据等差数列的求和公式,911989193612S a d a d ´=+=Û+=,又371111222628(936)99a a a d a d a d a d +=+++=+=+=.故选:D方法二:利用等差数列的性质根据等差数列的性质,1937a a a a +=+,由91S =,根据等差数列的求和公式,193799()9()122a a a a S ++===,故3729a a +=.故选:D方法三:特殊值法不妨取等差数列公差0d =,则9111199S a a ==Þ=,则371229a a a +==.故选:D5. 甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是( )A.14B.13C.12D.23【答案】B 【解析】【分析】分类讨论甲乙的位置,得到符合条件的情况,然后根据古典概型计算公式进行求解.【详解】当甲排在排尾,乙排第一位,丙有2种排法,丁就1种,共2种;当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁就1种,共2种;于是甲排在排尾共4种方法,同理乙排在排尾共4种方法,于是共8种排法符合题意;基本事件总数显然是44A 24=,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为81243=.故选:B6. 已知双曲线2222:1(0,0)y x C a b a b-=>>的上、下焦点分别为()()120,4,0,4F F -,点()6,4P -在该双曲线上,则该双曲线的离心率为( )A. 4B. 3C. 2D.【答案】C 【解析】【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率.【详解】由题意,()10,4F -、()20,4F 、()6,4P -,则1228F F c ==,110PF ==,26PF ==,则1221064a PF PF =-=-=,则28224c e a ===.故选:C.7. 曲线()631f x x x =+-在()0,1-处的切线与坐标轴围成的面积为( )A.16B.C.12D. 【答案】A 【解析】【分析】先求出切线方程,再求出切线的截距,从而可求面积.【详解】()563f x x =¢+,所以()03f ¢=,故切线方程为3(0)131y x x =--=-,故切线的横截距为13,纵截距为1-,故切线与坐标轴围成的面积为1111236´´=故选:A.8. 函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A. B.C. D.【答案】B 【解析】【分析】利用函数的奇偶性可排除A 、C ,代入1x =可得()10f >,可排除D.【详解】()()()()()22ee sin e e sin xx x x f x x x x x f x ---=-+--=-+-=,又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C ,又()11πe 11111e sin11e sin 10e e 622e 42ef æöæö=-+->-+-=-->->ç÷ç÷èøèø,故可排除D.故选:B.9. 已知cos cos sin a a a =-πtan 4a æö+=ç÷èø( )A. 1+B. 1- C.D. 1【答案】B 【解析】【分析】先将cos cos sin aa -a弦化切求得tan a ,再根据两角和的正切公式即可求解.【详解】因为cos cos sin aa a=-,所以11tan =-a ,tan 1Þa =,所以tan 1tan 11tan 4a +p æö==a +ç÷-aèø,故选:B .原10题略10. 设a b 、是两个平面,m n 、是两条直线,且m a b =I .下列四个命题:①若//m n ,则//n a 或//n b ②若m n ^,则,n n a b^^③若//n a ,且//n b ,则//m n ④若n 与a 和b 所成的角相等,则m n^其中所有真命题的编号是( )A. ①③ B. ②④C. ①②③D. ①③④【答案】A【解析】【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③.【详解】对①,当n Ìa ,因为//m n ,m b Ì,则//n b ,当n b Ì,因为//m n ,m a Ì,则//n a ,当n 既不在a 也不在b 内,因为//m n ,,m m a b ÌÌ,则//n a 且//n b ,故①正确;对②,若m n ^,则n 与,a b 不一定垂直,故②错误;对③,过直线n 分别作两平面与,a b 分别相交于直线s 和直线t ,因为//n a ,过直线n 的平面与平面a 的交线为直线s ,则根据线面平行的性质定理知//n s ,同理可得//n t ,则//s t ,因为s Ë平面b ,t Ì平面b ,则//s 平面b ,因为s Ì平面a ,m a b =I ,则//s m ,又因为//n s ,则//m n ,故③正确;对④,若,m n a b Ç=与a 和b 所成的角相等,如果//,//a b n n ,则//m n ,故④错误;综上只有①③正确,故选:A.11. 在ABC V 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( )A.32B.C.D.【答案】C 【解析】【分析】利用正弦定理得1sin sin 3A C =,再利用余弦定理有22134a c ac +=,再利用正弦定理得到22sin sin A C +的值,最后代入计算即可.【详解】因为29,34B b ac p==,则由正弦定理得241sin sin sin 93A CB ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin A C +=.故选:C.二、填空题:本题共4小题,每小题5分,共20分.原13题略12. 函数()sin f x x x =在[]0,π上的最大值是______.【答案】2【解析】【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【详解】()πsin 2sin 3f x x x x æö==-ç÷èø,当[]0,πx Î时,ππ2π,333x éù-Î-êúëû,当ππ32x -=时,即5π6x =时,()max 2f x =.故答案为:213. 已知1a >,8115log log 42a a -=-,则=a ______.【答案】64【解析】【分析】将8log ,log 4a a 利用换底公式转化成2log a 来表示即可求解.【详解】由题28211315log log log 4log 22a a a a -=-=-,整理得()2225log 60log a a --=,2log 1a Þ=-或2log 6a =,又1a >,所以622log 6log 2a ==,故6264a ==故答案:64.为14. 曲线33y x x =-与()21y x a =--+在()0,¥+上有两个不同的交点,则a 的取值范围为______.【答案】()2,1-【解析】【分析】将函数转化为方程,令()2331x x x a -=--+,分离参数a ,构造新函数()3251,g x x x x =+-+结合导数求得()g x 单调区间,画出大致图形数形结合即可求解.【详解】令()2331x x x a -=--+,即3251a x x x =+-+,令()()32510,g x x x x x =+-+>则()()()2325351g x x x x x =+-=+-¢,令()()00g x x ¢=>得1x =,当()0,1x Î时,()0g x ¢<,()g x 单调递减,当()1,x ¥Î+时,()0g x ¢>,()g x 单调递增,()()01,12g g ==-,因为曲线33y x x =-与()21y x a =--+在()0,¥+上有两个不同的交点,所以等价于y a =与()g x 有两个交点,所以()2,1a Î-.故答案为:()2,1-三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.15. 已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式;(2)求数列{}n S 通项公式.【答案】(1)153n n a -æö=ç÷èø的(2)353232næö-ç÷èø【解析】【分析】(1)利用退位法可求公比,再求出首项后可求通项;(2)利用等比数列的求和公式可求n S .【小问1详解】因为1233n n S a +=-,故1233n n S a -=-,所以()12332n n n a a a n +=-³即153n n a a +=故等比数列的公比为53q =,故1211523333533a a a a =-=´-=-,故11a =,故153n n a -æö=ç÷èø.【小问2详解】由等比数列求和公式得5113353523213n nn S éùæö´-êúç÷èøêúæöëû==-ç÷èø-.16. 如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ;(2)求点M 到ABF 的距离.【答案】(1)证明见详解; (2【解析】【分析】(1)结合已知易证四边形BCDM 为平行四边形,可证//BM CD,进而得证;(2)作FO AD ^,连接OB ,易证,,OB OD OF 三垂直,结合等体积法M ABF F ABM V V --=即可求解.【小问1详解】因为//,2,4,BC AD BC AD M ==为AD 的中点,所以//,BC MD BC MD =,四边形BCDM 为平行四边形,所以//BM CD ,又因BM Ë平面CDE ,CD Ì平面CDE ,所以//BM 平面CDE ;【小问2详解】如图所示,作BO AD ^交AD 于O ,连接OF ,因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD =,结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM =,所以ABM V 为等边三角形,O 为AM中点,所以OB =,又因为四边形ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD =,四边形EFMD 为平行四边形,FM ED AF ==,所以AFM △为等腰三角形,ABM V 与AFM △底边上中点O 重合,OF AM ^,3OF ==,因为222OB OF BF +=,所以OB OF ^,所以,,OB OD OF 互相垂直,由等体积法可得M ABF F ABM V V --=,2112333F ABM ABM V S FO -=×=×=△,222cos 2FA AB FBFAB FAB FA AB+-Ð===Ð=×11sin 222FAB S FA AB FAB =××Ð==△,设点M 到FAB的距离为d ,则1133M FAB F ABM FAB V V S d d --==××==△解得d =M 到ABF .为17. 已知函数()()1ln 1f x a x x =--+.(1)求()f x 的单调区间;(2)若2a £时,证明:当1x >时,()1ex f x -<恒成立.【答案】(1)见解析(2)见解析【解析】【分析】(1)求导,含参分类讨论得出导函数的符号,从而得出原函数的单调性;(2)先根据题设条件将问题可转化成证明当1x >时,1e 21ln 0x x x --++>即可.【小问1详解】()f x 定义域为(0,)+¥,11()ax f x a x x¢-=-=当0a £时,1()0ax f x x -¢=<,故()f x 在(0,)+¥上单调递减;当0a >时,1,x a ¥æöÎ+ç÷èø时,()0f x ¢>,()f x 单调递增,当10,x a æöÎç÷èø时,()0f x ¢<,()f x 单调递减.综上所述,当0a £时,()f x 在(0,)+¥上单调递减;0a >时,()f x 在1,a ¥æö+ç÷èø上单调递增,在10,a æöç÷èø上单调递减.【小问2详解】2a £,且1x >时,111e ()e (1)ln 1e 21ln x x x f x a x x x x ----=--+-³-++,令1()e 21ln (1)x g x x x x -=-++>,下证()0g x >即可.11()e 2x g x x -¢=-+,再令()()h x g x ¢=,则121()e x h x x-¢=-,显然()h x ¢在(1,)+¥上递增,则0()(1)e 10h x h ¢¢>=-=,即()()g x h x =¢在(1,)+¥上递增,故0()(1)e 210g x g ¢¢>=-+=,即()g x 在(1,)+¥上单调递增,故0()(1)e 21ln10g x g >=-++=,问题得证18. 设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M æöç÷èø在C 上,且MF x ^轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ^轴.【答案】(1)22143x y += (2)证明见解析【解析】【分析】(1)设(),0F c ,根据M 的坐标及MF ^x 轴可求基本量,故可求椭圆方程.(2)设:(4)AB y k x =-,()11,A x y ,()22,B x y ,联立直线方程和椭圆方程,用,A B 的坐标表示1Q y y -,结合韦达定理化简前者可得10Q y y -=,故可证AQ y ^轴.【小问1详解】设(),0F c ,由题设有1c =且232b a =,故2132a a -=,故2a =,故b =,故椭圆方程为22143x y +=.【小问2详解】直线AB 的斜率必定存在,设:(4)AB y k x =-,()11,A x y ,()22,B x y ,由223412(4)x y y k x ì+=í=-î可得()2222343264120k x k x k +-+-=,故()()422Δ102443464120k k k =-+->,故1122k -<<,又22121222326412,3434k k x x x x k k-+==++,而5,02N æöç÷èø,故直线225:522y BN y x x æö=-ç÷èø-,故22223325252Q y y y x x --==--,所以()1222112225332525Q y x y y y y y x x ´-+-=+=--()()()12224253425k x x k x x -´-+-=-()222212122264123225825834342525k k x x x x k k k k x x -´-´+-++++==--2222212824160243234025k k k k k x --+++==-,故1Q y y =,即AQ y ^轴.(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意D 的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.19. 在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1r r q =+.(1)写出C 的直角坐标方程;(2)设直线l :x t y t a=ìí=+î(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.【答案】(1)221y x =+(2)34a =【解析】【分析】(1)根据cos xr r q ìï=í=ïî可得C 的直角方程.(2)将直线的新的参数方程代入C 的直角方程,法1:结合参数s 的几何意义可得关于a 的方程,从而可求参数a 的值;法2:将直线的直角方程与曲线的直角方程联立,结合弦长公式可求a 的值.【小问1详解】由cos 1r r q =+,将cos xr r q ìï=í=ïîcos 1r r q =+,1x =+,两边平方后可得曲线直角坐标方程为221y x =+.【小问2详解】对于直线l 的参数方程消去参数t ,得直线的普通方程为y x a =+.法1:直线l 的斜率为1故直线的参数方程可设为x y ì=ïïíïïî,s ÎR .将其代入221y x =+中得()221)210s a s a +-+-=设,A B 两点对应的参数分别为12,s s ,则)()212121,21s s a s s a +=--=-,且()()22Δ818116160a a a =---=->,故1a <,12AB s s\=-=2==,解得34a =.法2:联立221y x a y x =+ìí=+î,得22(22)10x a x a +-+-=,()22Δ(22)41880a a a =---=-+>,解得1a <,的设()()1122,,,A x y B x y ,2121222,1x x a x x a \+=-=-,则AB ==2=,解得34a =20. 实数,ab 满足3a b +³.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-³.【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)直接利用22222()a b a b +³+即可证明.(2)根据绝对值不等式并结合(1)中结论即可证明.【小问1详解】因为()()2222222022a b a ab b a b b a -+=--++=³,当a b =时等号成立,则22222()a b a b +³+,因为3a b +³,所以22222()a b a b a b +³+>+;【小问2详解】222222222222()a b b a a b b a a b a b -+-³-+-=+-+22222()()()()(1)326a b a b a b a b a b a b =+-+³+-+=++-³´=。
2023年高考数学真题试卷(全国甲卷)文科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集,集合,则()A.B.C.D.2.()A.B.1C.D.3.已知向量,则()A.B.C.D.4.某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A.B.C.D.5.记为等差数列的前项和.若,则()A.25B.22C.20D.156.执行下边的程序框图,则输出的()A.21B.34C.55D.897.设为椭圆的两个焦点,点在上,若,则()A.1B.2C.4D.58.曲线在点处的切线方程为()A.B.C.D.9.已知双曲线的离心率为,其中一条渐近线与圆交于A,B两点,则()A.B.C.D.10.在三棱锥中,是边长为2的等边三角形,,则该棱锥的体积为()A.1B.C.2D.311.已知函数.记,则()A.B.C.D.12.函数的图象由的图象向左平移个单位长度得到,则的图象与直线的交点个数为()A.1B.2C.3D.4二、填空题:本大题共4小题,每小题5分,共20分.13.记为等比数列的前项和.若,则的公比为.14.若为偶函数,则.15.若x,y满足约束条件,则的最大值为.16.在正方体中,为的中点,若该正方体的棱与球的球面有公共点,则球的半径的取值范围是.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.记的内角的对边分别为,已知.(1)求;(2)若,求面积.18.如图,在三棱柱中,平面.(1)证明:平面平面;(2)设,求四棱锥的高.19.一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g).试验结果如下:对照组的小白鼠体重的增加量从小到大排序为15.218.820.221.322.523.225.826.527.530.132.634.334.835.635.635.836.237.340.543.2试验组的小白鼠体重的增加量从小到大排序为7.89.211.412.413.215.516.518.018.819.219.820.221.622.823.623.925.128.232.336.5(1)计算试验组的样本平均数;(2)(ⅰ)求40只小白鼠体重的增加量的中位数m,再分别统计两样本中小于m与不小于m的数据的个数,完成如下列联表对照组试验组(ⅱ)根据(i)中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?附:,0.1000.0500.0102.7063.841 6.63520.已知函数.(1)当时,讨论的单调性;(2)若,求的取值范围.21.已知直线与抛物线交于两点,.(1)求;(2)设为的焦点,为上两点,且,求面积的最小值.22.已知点,直线(为参数),为的倾斜角,与轴正半轴、轴正半轴分别交于,且.(1)求;(2)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求的极坐标方程.23.已知.(1)求不等式的解集;(2)若曲线与轴所围成的图形的面积为2,求.答案解析部分1.【答案】A【解析】【解答】,故选:A【分析】先计算补集,再求并集即得答案.2.【答案】C【解析】【解答】,故选:C【分析】利用复数乘法运算计算由得出答案。
2024年全国统一高考数学试卷(文科)(甲卷)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的.1.集合,2,3,4,5,,,则 {1A =9}{|1}B x x A =+∈(A B = )A .,2,3,B .,2,C .,D .,2,{14}{13}{34}{19}2.设,则 z =(z z ⋅=)A .B .1C .D .2i-1-3.若实数,满足约束条件则的最小值为 x y 4330,220,2690,x y x y x y --⎧⎪--⎨⎪+-⎩ 5z x y =-()A .5B .C .D .122-72-4.等差数列的前项和为,若, {}n a n n S 91S =37(a a +=)A .B .C .1D .2-73295.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是 ()A .B .C .D .141312236.已知双曲线的两个焦点分别为、,且经过点,则双曲线的离心率是 1(0,4)F 2(0,4)F -(6,4)P -C ()A .4B .3C .2D 7.曲线在处的切线与坐标轴围成的面积为 6()31f x x x =+-(0,1)-()A .BC .D .16128.函数的区间,的图像大致为 2()()sin xx f x x e ex -=-+-[ 2.8- 2.8]()A .B .C .D .9.已知 cos cos sin ααα=-tan()(4πα+=)A .B .CD.1+1-1-10.已知直线与圆交于,两点,则的最小值为 20ax y a ++-=22:410C x y y ++-=A B ||AB ()A .2B .3C .4D .611.已知、是两个平面,、是两条直线,.下列四个命题:αβm n m αβ= ①若,则或//m n //n α//n β②若,则,m n ⊥n α⊥n β⊥③若,且,则//n α//n β//m n ④若与和所成的角相等,则n αβm n ⊥其中,所有真命题的编号是 ()A .①③B .②③C .①②③D .①③④12.在中,内角,,所对边分别为,,,若,,则 ABC ∆A B C a b c 3B π=294b ac =sin sin (A C +=)A .BCD32二、填空题:本题共4小题,每小题5分,共20分.13.函数在,上的最大值是 ()sin f x x x =[0]π14.已知甲、乙两个圆台上下底面的半径均为和,母线长分别为和,则两个圆台的2r 1r 122()r r -123()r r -体积之比 .V V =甲乙15.已知,,则 .1a >8115log log 42a a -=-a =16.曲线与在上有两个不同的交点,则的取值范围为 .33y x x =-2(1)y x a =--+(0,)+∞a 三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)已知等比数列的前项和为,且.{}n a n n S 1233n n S a +=-(1)求的通项公式;{}n a (2)求数列的通项公式.{}n S 18.(12分)某工厂进行生产线智能化升级改造.升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有的把握认为甲、乙两车间产品的优级品率存在差异?能否有的把握认为甲、乙两车间产95%99%品的估级品率存在差异?(2)已知升级改造前该工厂产品的优级品率.设为升级改造后抽取的件产品的优级品率.如0.5p =p n 果,则认为该工厂产品的优级品率提高了.根据抽取的150件产品的数据,能否认p p >+12.247)≈附:,22()()()()()n ad bc K a b c d a c b d -=++++2()P K k 0.0500.0100.001k3.8416.63510.82819.(12分)如图,在以,,,,,为顶点的五面体中,四边形与四边形均A B C D E F ABCD CDEF 为等腰梯形,,,,,,,//AB CD //CD EF 2AB DE EF CF ====4CD =AD BC ==AE =为的中点.M CD (1)证明:平面;//EM BCF (2)求点到的距离.M ADE20.(12分)已知函数.()(1)1f x a x lnx =--+(1)求的单调区间;()f x (2)若时,证明:当时,恒成立.2a 1x >1()x f x e -<21.(12分)已知椭圆的右焦点为,点在椭圆上,且轴.2222:1(0)x y C a b a b +=>>F 3(1,2M C MF x ⊥(1)求椭圆的方程;C (2)过点的直线与椭圆交于,两点,为线段的中点,直线与交于,证明:(4,0)P C A B N FP NB MF Q 轴.AQ y ⊥(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线xOy O x 的极坐标方程为.C cos 1ρρθ=+(1)写出的直角坐标方程;C (2)直线为参数),若与交于、两点,,求的值.:(x tl t y t a =⎧⎨=+⎩C l A B ||2AB =a [选修4-5:不等式选讲]23.实数,满足.a b 3a b + (1)证明:;2222a b a b +>+(2)证明:.22|2||2|6a b b a -+-2024年全国统一高考数学试卷(文科)(甲卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的.1.集合,2,3,4,5,,,则 {1A =9}{|1}B x x A =+∈(A B = )A .,2,3,B .,2,C .,D .,2,{14}{13}{34}{19}【解析】:,2,3,4,5,,,1,2,3,4,,{1A =9}{|1}{0B x x A =+∈=8}则,2,3,.故选:.{1A B = 4}A 2.设,则 z =(z z ⋅=)A .B .1C .D .2i-1-解法一:,则.故选:.z =z =()2z z ⋅=⋅=D 解法二:22z z z ⋅==3.若实数,满足约束条件则的最小值为 x y 4330,220,2690,x y x y x y --⎧⎪--⎨⎪+-⎩5z x y =-()A .5B .C .D .122-72-【解析】:作出不等式组所表示的平面区域,如图所示:4330,220,2690,x y x y x y --⎧⎪--⎨⎪+-⎩将约束条件两两联立可得3个交点:,,,(0,1)C -3(,1)2A 1(3,)2B 由得,则可看作直线在轴上的截距,5z x y =-1155y x z =-15z -1155y x z =-y 经检验可知,当直线经过点,时,最小,代入目标函数可得:.3(2A 1)z 72min z =-故选:.D 4.等差数列的前项和为,若, {}n a n n S 91S =37(a a +=)A .B .C .1D .2-7329解法一:,则,解得.故选:.91S =193799()9()122a a a a S ++===3729a a +=D 解法二:利用等差数列的基本量由,根据等差数列的求和公式,,91S =9119891,93612dS a a d ⨯=+=∴+=.()37111122262893699a a a d a d a d a d +=+++=+=+=解法三:特殊值法不妨取等差数列公差,则,则.故选:D0d =9111199S a a ==⇒=371229a a a +==解法四:【构造法】:设的公差为,利用结论是首项为,公差为的等差数列,{}n a d n S n ⎧⎫⎨⎬⎩⎭1a 2d 则,,()911118428922S d a a d a d =+=+=+371112628a a a d a d a d +=+++=+则,所以.故选:D ()()9111371118428==92229S d a a d a d a a =+=+=++3729a a +=解法五:根据题意,故选:D375922299a a a S +===5.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是 ()A .B .C .D .14131223【解析】:甲、乙、丙、丁四人排成一列共有种可能,4424A =丙不在排头,且甲或乙在排尾的情况有种可能,故.故选:.1122228C C A=81243P ==B 6.已知双曲线的两个焦点分别为、,且经过点,则双曲线的离心率是 1(0,4)F 2(0,4)F -(6,4)P -C ()A .4B .3C.2D 解法一:因为双曲线的两个焦点分别为、,且经过点,1(0,4)F 2(0,4)F -(6,4)P -所以,,,12||8F F =1||6PF =2||10PF ==则双曲线的离心率.故选:.C 2822106c e a ===-C 解法二:点纵坐标相同,所以是通径的一半即1P F 、1||PF 21||6b PF a ==则即,则双曲线的离心率.故选:.2166a a -=2a =C 224c e a ===C 解法三:双曲线的离心率C 121221086F F e PF PF ===--解法四 :根据焦点坐标可知4c =,根据焦点在y 轴上设双曲线方程为22221y xa b -=,则22221636116a b a b ⎧-=⎪⎨⎪+=⎩,则2a b =⎧⎪⎨=⎪⎩2c e a ==7.曲线在处的切线与坐标轴围成的面积为 6()31f x x x =+-(0,1)-()A .BC .D .1612【解析】:因为,所以,曲线在处的切线斜率,6()3f x x x =+5()63f x x '=+(0,1)-3k =故曲线在处的切线方程为,即,(0,1)-13y x +=31y x =-则其与坐标轴围成的面积.故选:.1111236S =⨯⨯=A 8.函数的区间,的图像大致为 2()()sin x x f x x ee x -=-+-[ 2.8-2.8]()A .B .C .D .解法一:,2()()sin x x f x x e e x -=-+-则,故为偶函数,故错误;22()()()sin()()sin ()x x x x f x x e e x x e e x f x ---=--+--=-+-=()f x AC (1),故错误,正确.f 1111111()sin11()sin 1062242e e e e e e eπ-=-+->-+-=-->->D B 故选:.B 解法二:函数为偶函数。
2023年全国统一高考数学试卷(文科)(甲卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设全集U={1,2,3,4,5},集合M={1,4},N={2,5},则N∪∁U M=( )A.{2,3,5}B.{1,3,4}C.{1,2,4,5}D.{2,3,4,5}【答案】A【解答】解:因为U={1,2,3,4,5},集合M={1,4},N={2,5},所以∁U M={2,3,5},则N∪∁U M={2,3,5}.故选:A.2.(5分)=( )A.﹣1B.1C.1﹣i D.1+i【答案】C【解答】解:==1﹣i.故选:C.3.(5分)已知向量=(3,1),=(2,2),则cos〈+,﹣〉=( )A.B.C.D.【答案】B【解答】解:根据题意,向量=(3,1),=(2,2),则+=(5,3),﹣=(1,﹣1),则有|+|==,|﹣|==,(+)•(﹣)=2,故cos〈+,﹣〉==.故选:B.4.(5分)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A .B .C .D .【答案】D【解答】解:某校文艺部有4名学生,其中高一、高二年级各2名,从这4名学生中随机选2名组织校文艺汇演,基本事件总数n ==6,这2名学生来自不同年级包含的基本事件个数m ==4,则这2名学生来自不同年级的概率为P ===.故选:D .5.(5分)记S n 为等差数列{a n }的前n 项和.若a 2+a 6=10,a 4a 8=45,则S 5=( )A .25B .22C .20D .15【答案】C【解答】解:等差数列{a n }中,a 2+a 6=2a 4=10,所以a 4=5,a 4a 8=5a 8=45,故a 8=9,则d ==1,a 1=a 4﹣3d =5﹣3=2,则S 5=5a 1+=10+10=20.故选:C .6.(5分)执行下边的程序框图,则输出的B =( )A.21B.34C.55D.89【答案】B【解答】解:模拟执行程序框图,如下:n=3,A=1,B=2,k=1,k≤3,A=1+2=3,B=3+2=5,k=2,k≤3,A=3+5=8,B=8+5=13,k=3,k≤3,A=8+13=21,B=21+13=34,k=4,k>3,输出B=34.故选:B.A.1B.2C.4D.5【答案】B【解答】解:根据题意,点P在椭圆上,满足•=0,可得∠F1PF2=,又由椭圆C:+y2=1,其中c2=5﹣1=4,可得|PF1|•|PF2|=2,故选:B.8.(5分)曲线y=在点(1,)处的切线方程为( )A.y=x B.y=x C.y=x+D.y=x+【答案】C【解答】解:因为y=,y′==,故函数在点(1,)处的切线斜率k=,切线方程为y﹣=(x﹣1),即y=.故选:C.9.(5分)已知双曲线C:﹣=1(a>0,b>0)的离心率为,C的一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,则|AB|=( )A.B.C.D.【答案】D【解答】解:双曲线C:﹣=1(a>0,b>0)的离心率为,可得c=a,所以b=2a,所以双曲线的渐近线方程为:y=±2x,一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,圆的圆心(2,3),半径为1,圆的圆心到直线y=2x的距离为:=,所以|AB|=2=.故选:D.10.(5分)在三棱锥P﹣ABC中,△ABC是边长为2的等边三角形,PA=PB=2,PC=,则该棱锥的体积为( )A.1B.C.2D.3【答案】A【解答】解:如图,PA=PB=2,AB=BC=2,取AB的中点D,连接PD,CD,可得AB⊥PD,AB⊥CD,又PD∩CD=D,PD、CD⊂平面PCD,∴AB⊥平面PCD,在△PAB与△ABC中,求得PD=CD=,在△PCD中,由PD=CD=,PC=,得PD2+CD2=PC2,则PD⊥CD,∴,∴×AB=.故选:A.11.(5分)已知函数f(x)=.记a=f(),b=f(),c=f(),则( )A.b>c>a B.b>a>c C.c>b>a D.c>a>b【答案】A【解答】解:令g(x)=﹣(x﹣1)2,则g(x)的开口向下,对称轴为x=1,∵,而=,∴,∴,∴由一元二次函数的性质可知g()<g(),∵,而,∴,∴,综合可得,又y=e x为增函数,∴a<c<b,即b>c>a.故选:A.12.(5分)函数y=f(x)的图象由y=cos(2x+)的图象向左平移个单位长度得到,则y=f(x)的图象与直线y=x﹣的交点个数为( )A.1B.2C.3D.4【答案】C【解答】解:y=cos(2x+)的图象向左平移个单位长度得到f(x)=cos (2x+)=﹣sin2x,在同一个坐标系中画出两个函数的图象,如图:y=f(x)的图象与直线y=x﹣的交点个数为:3.故选:C.二、填空题:本大题共4小题,每小题5分,共20分。
2023年普通高等学校招生全国统一考试(全国乙卷)文科数学一、选择题1. 232i 2i ++=( )A. 1B. 2C.D. 52. 设全集{}0,1,2,4,6,8U =,集合{}{}0,4,6,0,1,6M N ==,则M ∪C U N ( ) A. {}0,2,4,6,8B. {}0,1,4,6,8C. {}1,2,4,6,8D. U3. 如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )A. 24B. 26C. 28D. 304. 在ABC 中,内角,,A B C 的对边分别是,,a b c ,若cos cos a B b A c −=,且5C π=,则B ∠=( )A.10π B.5π C.310π D.25π 5. 已知e ()e 1xax x f x =−是偶函数,则=a ( )A. 2−B. 1−C. 1D. 26. 正方形ABCD 的边长是2,E 是AB 的中点,则EC ED ⋅=( )A.B. 3C. D. 57. 设O 为平面坐标系的坐标原点,在区域(){}22,14x y xy ≤+≤内随机取一点A ,则直线OA 的倾斜角不大于π4的概率为( ) A.18B.16C.14D.128. 函数()32f x x ax =++存在3个零点,则a 的取值范围是( )A. (),2−∞−B. (),3−∞−C. ()4,1−−D. ()3,0−9. 某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( )A.56B.23C.12D.1310. 已知函数()sin()f x x ωϕ=+在区间π2π,63⎛⎫ ⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条对称轴,则5π12f ⎛⎫−= ⎪⎝⎭( )A. B. 12−C.12D.11. 已知实数,x y 满足224240x y x y +−−−=,则x y −的最大值是( )A. 1+B. 4C. 1+D. 712. 设A ,B 为双曲线2219y x −=上两点,下列四个点中,可为线段AB 中点的是( )A. ()1,1B. ()1,2-C. ()1,3D. ()1,4−−二、填空题13.已知点(A 在抛物线C :22y px =上,则A 到C 的准线的距离为______. 14. 若π10,,tan 22⎛⎫∈= ⎪⎝⎭θθ,则sin cos θθ−=________. 15. 若x ,y 满足约束条件312937x y x y x y −≤−⎧⎪+≤⎨⎪+≥⎩,则2z x y =−的最大值为______.16. 已知点,,,S A B C 均在半径为2的球面上,ABC 是边长为3的等边三角形,SA ⊥平面ABC ,则SA =________. 三、解答题17. 某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,()1,2,,10i y i =⋅⋅⋅.试验结果如下:记1,2,,10i i i z x y i =−=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅的样本平均数为z ,样本方差为2s . (1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥为有显著提高)18.记n S 为等差数列{}n a 的前n 项和,已知21011,40a S ==. (1)求{}n a 的通项公式; (2)求数列{}n a 的前n 项和n T .19.如图,在三棱锥−P ABC 中,AB BC ⊥,2AB =,BC =PB PC ==,,BP AP BC 的中点分别为,,D E O ,点F 在AC 上,BF AO ⊥.(1)求证:EF //平面ADO ;(2)若120POF ∠=︒,求三棱锥−P ABC 的体积. 20.已知函数()()1ln 1f x a x x ⎛⎫=++⎪⎝⎭. (1)当1a =−时,求曲线()y f x =在点()()1,f x 处的切线方程. (2)若函数()f x 在()0,∞+单调递增,求a 的取值范围.21.已知椭圆2222:1(0)C bb x a a y +>>=,点()2,0A −在C 上.(1)求C 的方程;(2)过点()2,3−的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.【选修4-4】(10分)22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为2sin 42ππρθθ⎛⎫=≤≤⎪⎝⎭,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.【选修4-5】(10分)23.已知()22f x x x =+− (1)求不等式()6x f x ≤−的解集;(2)在直角坐标系xOy 中,求不等式组()60f x yx y ⎧≤⎨+−≤⎩所确定的平面区域的面积.2023年普通高等学校招生全国统一考试(全国乙卷)答案详解文科数学(2023·全国乙卷·文·1·★)232i 2i ++=( )(A )1 (B )2 (C (D 答案:C解析:2322i 2i 212i i 212(1)i 12i ++=−+⨯⨯=−+⨯−⨯=−=.(2023·全国乙卷·文·2·★)设全集{0,1,2,4,6,8}U =,集合{0,4,6}M =,{0,1,6}N =,M ∪C U N 则( ) (A ){0,2,4,6,8} (B ){0,1,4,6,8} (C ){1,2,4,6,8} (D )U 答案:A解析:由题意,C U N ={2,4,8},所以M ∪C U N ={0,2,4,6,8}.(2023·全国乙卷·文·3·★) 如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )A.24B.26C.28D.30答案:D解析:如图所示,在长方体1111ABCD A B C D −中,2AB BC ==,13AA =,点,,,H I J K 为所在棱上靠近点1111,,,B C D A 的三等分点,,,,O L M N 为所在棱的中点,则三视图所对应的几何体为长方体1111ABCD A B C D −去掉长方体11ONIC LMHB −之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方形, 其表面积为:()()()22242321130⨯⨯+⨯⨯−⨯⨯=.(2023·全国乙卷·文·4·★★)在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,若cos cos a B b A c −=,且5C π=则,在B =( ) (A )10π(B )5π (C )310π (D )25π 答案:C解法1:所给边角等式每一项都有齐次的边,要求的是角,故用正弦定理边化角分析, 因为cos cos a B b A c −=,所以sin cos sin cos sin A B B A C −=,故sin()sin A B C −= ①, 已知C ,先将C 代入,再利用A B C π++=将①中的A 换成B 消元, 因为5C π=,所以45A B C ππ+=−=,故45A B π=−,代入①得4sin(2)sin 55B ππ−= ②, 因为45A B π+=,所以405B π<<,故4442555B πππ−<−<,结合②可得4255B ππ−=,所以310B π=.解法2:按解法1得到sin cos sin cos sin A B B A C −=后,观察发现若将右侧sin C 拆开,也能出现左边的两项,故拆开来看,sin sin[()]sin()sin cos cos sin C A B A B A B A B π=−+=+=+,代入sin cos sin cos sin A B B A C −=得:sin cos sin cos sin cos sin cos A B B A A B B A −=+,化简得:sin cos 0B A =,因为0B π<<,所以sin 0B >,故cos 0A =,结合0A π<<可得2A π=,所以43510B A ππ=−=.(2023·全国乙卷·文·5·★★) 已知e ()e 1xax x f x =−是偶函数,则=a ( )A. 2−B. 1−C. 1D. 2答案:D解析:因为()e e 1x ax x f x =−为偶函数,则()()()()1e e e e 0e 1e 1e 1a x x x x ax ax ax x x x f x f x −−−⎡⎤−−⎣⎦−−=−==−−−, 又因为x 不恒为0,可得()1e e 0a x x −−=,即()1e e a x x −=,则()1x a x =−,即11a =−,解得2a =.(2023·全国乙卷·文·6·★)正方形ABCD 的边长是2,E 是AB 的中点,则EC ED ⋅=( ) (A(B )3 (C) (D )5 答案:B解析:如图,EC ,ED 共起点,且中线、底边长均已知,可用极化恒等式求数量积, 由极化恒等式,223EC ED EF CF ⋅=−=.A BCDE F(2023·全国乙卷·文·7·★★)设O 为平面坐标系的坐标原点,在区域(){}22,14x y xy ≤+≤内随机取一点A ,则直线OA 的倾斜角不大于π4的概率为( ) A.18B. 16C.14D.12答案:C 解析:因为区域(){}22,|14x y xy ≤+≤表示以()0,0O 圆心,外圆半径2R =,内圆半径1r =的圆环,则直线OA 的倾斜角不大于π4的部分如阴影所示,在第一象限部分对应的圆心角π4MON ∠=, 结合对称性可得所求概率π2142π4P ⨯==.(2023·全国乙卷·文·8·★★★)函数3()2f x x ax =++存在3个零点,则a 的取值范围是( ) (A )(,2)−∞− (B )(,3)−∞− (C )(4,1)−− (D )(3,0)− 答案:B解法1:观察发现由320x ax ++=容易分离出a ,故用全分离,先分析0x =是否为零点, 因为(0)20f =≠,所以0不是()f x 的零点;当0x ≠时,3322()0202f x x ax ax x a x x=⇔++=⇔=−−⇔=−−, 所以直线y a =与函数22(0)y x x x =−−≠的图象有3个交点,要画此函数的图象,需求导分析,令22()(0)g x x x x =−−≠,则3222222(1)2(1)(1)()2x x x x g x x x x x −−++'=−+==, 因为22131()024x x x ++=++>,所以()00g x x '>⇔<或01x <<,()01g x x '<⇔>,故()g x 在(,0)−∞上,在(0,1)上,在(1,)+∞上,又lim ()x g x →−∞=−∞,当x 分别从y 轴左、右两侧趋近于0时,()g x 分别趋于+∞,−∞,(1)3g =−,lim ()x g x →+∞=−∞,所以()g x 的大致图象如图1,由图可知要使y a =与()y g x =有3个交点,应有3a <−.解法2:如图2,三次函数有3个零点等价于两个极值异号,故也可直接求导分析极值,由题意,2()3f x x a '=+,要使()f x 有2个极值点,则()f x '有两个零点,所以120a ∆=−>,故0a <, 令()0f x '=可得x =322f =+=,3(((22f a =++=,故34(2)(2)4027a f f =+=+<,解得:3a <−.a=1图2图(2023·全国乙卷·文·9·★)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( ) A.56B.23C.12D.13答案:A解析:甲有6种选择,乙也有6种选择,故总数共有6636⨯=种, 若甲、乙抽到的主题不同,则共有26A 30=种, 则其概率为305366=,(2023·全国乙卷·文·10·★★★)已知函数()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条对称轴,则5π12f ⎛⎫−= ⎪⎝⎭() A. B. 12−C.12D.2答案:D解析:因为()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增, 所以2πππ2362T =−=,且0ω>,则πT =,2π2w T ==, 当π6x =时,()f x 取得最小值,则ππ22π62k ϕ⋅+=−,Z k ∈,则5π2π6k ϕ=−,Z k ∈,不妨取0k =,则()5πsin 26f x x ⎛⎫=− ⎪⎝⎭,则5π5πsin 1232f ⎛⎫⎛⎫−=−= ⎪ ⎪⎝⎭⎝⎭,(2023·全国乙卷·文·11·★★★)已知实数x ,y 满足224240x y x y +−−−=,则x y −的最大值是( )(A )1 (B )4 (C )1+ (D )7 答案:C解法1:所给等式可配方化为平方和结构,故考虑三角换元,22224240(2)(1)9x y x y x y +−−−=⇒−+−=,令23cos 13sin x y θθ=+⎧⎨=+⎩,则23cos 13sin 1)4x y πθθθ−=+−−=−−,θ∈R ,所以当sin()14πθ−=−时,x y −取得最大值1+解法2:所给方程表示圆,故要求x y −的最大值,也可设其为t ,看成直线,用直线与圆的位置关系处理,22224240(2)(1)9x y x y x y +−−−=⇒−+−= ①,设t x y =−,则0x y t −−=,因为x ,y 还满足①,所以直线0x y t −−=与该圆有交点,从而圆心(2,1)到直线的距离3d =≤,解得:11t −≤≤+max ()1x y −=+(2023·全国乙卷·文·12·★★★★)设A ,B 为双曲线2219y x −=上两点,下列四个点中,可为线段AB 中点的是( ) A. ()1,1 B. ()1,2-C. ()1,3D. ()1,4−−答案:D解析:设()()1122,,,A x y B x y ,则AB 的中点1212,22x x y y M ++⎛⎫⎪⎝⎭,可得1212121212122,2ABy y y y y y k k x x x x x x +−+===+−+,因为,A B 在双曲线上,则221122221919y x y x ⎧−=⎪⎪⎨⎪−=⎪⎩,两式相减得()2222121209y y x x −−−=, 所以221222129AB y y k k x x −⋅==−. 对于选项A : 可得1,9AB k k ==,则:98AB y x =−,联立方程229819y x y x =−⎧⎪⎨−=⎪⎩,消去y 得272272730x x −⨯+=,此时()2272472732880∆=−⨯−⨯⨯=−<, 所以直线AB 与双曲线没有交点,故A 错误; 对于选项B :可得92,2AB k k =−=−,则95:22AB y x =−−, 联立方程22952219y x y x ⎧=−−⎪⎪⎨⎪−=⎪⎩,消去y 得245245610x x +⨯+=, 此时()224544561445160∆=⨯−⨯⨯=−⨯⨯<, 所以直线AB 与双曲线没有交点,故B 错误; 对于选项C :可得3,3AB k k ==,则:3AB y x =由双曲线方程可得1,3a b ==,则:3AB y x =为双曲线的渐近线, 所以直线AB 与双曲线没有交点,故C 错误; 对于选项D :94,4AB k k ==,则97:44AB y x =−,联立方程22974419y x y x ⎧=−⎪⎪⎨⎪−=⎪⎩,消去y 得2631261930x x +−=, 此时21264631930∆=+⨯⨯>,故直线AB 与双曲线有交两个交点,故D 正确;(2023·全国乙卷·文·13·★)已知点(A 在抛物线C :22y px =上,则A 到C 的准线的距离为______. 答案:94解析:由题意可得:221p =⨯,则25p =,抛物线的方程为25y x =,准线方程为54x =−,点A 到C 的准线的距离为59144⎛⎫−−= ⎪⎝⎭.(2023·全国乙卷·文·14·★)若(0,)2πθ∈,1tan 3θ=,则sin cos θθ−=_____.答案: 解析:已知tan θ,可先求出sin θ和cos θ, 由题意,sin 1tan cos 3θθθ==,所以cos 3sin θθ=,代入22cos sin 1θθ+=可得210sin 1θ=, 又(0,)2πθ∈,所以sin θ=,cos θ=,故sin cos θθ−=(2023·全国乙卷·文·15·★★)若x ,y 满足约束条件312937x y x y x y −≤−⎧⎪+≤⎨⎪+≥⎩,则2z x y =−的最大值为______.答案:8解析:作出可行域如下图所示:z =2x −y ,移项得y =2x −z , 联立有3129x y x y −=−⎧⎨+=⎩,解得52x y =⎧⎨=⎩,设()5,2A ,显然平移直线2y x =使其经过点A ,此时截距−z 最小,则z 最大,代入得z =8,(2023·全国乙卷·文·16·★★★)已知点S ,A ,B ,C 均在半径为2的球面上,ABC ∆是边长为3的等边三角形,SA ⊥平面ABC ,则SA =_____. 答案:2解析:有线面垂直,且ABC ∆是等边三角形,属外接球的圆柱模型,核心方程是222()2hr R +=,如图,圆柱的高h SA =,底面半径r 即为ABC ∆的外接圆半径,所以233r ==, 由题意,球的半径2R =,因为222()2hr R +=,所以23()42h +=,解得:2h =,故2SA =.(2023·全国乙卷·文·17·★★★)某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,()1,2,,10i y i =⋅⋅⋅.试验结果如下:记()1,2,,10i i i z x y i =−=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅的样本平均数为z ,样本方差为2s . (1)求z ,s 2;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高) 答案:(1)11z =,261s =;(2)认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高. 解析:(1)545533551522575544541568596548552.310x +++++++++==,536527543530560533522550576536541.310y +++++++++==,552.3541.311z x y =−=−=,i i i z x y =− 的值分别为: 9,6,8,8,15,11,19,18,20,12−,故2222222222(911)(611)(811)(811)(1511)0(1911)(1811)(2011)(1211)6110s −+−+−+−−+−++−+−+−+−==(2)由(1)知:11z =,==z ≥ 所以认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.(2023·全国乙卷·文·18·★★★)记n S 为等差数列{}n a 的前n 项和,已知211a =,1040S =. (1)求{}n a 的通项公式; (2)求数列{}n a 的前n 项和n T .解:(1)(已知条件都容易代公式,故直接用公式翻译,求出1a 和d ) 设{}n a 的公差为d ,则2111a a d =+= ①, 101104540S a d =+= ②,联立①②解得:113a =,2d =−,所以1(1)13(1)(2)152n a a n d n n =+−=+−⨯−=−.(2)(通项含绝对值,要求和,先去绝对值,观察发现{}n a 前7项为正,从第8项起为负,故据此讨论) 当7n ≤时,0n a >,所以12n n T a a a =++⋅⋅⋅+ 2112()(13152)1422n n n a a n n a a a n n ++−=++⋅⋅⋅+===−; 当8n ≥时,12n n T a a a =++⋅⋅⋅+ 12789n a a a a a a =++⋅⋅⋅+−−−⋅⋅⋅− 127122()()n a a a a a a =++⋅⋅⋅+−++⋅⋅⋅+ 27(131)(13152)2149822n n n n ⨯++−=⨯−=−+; 综上所述,2214,71498,8n n n n T n n n ⎧−≤⎪=⎨−+≥⎪⎩.(2023·全国乙卷·文·19·★★★)如图,在三棱锥−P ABC 中,AB BC ⊥,2AB =,BC =PB PC ==,,BP AP BC 的中点分别为,,D E O ,点F 在AC 上,BF AO ⊥.(1)求证:EF //平面ADO ;(2)若120POF ∠=︒,求三棱锥−P ABC 的体积.答案:(1)证明见解析 (2解析:(1)连接,DE OF ,设AF tAC =,则(1)BF BA AF t BA tBC =+=−+,12AO BA BC =−+,BF AO ⊥, 则2211[(1)]()(1)4(1)4022BF AO t BA tBC BA BC t BA tBC t t ⋅=−+⋅−+=−+=−+=, 解得12t =,则F 为AC 的中点,由,,,D E O F 分别为,,,PB PA BC AC 的中点,于是11//,,//,22DE AB DE AB OF AB OF AB ==,即,//DE OF DE OF =,则四边形ODEF 为平行四边形,//,EF DO EF DO =,又EF ⊄平面,ADO DO ⊂平面ADO ,所以//EF 平面ADO .(2)过P 作PM 垂直FO 的延长线交于点M , 因为,PB PC O =是BC 中点,所以PO BC ⊥,在Rt PBO △中,12PB BO BC ===2PO ===, 因为,//AB BC OF AB ⊥,所以OF BC ⊥,又PO OF O ⋂=,,PO OF ⊂平面POF , 所以BC⊥平面POF ,又PM ⊂平面POF ,所以BC PM ⊥,又BC FM O =,,BC FM ⊂平面ABC ,所以PM ⊥平面ABC ,即三棱锥−P ABC 的高为PM ,因为120POF ∠=︒,所以60POM ∠=︒,所以sin 6022PM PO =︒=⨯=,又11222ABC S AB BC =⋅=⨯⨯=△所以11333P ABC ABC V S PM −=⋅=⨯=△.(2023·全国乙卷·文·20·★)已知函数1()()ln(1)f x a x x=++.(1)当1a =−时,求曲线()y f x =在点(1,(1))f 处的切线方程; (2)若函数()f x 在(0,)+∞上单调递增,求a 的取值范围. 答案:(1)()ln 2ln 20x y +−=; (2)1|2a a ⎧⎫≥⎨⎬⎩⎭. 解析:(1)当1a =−时,()()()11ln 11f x x x x ⎛⎫=−+>−⎪⎝⎭, 则()()2111ln 111x f x x x x ⎛⎫'=−⨯++−⨯ ⎪+⎝⎭, 据此可得()()10,1ln 2f f '==−,所以函数在()()1,1f 处的切线方程为()0ln 21y x −=−−,即()ln 2ln 20x y +−=. (2)由函数的解析式可得()()()2111=ln 111f x x a x x x x ⎛⎫⎛⎫'−+++⨯>− ⎪ ⎪+⎝⎭⎝⎭, 满足题意时()0f x '≥在区间()0,∞+上恒成立. 令()2111ln 101x a x x x ⎛⎫⎛⎫−+++≥ ⎪ ⎪+⎝⎭⎝⎭,则()()()21ln 10x x x ax −++++≥, 令()()()2=1ln 1g x ax x x x +−++,原问题等价于()0g x ≥在区间()0,∞+上恒成立, 则()()2ln 1g x ax x '=−+,当0a ≤时,由于()20,ln 10ax x ≤+>,故()0g x '<,()g x 在区间()0,∞+上单调递减,此时()()00g x g <=,不合题意;令()()()2ln 1h x g x ax x '==−+,则()121h x a x −'=+, 当12a ≥,21a ≥时,由于111x <+,所以()()0,h x h x '>在区间()0,∞+上单调递增, 即()g x '在区间()0,∞+上单调递增,所以()()>00g x g ''=,()g x 在区间()0,∞+上单调递增,()()00g x g >=,满足题意. 当102a <<时,由()1201h x a x =−=+'可得1=12x a−, 当10,12x a ⎛⎫∈− ⎪⎝⎭时,()()0,h x h x '<在区间10,12a ⎛⎫− ⎪⎝⎭上单调递减,即()g x '单调递减,注意到()00g '=,故当10,12x a ⎛⎫∈− ⎪⎝⎭时,()()00g x g ''<=,()g x 单调递减, 由于()00g =,故当10,12x a ⎛⎫∈− ⎪⎝⎭时,()()00g x g <=,不合题意. 综上可知:实数a 得取值范围是1|2a a ⎧⎫≥⎨⎬⎩⎭.(2023·全国乙卷·文·21·★★★)已知椭圆2222:1(0)C b b x a a y +>>=,点()2,0A −在C 上.(1)求C 的方程; (2)过点()2,3−的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.答案:(1)22194y x += (2)证明见详解解析:(1)由题意可得22223b a b c c e a ⎧⎪=⎪⎪=+⎨⎪⎪==⎪⎩,解得32a b c ⎧=⎪=⎨⎪=⎩,所以椭圆方程为22194y x +=.(2)由题意可知:直线PQ 的斜率存在,设()()()1122:23,,,,PQ y k x P x y Q x y =++,联立方程()2223194y k x y x ⎧=++⎪⎨+=⎪⎩,消去y 得:()()()222498231630k x k k x k k +++++=,则()()()2222Δ64236449317280kk k k k k =+−++=−>,解得0k <,可得()()2121222163823,4949k k k k x x x x k k +++=−=++, 因为()2,0A −,则直线()11:22y AP y x x =++, 令0x =,解得1122y y x =+,即1120,2y M x ⎛⎫⎪+⎝⎭,同理可得2220,2y N x ⎛⎫ ⎪+⎝⎭,则()()1212121222232322222y y k x k x x x x x +++++⎡⎤⎡⎤++⎣⎦⎣⎦=+++()()()()()()12211223223222kx k x kx k x x x +++++++⎡⎤⎡⎤⎣⎦⎣⎦=++()()()()1212121224342324kx x k x x k x x x x +++++=+++()()()()()()222222323843234231084949336163162344949k k k k k k k k k k k k k k k +++−++++===++−+++,所以线段PQ 的中点是定点()0,3.【选修4-4】(10分)(2023·全国乙卷·文·22·★★★)在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为2sin 42ππρθθ⎛⎫=≤≤ ⎪⎝⎭,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围. 答案:(1)()[][]2211,0,1,1,2x y x y +−=∈∈ (2)()(),022,−∞+∞解析:(1)因为2sin ρθ=,即22sin ρρθ=,可得222x y y +=, 整理得()2211x y +−=,表示以()0,1为圆心,半径为1的圆,又因为2cos 2sin cos sin 2,sin 2sin 1cos 2x y ======−ρθθθθρθθθ, 且ππ42θ≤≤,则π2π2≤≤θ,则[][]sin 20,1,1cos 21,2x y =∈=−∈θθ, 故()[][]221:11,0,1,1,2C x y x y +−=∈∈.(2)因为22cos :2sin x C y αα=⎧⎨=⎩(α为参数,ππ2α<<),整理得224x y +=,表示圆心为()0,0O ,半径为2,且位于第二象限的圆弧, 如图所示,若直线y x m =+过()1,1,则11m =+,解得0m =;若直线y x m =+,即0x y m −+=与2C相切,则20m =>⎩,解得m =,若直线y x m =+与12,C C均没有公共点,则m >或0m <, 即实数m 的取值范围()(),022,−∞+∞.【选修4-5】(10分)(2023·全国乙卷·文·23·★★)已知()22f x x x =+− (1)求不等式()6x f x ≤−的解集;(2)在直角坐标系xOy 中,求不等式组()60f x yx y ⎧≤⎨+−≤⎩所确定的平面区域的面积.答案:(1)[2,2]−; (2)8.解析:(1)依题意,32,2()2,0232,0x x f x x x x x −>⎧⎪=+≤≤⎨⎪−+<⎩,不等式()6f x x ≤−化为:2326x x x >⎧⎨−≤−⎩或0226x x x ≤≤⎧⎨+≤−⎩或0326x x x <⎧⎨−+≤−⎩,解2326x x x >⎧⎨−≤−⎩,得无解;解0226x x x ≤≤⎧⎨+≤−⎩,得02x ≤≤,解0326x x x <⎧⎨−+≤−⎩,得20x −≤<,因此22x −≤≤,所以原不等式的解集为:[2,2]−(2)作出不等式组()60f x yx y ≤⎧⎨+−≤⎩表示的平面区域,如图中阴影ABC ,由326y xx y=−+⎧⎨+=⎩,解得(2,8)A−,由26y xx y=+⎧⎨+=⎩, 解得(2,4)C,又(0,2),(0,6)B D,所以ABC的面积11|||62||2(2)|822ABC C AS BD x x=⨯−=−⨯−−=.。
2023年高考数学真题完全解读(全国甲卷文科)适用省份四川、广西、贵州、西藏整I试卷总评2023年高考数学全国卷全面考查了数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析等学科核心素养,体现基础性、综合性、应用性和创新性的考查要求,突出理性思维,发挥出数学学科在人才选拔中的重要作用。
一、 题型与分值分布题型:(1)单选题12道,每题5分共60分;(2)填空题4道,每题5分共20分;(3)解答题三道,每题12分共60分;(4)选做题2道,每题10分。
二、 题目难度和复杂度三、知识点覆盖详细情况说明难度级别具体试题总分值整体评价★ ☆☆☆☆第1题、第2题、第4题、第13题、第15题25分整体试卷难度偏 易,整体复杂度不高,综合知识点大多都是2个左右★ ★☆☆☆第3题、第5题、第6题、第14题、第17题、第22题、第23题42分★ ★★☆☆第7题、第8题、第9题、第10题、第18题、第19题44分★ ★★★☆第11题、第20题、第21题29分★ ★★★★第12题、第16题10分知识点题型题目数量总分值整体评价集合单选题1个15分复数单选题1个15分平面向量单选题1个15分程序框图单选题1个15分主干知识考查全而,题目数量设置均衡;与课程标准保持了一致性。
数列单选题1个填空题1个210分三角函数单选题1个解答题1个217分概率与统计单选题1个解答题1个217分立体几何单选题1个填空题1个解答题1个322分圆锥曲线单选题2个解答题1个322分函数与导数单选题2个填空题1个解答题1个427分极坐标与参数方程选做题1个110分不等式填空题1个(线性规划问题)选做题1个215分四、高考试卷命题探究2023年高考数学全国卷在命制情境化试题过程中,通过对阅读题的分析,可以发现今年的高考命题在素材使用方而,对文字数量加以控制,阅读理解雄度也有所降低:在抽象数学问题方而,力图设置合理的思维强度和抽象程度;在解决问题方面,通过设置合适的运算过程和运算量,力求使情境化试题达到试题 要求层次与考生认知水平的契合与贴切。
绝密★启用前2023年普通高等学校招生全国统一考试(全国乙卷∙文科)数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.2+i 2+2i 3 =()A.1B.2C.5D.5【答案】C【解析】∵2+i 2+2i 3=2-2i -1=1-2i ,∴|2+i 2+2i 3|=1-2i =12+(-2)2=5,选C 。
2.设全集U ={0,1,2,4,6,8},集合M ={0,4,6},N ={0,1,6},则M ⋃C U N =()A.{0,2,4,6,8} B.{0,1,4,6,8}C.{1,2,4,6,8}D.U【答案】A【解析】∵N ={2,4,8},∴M ⋃C U N ={0,2,4,6,8},选A.3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A.24B.26C.28D.30【答案】D【解析】如图所示,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2, AA 1=3,点H ,I ,J ,K 为所在棱上靠近点B 1,C 1,D 1,A 1的三等分点,O ,L ,M ,N 为所在棱的中点,则三视图所对应的几何体为长方体ABCD -A 1B 1C 1D 1去掉长方体ONIC 1-LMHB 1之后所得的几何体,该几何体表面积为:2×(2×2)+4×(2×3)-2×(1×1)=30,选D 。
4.在△BC 中,内角A,B,C 的对边分别是a,b,c,若acosB -bcosA =c,且C =π5,则∠B =()A.π10B.π5C.3π10D.2π5【答案】C【解析】∵sinAcosB -sinBcosA =sinC,即sinAcosB -sinBcosA =sin (A +B )=sinAcosBsinBcosA,∴sinBcosA =0,∵B ∈(0,π),∴sinB >0,∴cosA =0,A =π2,∴B =π-A -C =3π10,选C 。
2022年普通高等学校招生全国统一考试(乙卷)文科数学一、单选题(本大题共12小题,共60.0分)1. 集合M ={2,4,6,8,10},N ={x|−1<x <6},则M ∩N =( )A. {2,4}B. {2,4,6}C. {2,4,6,8}D. {2,4,6,8,10}2. 设(1+2i)a +b =2i ,其中a ,b 为实数,则( )A. a =1,b =−1B. a =1,b =1C. a =−1,b =1D. a =−1,b =−13. 已知向量a ⃗ =(2,1),b ⃗ =(−2,4),则|a ⃗ −b ⃗ |=( )A. 2B. 3C. 4D. 54. 分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:ℎ),得如图茎叶图:则下列结论中错误的是( )A. 甲同学周课外体育运动时长的样本中位数为7.4B. 乙同学周课外体育运动时长的样本平均数大于8C. 甲同学周课外体育运动时长大于8的概率的估计值大于0.4D. 乙同学周课外体育运动时长大于8的概率的估计值大于0.65. 若x ,y 满足约束条件{x +y ≥2,x +2y ≤4,y ≥0,则z =2x −y 的最大值是( )A. −2B. 4C. 8D. 126. 设F 为抛物线C :y 2=4x 的焦点,点A 在C 上,点B(3,0),若|AF|=|BF|,则|AB|=( )A. 2B. 2√2C. 3D. 3√27. 执行如图的程序框图,输出的n =( )A. 3B. 4C. 5D. 68.如图是下列四个函数中的某个函数在区间[−3,3]的大致图像,则该函数是()A. y=−x3+3xx2+1B. y=x3−xx2+1C. y=2xcosxx2+1D. y=2sinxx2+19.在正方体ABCD−A1B1C1D1中,E,F分别为AB,BC的中点,则()A. 平面B1EF⊥平面BDD1B. 平面B1EF⊥平面A1BDC. 平面B1EF//平面A1ACD. 平面B1EF//平面A1C1D10.已知等比数列{a n}的前3项和为168,a2−a5=42,则a6=()A. 14B. 12C. 6D. 311.函数f(x)=cosx+(x+1)sinx+1在区间[0,2π]的最小值、最大值分别为()A. −π2,π2B. −3π2,π2C. −π2,π2+2 D. −3π2,π2+212.已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为()A. 13B. 12C. √33D. √22二、填空题(本大题共4小题,共20.0分)13. 记S n 为等差数列{a n }的前n 项和.若2S 3=3S 2+6,则公差d =______.14. 从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为______. 15. 过四点(0,0),(4,0),(−1,1),(4,2)中的三点的一个圆的方程为______. 16. 若f(x)=ln|a +11−x |+b 是奇函数,则a =______,b =______.三、解答题(本大题共7小题,共82.0分)17. 记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sinCsin(A −B)=sinBsin(C −A).(1)若A =2B ,求C ; (2)证明:2a 2=b 2+c 2.18. 如图,四面体ABCD 中,AD ⊥CD ,AD =CD ,∠ADB =∠BDC ,E 为AC 的中点. (1)证明:平面BED ⊥平面ACD ;(2)设AB =BD =2,∠ACB =60°,点F 在BD 上,当△AFC 的面积最小时,求三棱锥F −ABC 的体积.19. 某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:m 2)和材积量(单位:m 3),得到如下数据: 样本号i12345678910 总和根部横截面积x i 0.04 0.06 0.04 0.08 0.08 0.05 0.05 0.07 0.07 0.06 0.6 材积量y i0.25 0.40 0.22 0.54 0.51 0.34 0.36 0.46 0.42 0.40 3.9并计算得∑x i 210i=1=0.038,∑y i 210i=1=1.6158,∑x i 10i=1y i =0.2474.(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量; (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01); (3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186m 2.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值. 附:相关系数r =∑(n i=1x i −x −)(y i −y −)√∑(ni=1x i −x −)2∑(n i=1y i −y −)2,√1.896≈1.377.20. 已知函数f(x)=ax −1x −(a +1)lnx .(1)当a =0时,求f(x)的最大值;(2)若f(x)恰有一个零点,求a 的取值范围.21. 已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A(0,−2),B(32,−1)两点.(1)求E 的方程;(2)设过点P(1,−2)的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT ⃗⃗⃗⃗⃗⃗ =TH⃗⃗⃗⃗⃗⃗ .证明:直线HN 过定点. 22. 在直角坐标系xOy 中,曲线C 的参数方程为{x =√3cos2t,y =2sint(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为ρsin(θ+π3)+m =0.(1)写出l 的直角坐标方程;(2)若l 与C 有公共点,求m 的取值范围.已知a ,b ,c 都是正数,且a 32+b 32+c 32=1,证明:(1)abc ≤19;(2)a b+c+b a+c+c a+b≤2√abc.答案解析1.【答案】A【解析】解:∵M ={2,4,6,8,10},N ={x|−1<x <6}, ∴M ∩N ={2,4}. 故选:A .直接利用交集运算求解即可.本题考查集合的交集运算,属于基础题.2.【答案】A【解析】解:∵(1+2i)a +b =2i , ∴a +b +2ai =2i ,即{a +b =02a =2,解得{a =1b =−1.故选:A .根据已知条件,结合复数相等的条件,即可求解. 本题主要考查复数相等的条件,属于基础题.3.【答案】D【解析】解:a ⃗ −b ⃗ =(4,−3),故∣a ⃗ −b ⃗ ∣=√42+(−3)2=5,故选:D .先计算处a ⃗ −b ⃗ 的坐标,再利用坐标模长公式即可. 本题主要考查向量坐标公式,属于基础题.4.【答案】C【解析】解:由茎叶图可知,甲同学周课外体育运动时长的样本中位数为7.3+7.52=7.4,选项A 说法正确;由茎叶图可知,乙同学周课外体育运动时长的样本平均数大于8,选项B 说法正确; 甲同学周课外体育运动时长大于8的概率的估计值为616=38<0.4,选项C 说法错误; 乙同学周课外体育运动时长大于8的概率的估计值为1316=0.8125>0.6,选项D 说法正确.故选:C.根据茎叶图逐项分析即可得出答案.本题考查茎叶图,考查对数据的分析处理能力,属于基础题.5.【答案】C【解析】解:作出可行域如下图阴影部分所示,由图可知,当(x,y)取点C(4,0)时,目标函数z=2x−y取得最大值,且最大为8.故选:C.作出可行域,根据图象即可得解.本题考查简单的线性规划问题,考查数形结合思想,属于基础题.6.【答案】B【解析】解:F为抛物线C:y2=4x的焦点(1,0),点A在C上,点B(3,0),|AF|=|BF|=2,由抛物线的定义可知A(1,2)(A不妨在第一象限),所以|AB|=2√2.故选:B.利用已知条件,结合抛物线的定义,求解A的坐标,然后求解即可.本题考查抛物线的简单性质的应用,距离公式的应用,是基础题.7.【答案】B【解析】解:模拟执行程序的运行过程,如下:输入a=1,b=1,n=1,计算b=1+2=3,a=3−1=2,n=2,判断|3222−2|=14=0.25≥0.01,计算b=3+4=7,a=7−2=5,n=3,判断|7252−2|=125=0.04≥0.01;计算b=7+10=17,a=17−5=12,n=4,判断|172122−2|=1144<0.01;输出n=4.故选:B.模拟执行程序的运行过程,即可得出程序运行后输出的n值.本题考查了程序的运行与应用问题,也考查了推理与运算能力,是基础题.8.【答案】A【解析】解:首先根据图像判断函数为奇函数,其次观察函数在(1,3)存在零点,而对于B选项:令y=0,即x3−xx2+1=0,解得x=0,或x=1或x=−1,故排除B选项,对于D选项,令y=0,即2sinxx2+1=0,解得x=kπ,k∈Z,故排除D选项,C选项分母为x2+1恒为正,但是分子中cosx是个周期函数,故函数图像在(0,+∞)必定是正负周期出现,故错误,故选:A.首先分析函数奇偶性,然后观察函数图像在(1,3)存在零点,可排除B,D选项,再利用cosx 在(0,+∞)的周期性可判断C选项错误.本题主要考查函数图像的识别,属于基础题.9.【答案】A【解析】解:对于A,由于E,F分别为AB,BC的中点,则EF//AC,又AC⊥BD,AC⊥DD1,BD∩DD1=D,且BD,DD1⊂平面BDD1,∴AC⊥平面BDD1,则EF⊥平面BDD1,又EF⊂平面B1EF,∴平面B1EF⊥平面BDD1,选项A正确;对于B,由选项A可知,平面B1EF⊥平面BDD1,而平面BDD1∩平面A1BD=BD,故平面B1EF不可能与平面A1BD垂直,选项B错误;对于C,在平面ABB1A1上,易知AA1与B1E必相交,故平面B1EF与平面A1AC不平行,选项C错误;对于D,易知平面AB1C//平面A1C1D,而平面AB1C与平面B1EF有公共点B1,故平面B1EF 与平面A1C1D不可能平行,选项D错误.故选:A.对于A,易知EF//AC,AC⊥平面BDD1,从而判断选项A正确;对于B,由选项A及平面BDD1∩平面A1BD=BD可判断选项B错误;对于C,由于AA1与B1E必相交,容易判断选项C错误;对于D,易知平面AB1C//平面A1C1D,而平面AB1C与平面B1EF有公共点B1,由此可判断选项D错误.本题考查空间中线线,线面,面面间的位置关系,考查逻辑推理能力,属于中档题.10.【答案】D【解析】解:设等比数列{a n}的公比为q,q≠0,由题意,q≠1.∵前3项和为a1+a2+a3=a1(1−q3)1−q=168,a2−a5=a1⋅q−a1⋅q4=a1⋅q(1−q3)= 42,∴q=12,a1=96,则a6=a1⋅q5=96×132=3,故选:D.由题意,利用等比数列的定义、性质、通项公式,求得a6的值.本题主要考查等比数列的定义、性质、通项公式,属于基础题.11.【答案】D【解析】解:f(x)=cosx+(x+1)sinx+1,x∈[0,2π],则f′(x)=−sinx+sinx+(x+1)cosx=(x+1)cosx,令cosx=0得,x=π2或3π2,∴当x∈[0,π2)时,f′(x)>0,f(x)单调递增;当x∈(π2,3π2)时,f′(x)<0,f(x)单调递减;当x∈(3π2,2π]时,f′(x)>0,f(x)单调递增,∴f(x)在区间[0,2π]上的极大值为f(π2)=π2+2,极小值为f(3π2)=−3π2,又∵f(0)=2,f(2π)=2,∴函数f(x)在区间[0,2π]的最小值为−3π2,最大值为π2+2,故选:D.先求出导函数f′(x)=(x+1)cosx,令cosx=0得,x=π2或3π2,根据导函数f′(x)的正负得到函数f(x)的单调性,进而求出函数f(x)的极值,再与端点值比较即可.本题主要考查了利用导数研究函数的最值,属于中档题.12.【答案】C【解析】解:由题意可知,当四棱锥为正四棱锥时,其体积最大,设底面边长为a,底面所在圆的半径为r,则r=√22a,∴该四棱锥的高ℎ=√1−a22,∴该四棱锥的体积V=13a2√1−a22=43√a24⋅a24⋅(1−a22)≤4 3√(a24+a24+1−a223)3=43√(13)3=4√327,当且仅当a24=1−a22,即a2=43时,等号成立,∴该四棱锥的体积最大时,其高ℎ=√1−a22=√1−23=√33,故选:C.由题意可知,当四棱锥为正四棱锥时,其体积最大,设底面边长为a,由勾股定理可知该四棱锥的高ℎ=√1−a22,所以该四棱锥的体积V=13a2√1−a22,再利用基本不等式即可求出V的最大值,以及此时a的值,进而求出ℎ的值.本题主要考查了四棱锥的结构特征,考查了基本不等式的应用,属于中档题.13.【答案】2【解析】解:∵2S3=3S2+6,∴2(a1+a2+a3)=3(a1+a2)+6,∵{a n}为等差数列,∴6a2=3a1+3a2+6,∴3(a2−a1)=3d=6,解得d=2.故答案为:2.根据已知条件,可得2(a 1+a 2+a 3)=3(a 1+a 2)+6,再结合等差中项的性质,即可求解.本题主要考查等差数列的前n 项和,考查转化能力,属于基础题.14.【答案】310【解析】解:由题意,从甲、乙等5名学生中随机选出3人,基本事件总数C 53=10, 甲、乙被选中,则从剩下的3人中选一人,包含的基本事件的个数C 31=3,根据古典概型及其概率的计算公式,甲、乙都入选的概率P =C 31C 53=310.故答案为:310.从甲、乙等5名学生中随机选出3人,先求出基本事件总数,再求出甲、乙被选中包含的基本事件的个数,由此求出甲、乙被选中的概率.本题主要考查古典概型及其概率计算公式,熟记概率的计算公式即可,属于基础题.15.【答案】x 2+y 2−4x −6y =0(或x 2+y 2−4x −2y =0或x 2+y 2−83x −143y =0或x 2+y 2−165x −2y −165=0)【解析】解:设过点(0,0),(4,0),(−1,1)的圆的方程为x 2+y 2+Dx +Ey +F =0, 即{F =016+4D +F =02−D +E +F =0,解得F =0,D =−4,E =−6, 所以过点(0,0),(4,0),(−1,1)圆的方程为x 2+y 2−4x −6y =0. 同理可得,过点(0,0),(4,0),(4,2)圆的方程为x 2+y 2−4x −2y =0. 过点(0,0),(−1,1),(4,2)圆的方程为x 2+y 2−83x −143y =0.过点(4,0),(−1,1),(4,2)中的三点的一个圆的方程为x 2+y 2−165x −2y −165=0.故答案为:x 2+y 2−4x −6y =0(或x 2+y 2−4x −2y =0或x 2+y 2−83x −143y =0或x 2+y 2−165x −2y −165=0).选其中的三点,利用待定系数法即可求出圆的方程.本题考查了过不在同一直线上的三点求圆的方程应用问题,是基础题.16.【答案】−12 ln2【解析】解:f(x)=ln|a+11−x|+b,若a=0,则函数f(x)的定义域为{x|x≠1},不关于原点对称,不具有奇偶性,∴a≠0,由函数解析式有意义可得,x≠1且a+11−x≠0,∴x≠1且x≠1+1a,∵函数f(x)为奇函数,∴定义域必须关于原点对称,∴1+1a =−1,解得a=−12,∴f(x)=ln|1+x2(1−x)|+b,定义域为{x|x≠1且x≠−1},由f(0)=0得,ln12+b=0,∴b=ln2,故答案为:−12;ln2.显然a≠0,根据函数解析式有意义可得,x≠1且x≠1+1a ,所以1+1a=−1,进而求出a的值,代入函数解析式,再利用奇函数的性质f(0)=0即可求出b的值.本题主要考查了奇函数的定义和性质,属于中档题.17.【答案】解:(1)由sinCsin(A−B)=sinBsin(C−A),又A=2B,∴sinCsinB=sinBsin(C−A),∵sinB≠0,∴sinC=sin(C−A),即C=C−A(舍去)或C+C−A=π,联立{A=2B2C−A=πA+B+C=π,解得C=58π;证明:(2)由sinCsin(A−B)=sinBsin(C−A),得sinCsinAcosB−sinCcosAsinB=sinBsinCcosA−sinBcosCsinA,由正弦定理可得accosB−bccosA=bccosA−abcosC,由余弦定理可得:ac⋅a2+c2−b22ac =2bc⋅b2+c2−a22bc−ab⋅a2+b2−c22ab,整理可得:2a2=b2+c2.【解析】(1)由sinCsin(A−B)=sinBsin(C−A),结合A=2B,可得sinC=sin(C−A),即C+C−A=π,再由三角形内角和定理列式求解C;(2)把已知等式展开两角差的正弦,由正弦定理及余弦定理化角为边即可证明结论.本题考查三角形的解法,考查正弦定理及余弦定理的应用,考查运算求解能力,是中档题.18.【答案】证明:(1)∵AD =CD ,∠ADB =∠BDC ,BD =BD , ∴△ADB≌△CDB ,∴AB =BC ,又∵E 为AC 的中点. ∴AC ⊥BE ,∵AD =CD ,E 为AC 的中点. ∴AC ⊥DE ,又∵BE ∩DE =E , ∴AC ⊥平面BED , 又∵AC ⊂平面ACD , ∴平面BED ⊥平面ACD ; 解:(2)由(1)可知AB =BC ,∴AB =BC =2,∠ACB =60°,∴△ABC 是等边三角形,边长为2, ∴BE =√3,AC =2,AD =CD =√2,DE =1, ∵DE 2+BE 2=BD 2,∴DE ⊥BE , 又∵DE ⊥AC ,AC ∩BE =E , ∴DE ⊥平面ABC ,由(1)知△ADB≌△CDB ,∴AF =CF ,连接EF ,则EF ⊥AC , ∴S △AFC =12×AC ×EF =EF ,∴当EF ⊥BD 时,EF 最短,此时△AFC 的面积最小, 过点F 作FG ⊥BE 于点G ,则FG//DE ,∴FG ⊥平面ABC , ∵EF =DE×BE BD=√32, ∴BF =√BE 2−EF 2=32,∴FG =EF×BF BE=34, ∴三棱锥F −ABC 的体积V =13×S △ABC ×FG =13×√34×22×34=√34.【解析】(1)易证△ADB≌△CDB ,所以AC ⊥BE ,又AC ⊥DE ,由线面垂直的判定定理可得AC ⊥平面BED ,再由面面垂直的判定定理即可证得平面BED ⊥平面ACD ; (2)由题意可知△ABC 是边长为2的等边三角形,进而求出BE =√3,AC =2,AD =CD =√2,DE =1,由勾股定理可得DE ⊥BE ,进而证得DE ⊥平面ABC ,连接EF ,因为AF =CF ,则EF ⊥AC ,所以当EF ⊥BD 时,EF 最短,此时△AFC 的面积最小,求出此时点F 到平面ABC 的距离,从而求得此时三棱锥F −ABC 的体积.本题主要考查了面面垂直的判定定理,考查了三棱锥的体积公式,同时考查了学生的空间想象能力与计算能力,是中档题.19.【答案】解:(1)设这棵树木平均一棵的根部横截面积为x −,平均一棵的材积量为y −, 则根据题中数据得:x −=0.610=0.06,y −=3.910=0.39;(2)由题可知,r =10i=1i −i −√∑(i=1x i −x −)2∑(i=1y i −y −)2=i 10i=1i −−√(∑x i i=1−nx −2)(∑y i i=1−ny −2)=√0.002×0.0948=0.01×√1.896=0.01340.01377=0.97;(3)设从根部面积总和X ,总材积量为Y ,则XY=x−y−,故Y =0.390.06×186=1209(m 3).【解析】根据题意结合线性回归方程求平均数、样本相关系数,并估计该林区这种树木的总材积量的值即可.本题考查线性回归方程,属于中档题.20.【答案】解:(1)当a =0时,f(x)=−1x −lnx(x >0),则f′(x)=1x 2−1x =1−x x 2,易知函数f(x)在(0,1)上单调递增,在(1,+∞)上单调递减, ∴f(x)在x =1处取得极大值,同时也是最大值, ∴函数f(x)的最大值为f(1)=−1; (2)f′(x)=a +1x 2−a+1x=ax 2−(a+1)x+1x 2=(x−1)(ax−1)x 2,①当a =0时,由(1)可知,函数f(x)无零点;②当a <0时,易知函数f(x)在(0,1)上单调递增,在(1,+∞)上单调递减, 又f(1)=a −1<0,故此时函数f(x)无零点;③当0<a <1时,易知函数f(x)在(0,1),(1a ,+∞)上单调递增,在(1,1a )单调递减, 且f(1)=a −1<0,f(1a )=1−a +(a +1)lna <0,且当x →+∞时,f(x)>0,此时f(x)在(0,+∞)上存在唯一零点; ④当a =1时,f′(x)=(x−1)2x 2≥0,函数f(x)在(0,+∞)上单调递增,又f(1)=0,故此时函数f(x)有唯一零点;⑤当a >1时,易知函数f(x)在(0,1a ),(1,+∞)上单调递增,在(1a ,1)上单调递减, 且f(1)=a −1>0,且当x →0时,f(x)<0,故函数f(x)在(0,+∞)上存在唯一零点; 综上,实数a 的取值范围为(0,+∞).【解析】(1)将a =0代入,对函数f(x)求导,判断其单调性,由此可得最大值; (2)对函数f(x)求导,分a =0,a <0,0<a <1,a =1及a >1讨论即可得出结论.本题考查里利用导数研究函数的单调性,极值及最值,考查函数的零点问题,考查分类讨论思想及运算求解能力,属于难题.21.【答案】解:(1)设E 的方程为x 2a 2+y2b2=1, 将A(0,−2),B(32,−1)两点代入得{4b 2=194a2+1b2=1,解得a 2=3,b 2=4, 故E 的方程为x 23+y 24=1;(2)由A(0,−2),B(32,−1)可得直线AB :y =23x −2 ①若过P(1,−2)的直线的斜率不存在,直线为x =1, 代入x 23+y 24=1,可得M(1,2√63),N(1,−2√63), 将y =2√63代入AB :y =23x −2,可得T(√6+3,2√63),由MT ⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗⃗ ,得H(2√6+5,2√63), 易求得此时直线HN :y =(2−2√63)x −2,过点(0,−2);②若过P(1,−2)的直线的斜率存在,设kx −y −(k +2)=0,M(x 1,y 1),N(x 2,y 2), 联立{kx −y −(k +2)=0x 23+y 24=1,得(3k 2+4)x 2−6k(2+k)x +3k(k +4)=0,故有{x 1+x 2=6k(2+k)3k 2+4x 1x 2=3k(4+k)3k 2+4,{y 1+y 2=−8(2+k)3k 2+4y 1y 2=4(4+4k−2k 23k 2+4,且x 1y 2+x 2y 1=−24k3k 2+4(∗), 联立{y =y 1y =23x −2,可得T(3y 12+3,y 1),H(3y 1+6−x 1,y 1),可求得此时HN :y −y 2=y 1−y 23y1+6−x 1−x 2(x −x 2),将(0,−2)代入整理得2(x 1+x 2)−6(y 1+y 2)+x 1y 2+x 2y 1−3y 1y 2−12=0, 将(∗)代入,得24k +12k 2+96+48k −24k −48−48k +24k 2−36k 2−48=0, 显然成立.综上,可得直线HN 过定点(0,−2). 【解析】(1)设E 的方程为x 2a 2+y 2b 2=1,将A ,B 两点坐标代入即可求解;(2)由A(0,−2),B(32,−1)可得直线AB :y =23x −2,①若过P(1,−2)的直线的斜率不存在,直线为x =1,代入椭圆方程,根据MT ⃗⃗⃗⃗⃗⃗ =TH⃗⃗⃗⃗⃗⃗ 即可求解;②若过P(1,−2)的直线的斜率存在,设kx−y−(k+2)=0,M(x1,y1),N(x2,y2),联立{kx−y−(k+2)=0x23+y24=1,得(3k2+4)x2−6k(2+k)x+3k(k+4)=0,结合韦达定理和已知条件即可求解.本题考查了直线与椭圆的综合应用,属于中档题.22.【答案】解:(1)由ρsin(θ+π3)+m=0,得ρ(sinθcosπ3+cosθsinπ3)+m=0,∴12ρsinθ+√32ρcosθ+m=0,又x=ρcosθ,y=ρsinθ,∴12y+√32x+m=0,即l的直角坐标方程为√3x+y+2m=0;(2)由曲线C的参数方程为{x=√3cos2t,y=2sint(t为参数).消去参数t,可得y2=−2√33x+2,联立{√3x+y+2m=0y2=−2√33x+2,得3y2−2y−4m−6=0(−2≤y≤2).−3≤√3≤6,即−193≤4m≤10,−1912≤m≤52,∴m的取值范围是[−1912,5 2 ].【解析】(1)由ρsin(θ+π3)+m=0,展开两角和的正弦,结合极坐标与直角坐标的互化公式,可得l的直角坐标方程;(2)化曲线C的参数方程为普通方程,联立直线方程与曲线C的方程,化为关于y的一元二次方程,再求解m的取值范围.本题考查简单曲线的极坐标方程,考查参数方程化普通方程,考查直线与抛物线位置关系的应用,是中档题.23.【答案】解:(1)证明:∵a,b,c都是正数,∴a32+b32+c32≥33a32⋅b32⋅c32=3(abc)12,当且仅当a=b=c=3−23时,等号成立.因为a32+b32+c32=1,所以1≥3(abc)12,所以13≥(abc)12,所以abc≤19,得证.(2)证明:要使ab+c +ba+c+ca+b≤2√abc成立,只需证a32√bcb+c+b32√aca+c+c32√aba+b≤12,又因为b+c≥2√bc,a+c≥2√ac,a+b≥2√ab,当且仅当a=b=c=3−23时,同时取等.所以a 32√bcb+c +b32√aca+c+c32√aba+b≤a32√bc2√bcb32√ac2√ac32√ab2√ab=a32+b32+c322=12,得证.【解析】结合基本不等式与恒成立问题证明即可.本题考查基本不等式的应用,属于中档题.。
绝密★启用前2018年普通高等学校招生全国统一考试文科数学本试卷共23题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.i(2+3i)=A .32i -B .32i +C .32i --D .32i -+ 2.已知集合{}1,3,5,7A =,{}2,3,4,5B =则A B = A .{}3 B .{}5 C .{}3,5D .{}1,2,3,4,5,73.函数2e e ()x xf x x --=的图象大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a bA .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>则其渐近线方程为A .y =B .y =C .y =D .y =7.在ABC △中,cos 2C =1BC =,5AC =,则AB = A .B C D .8.为计算11111123499100S =-+-++-,设计了右侧的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在长方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 ABC .10.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A .1-B .2CD .112.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=A .50-B .0C .2D .50 二、填空题:本题共4小题,每小题5分,共20分。
13.曲线2ln y x =在点(1,0)处的切线方程为__________.14.若,x y 满足约束条件250,230,50,x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤则z x y =+的最大值为__________.15.已知51tan 45πα⎛⎫-= ⎪⎝⎭,则tan α=__________.16.已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30︒,若SAB △的面积为8,则该圆锥的体积为__________.三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23为选考题。
考生根据要求作答。
一 必考题:共60分。
17. 12分记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. 1 求{}n a 的通项公式; 2 求n S ,并求n S 的最小值. 18. 12分下图是某地区2000年至2016年环境基础设施投资额y 单位:亿元 的折线图. 为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据 时间变量t 的值依次为1,2,,17 建立模型①:ˆ30.413.5y t =-+;根据2010年至2016年的数据 时间变量t 的值依次为1,2,,7 建立模型②:ˆ9917.5yt =+. 1 分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; 2 你认为用哪个模型得到的预测值更可靠并说明理由. 19. 12分如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点.1 证明:PO ⊥平面ABC ;2 若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离. 20. 12分设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.1 求l 的方程;2 求过点A ,B 且与C 的准线相切的圆的方程. 21. 12分已知函数321()(1)3f x x a x x =-++. 1 若3a =,求()f x 的单调区间; 2 证明:()f x 只有一个零点.二 选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
22. 选修4-4:坐标系与参数方程 10分在直角坐标系xOy 中,曲线C 的参数方程为2cos ,4sin ,x θy θ=⎧⎨=⎩θ为参数 ,直线l 的参数方程为1cos ,2sin ,x t αy t α=+⎧⎨=+⎩t 为参数 .1 求C 和l 的直角坐标方程;2 若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率. 23. 选修4-5:不等式选讲 10分设函数()5|||2|f x x a x =-+--.1 当1a =时,求不等式()0f x ≥的解集;2 若()1f x ≤,求a 的取值范围. 绝密★启用前2018年普通高等学校招生全国统一考试文科数学试题参考答案一、选择题1.D 2.C 3.B 4.B 5.D 6.A 7.A 8.B9.C10.C11.D12.C二、填空题13.y =2x –2 14.915.326.8π三、解答题 17.解:1 设{a n }的公差为d ,由题意得3a 1+3d =–15. 由a 1=–7得d =2.所以{a n}的通项公式为a n=2n–9.2 由 1 得S n=n2–8n= n–4 2–16.所以当n=4时,S n取得最小值,最小值为–16.18.解:1 利用模型①,该地区2018年的环境基础设施投资额的预测值为y=–+×19= 亿元.利用模型②,该地区2018年的环境基础设施投资额的预测值为y=99+×9= 亿元.2 利用模型②得到的预测值更可靠.理由如下:i 从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–+上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y=99+可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.ii 从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.19.解:1 因为AP =CP =AC =4,O 为AC 的中点,所以OP⊥AC ,且OP =23.连结OB .因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.由222OP OB PB +=知,OP ⊥OB . 由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .2 作CH ⊥OM ,垂足为H .又由 1 可得OP ⊥CH ,所以CH ⊥平面POM . 故CH 的长为点C 到平面POM 的距离.由题设可知OC =12AC =2,CM =23BC =423,∠ACB =45°.所以OM =253,CH =sin OC MC ACB OM ⋅⋅∠=455.所以点C 到平面POM 的距离为455.20.解:1 由题意得F 1,0 ,l 的方程为y =k x –1 k >0 . 设A x 1,y 1 ,B x 2,y2 . 由2(1)4y k x y x=-⎧⎨=⎩得2222(24)0k x k x k -++=.216160k ∆=+=,故212224k x x k ++=. 所以212244(1)(1)k AB AF BF x x k+=+=+++=.由题设知22448k k+=,解得k =–1 舍去 ,k =1.因此l 的方程为y =x –1.2 由 1 得AB 的中点坐标为 3,2 ,所以AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+.设所求圆的圆心坐标为 x 0,y 0 ,则00220005(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩,解得0032x y =⎧⎨=⎩,或00116.x y =⎧⎨=-⎩, 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.21.解:1 当a =3时,f x =3213333x x x ---,f ′ x =263x x --. 令f ′ x =0解得x=3-x=3+当x ∈–∞,3-∪3+,f ′ x >0;当x ∈3-3+时,f ′ x <0.故f x 在–∞,3-3+,在3-3+单调递减.2 由于210x x ++>,所以()0f x =等价于32301x a x x -=++. 设()g x =3231x a x x -++,则g ′ x =2222(23)(1)x x x x x ++++≥0,仅当x =0时g ′ x =0,所以g x 在 –∞,+∞ 单调递增.故g x 至多有一个零点,从而f x 至多有一个零点.又f 3a –1 =22111626()0366a a a -+-=---<,f 3a +1 =103>,故f x 有一个零点. 综上,f x 只有一个零点.注 因为211()(1)(13)33f x x x x a -=++--,22131()024x x x ++=++>,所以1(13)03f a +=>,2(23)(1)0f a x x -+=-++<. 综上,f x 只有一个零点. 22.解:1 曲线C 的直角坐标方程为221416x y +=.当cos 0α≠时,l 的直角坐标方程为tan 2tan y x αα=⋅+-, 当cos 0α=时,l 的直角坐标方程为1x =.2 将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程22(13cos )4(2cos sin )80t t ααα+++-=.①因为曲线C 截直线l 所得线段的中点(1,2)在C 内,所以①有两个解,设为1t ,2t ,则120t t +=.又由①得1224(2cos sin )13cos t t ααα++=-+,故2cos sin 0αα+=,于是直线l 的斜率tan 2k α==-.23.解:1 当1a =时,可得()0f x ≥的解集为{|23}x x -≤≤. 2 ()1f x ≤等价于|||2|4x a x ++-≥.而|||2||2|x a x a ++-≥+,且当2x =时等号成立.故()1f x ≤等价于|2|4a +≥. 由|2|4a +≥可得6a ≤-或2a ≥,所以a 的取值范围是(,6][2,)-∞-+∞.。