太阳能电池的原理及种类
- 格式:pdf
- 大小:423.14 KB
- 文档页数:4
太阳能电池基本工作原理
太阳能电池,又称太阳能光电池或光伏电池,是利用光电效应将太阳光转化为电能的装置。
其基本工作原理如下:
1. 光电效应:光电效应是指当光照射到物质表面时,光子能量被吸收,电子从物质中跃迁到导体能带中,产生电流的现象。
2. 半导体材料:太阳能电池一般采用半导体材料,如硅(Si)
或化合物半导体(如硒化铟镓,硒化铜铟锌等)。
半导体材料具有特殊的能带结构,当光照射到半导体上时,光子能量被吸收,激发半导体中的电子跃迁到导带中,产生电流。
3. P-N结构:太阳能电池一般采用P-N结构,即具有正(P型)和负(N型)电荷载体的区域。
在P-N结构中,阳极(P型)
富余电子,阴极(N型)富余空穴,形成电场。
光照射后,电子从P区跃迁到N区,被电场分离并产生电流。
4. 背电场:太阳能电池还有一个重要的设计是背电场结构。
在背电场结构中,阳极和阴极之间的电场将电子从阳极推向阴极,避免电子再次回到阳极,提高电池的效率。
5. 转化效率:太阳能电池的转化效率指光能转化为电能的比例。
转化效率受到多种因素的影响,如光照强度、光谱分布、温度等。
不同类型的太阳能电池具有不同的转化效率。
通过以上基本工作原理,太阳能电池将太阳能转化为直流电能,可以应用在太阳能发电系统、太阳能充电器等领域。
太阳能电池技术及其发展趋势随着人们对环境问题越来越关注,太阳能电池作为一种清洁能源技术备受瞩目。
太阳能电池作为一种通过太阳能来进行电能转化的技术,可以从根本上减少人类对化石燃料的依赖,从而减少了环境的污染和破坏。
在过去几年中,太阳能电池技术取得了巨大的进展,各种新型的太阳能电池不断涌现,而且随着技术的进一步发展,太阳能电池的性能也不断提高。
本文将介绍太阳能电池技术及其发展趋势。
一. 太阳能电池的基本原理太阳能电池是一种半导体器件,其工作原理是将太阳能转换成电能。
太阳能电池的核心部分是一个由不同半导体材料构成的p-n 结。
当阳光照射在p-n结上时,电子和空穴就会在p区和n区之间的p-n界面处发生复合,这个过程就会产生电流,从而将太阳能转换成电能。
该电池的输出电压和电流大小与阳光照射强度、温度、半导体材料的种类和质量等因素有关。
二. 太阳能电池的种类太阳能电池的种类很多,根据材料的不同,可以分为硅薄膜太阳能电池、多晶硅太阳能电池、单晶硅太阳能电池和无机-有机混合太阳能电池等。
其中多晶硅和单晶硅太阳能电池是目前应用最广泛的太阳能电池。
多晶硅太阳能电池是太阳能电池中最常见的一种。
该电池主要由多晶硅材料制成,相对于单晶硅来说,多晶硅的能耗更低,制造成本更低,但效率相对较低。
单晶硅太阳能电池相对于多晶硅来说,其硅的晶体品质要更好,因此其光电转换效率也更高。
但相对的生产成本也更高。
无机-有机混合太阳能电池包括有机半导体和无机半导体层,属于目前较为新颖的太阳能电池种类之一。
该电池普遍更具有廉价、柔性、轻薄等特点,使其具备了广泛的应用前景。
三. 太阳能电池技术的发展趋势作为能源领域的重要技术,太阳能电池的技术也在不断升级。
下面让我们来看看太阳能电池技术未来的研发重点。
1. 提高太阳能电池的效率太阳能电池效率的提高一直是科学家追求的目标。
目前多晶硅太阳能电池效率已经接近极限,但单晶硅太阳能电池仍有进一步提高效率的空间。
太阳能电池是一种将太阳能直接转换为电能的装置,它是太阳能光伏发电系统的核心部件之一。
太阳能电池材料的种类、原理和特点是影响太阳能电池性能和应用领域的关键因素。
本文将围绕这一主题展开讨论,以便为读者深入了解太阳能电池提供全面的了解。
一、太阳能电池材料的种类太阳能电池材料可以分为晶体硅、非晶硅、多晶硅、柔性薄膜电池材料等几种主要类型。
1. 晶体硅晶体硅是太阳能电池最常用的材料之一,它主要由单晶硅和多晶硅两种类型,其中单晶硅的电池效率较高,但成本较高,多晶硅则相对便宜一些。
2. 非晶硅非晶硅是一种非晶态材料,是将硅薄片进行涂覆和烧结而成的,其电池效率较低,但成本较低,适合一些需要成本控制的应用场景。
3. 多晶硅多晶硅电池是利用多晶硅片制成,其性价比相对较高,广泛应用于家用光伏电站和商业光伏电站中。
4. 柔性薄膜电池材料柔性薄膜电池是一种新型的太阳能电池材料,主要由非晶硅材料、铜铟镓硒等化合物材料制成,具有柔性、轻薄、便于携带等优点,是未来太阳能电池发展的方向。
二、太阳能电池材料的原理太阳能电池是利用光电效应将太阳能直接转换为电能的装置。
不同类型的太阳能电池材料有着不同的工作原理。
1. 晶体硅晶体硅太阳能电池的工作原理是通过P-N结构实现的。
当太阳光照射在P-N结上时,光子的能量被硅中的电子吸收并激发,使得电子跃迁到导带中,形成光生电子和空穴。
这些光生电子和空穴会在P-N结的作用下分离,从而形成电流,从而实现将太阳能光能转化为电能。
2. 非晶硅非晶硅太阳能电池利用非晶硅薄膜吸收太阳光的能量,并将其转化为电能。
其工作原理与晶体硅相似,但非晶硅的材料结构不规则,电子的运动方式也有所不同。
3. 柔性薄膜电池材料柔性薄膜电池材料利用非晶硅、铜铟镓硒等化合物材料,通过薄膜沉积技术将材料制备成薄膜,实现光伏效应的转化工作原理与晶体硅和非晶硅类似,通过材料的光电转换将太阳光能转换为电能。
三、太阳能电池材料的特点不同种类的太阳能电池材料各有其独特的特点和适用场景。
光伏发电的工作原理及太阳能电池的种类光伏发电是利用太阳能将光能转化为电能的一种技术。
它是依靠太阳能电池来实现的,太阳能电池是一种能够将太阳能直接转化为电能的半导体器件。
光伏发电的工作原理如下:当太阳光照射到太阳能电池表面时,光子与半导体材料相互作用,导致能级变化。
此时,通过光子和材料发生碰撞,光子的能量被传递给半导体电子,激发了部分电子跃迁至导带中形成自由电子和正空穴。
这些自由电子和正空穴在半导体内部运动,而外部加上负载时,电子和空穴会在半导体中产生电流。
这个过程将太阳能转化为电能,形成了光伏发电。
根据材料的不同,太阳能电池可以分为以下几种类型:1.硅太阳能电池:硅太阳能电池是最常见和普遍使用的类型,主要有结晶硅和非晶硅两种。
结晶硅太阳能电池具有高效率、稳定性和长寿命的特点,但制造成本较高。
非晶硅太阳能电池制造成本较低,但效率稍低。
2.多结太阳能电池:多结太阳能电池是指由多个材料层叠组成的太阳能电池。
这种太阳能电池能够充分利用不同材料的光谱范围,实现高效率的光伏发电。
3.聚合物太阳能电池:聚合物太阳能电池是一种使用聚合物半导体材料的太阳能电池。
聚合物太阳能电池具有制造成本较低、柔性、轻薄等特点,但效率相对较低。
4.单晶硅太阳能电池:单晶硅太阳能电池是一种利用单晶硅材料制成的太阳能电池。
单晶硅太阳能电池利用了硅的优良电子特性,具有高效率和较长的使用寿命。
5.薄膜太阳能电池:薄膜太阳能电池是一种利用薄膜半导体材料制成的太阳能电池。
薄膜太阳能电池具有较低的制造成本、柔性和轻薄等特点,但效率相对较低。
总之,光伏发电的工作原理是利用太阳能电池将太阳能转化为电能。
太阳能电池的种类包括硅太阳能电池、多结太阳能电池、聚合物太阳能电池、单晶硅太阳能电池和薄膜太阳能电池等。
相互之间在制造成本、效率和特性上有所差异,但都可以实现太阳能的转换和利用。
太阳能电池的工作原理太阳能电池的工作原理是指通过利用光电效应将太阳能转化为电能的过程。
太阳能电池在许多领域得到了广泛的应用,如太阳能发电和太阳能充电设备。
接下来,我将详细解释太阳能电池的工作原理,并分点列出其步骤。
1. 光电效应:光电效应是指在某些物质中,当光照射到物质表面时,会产生电子释放的现象。
这是太阳能电池工作的基础。
2. 太阳能电池的结构:太阳能电池通常由多个层叠在一起的半导体材料组成。
常见的太阳能电池结构包括PN结构、p-i-n结构和多结结构等。
3. 光吸收:太阳能电池的顶层是一层光吸收材料,通常由硅、硒化铟、碲化镉等材料构成。
这一层的作用是吸收太阳光中的能量。
4. 光电子释放:当太阳光照射到光吸收层上时,能量被吸收并激发了其中的电子。
这些激发的电子从原子中释放出来,形成电子空穴对。
5. 电子运动:激发的自由电子和空穴通过材料内部的电场开始运动。
这一电场是由太阳能电池内部的结构和电压差所产生的。
6. 分离和收集电子:在太阳能电池内部,电子和空穴会被电场分离。
自由电子在电场的作用下沿着电流方向运动,而空穴则沿着相反方向运动。
7. 电流输出:太阳能电池内部的电子和空穴通过外部电路传导,形成电流输出。
这样,太阳能电池就将光能转化为电能。
8. 扩散和再复合:为了保持太阳能电池的稳定性和效率,太阳能电池内部通常设置了扩散层和再复合层。
扩散层用于控制自由电子和空穴的扩散速度,而再复合层用于减少电子和空穴的再复合现象,从而增加电流输出。
总结起来,太阳能电池的工作原理是光电效应。
当太阳光照射到太阳能电池的光吸收层上时,光能被吸收并激发其中的电子,形成电子空穴对。
这些电子和空穴通过电场分离并传导到外部电路,形成电流输出。
通过这一过程,太阳能电池将太阳能转化为可利用的电能。
太阳能电池的工作原理不仅在理论上有重要意义,也在实际应用中具有广泛的应用前景。
太阳能电池的高效能转换和可再生能源的使用,为环保和可持续发展做出了重要贡献。
太阳能电池的结构与工作原理太阳能电池是利用光电效应将光能转化为电能的一种设备。
其结构以及工作原理十分关键,本文将从多方面进行阐述。
一、太阳能电池的结构太阳能电池的主要结构是由P型半导体和N型半导体材料组成的PN结构。
其具体结构如下:(1)P型半导体层:由于P型半导体材料内部原子存在杂质,导致其内部有大量少子分布,因此呈现出正电导特性。
(2)N型半导体层:与P型半导体层相似,N型半导体材料内部原子也存在杂质,导致其内有大量多子分布,因此呈现出负电导特性。
(3)P-N结:当P型半导体层与N型半导体层相结合时,因其电子浓度相反,形成PN结。
PN结中含有少量的杂质离子,如磷、硅、锗等,在室温下可获得稳定性,并形成一定的空间电荷区,即反向漏电区,可以有效防止电子和空穴的复合,从而将光电转换效率提高到最高。
(4)金属电极:在P型半导体的顶部和N型半导体的底部,分别电浆贴附上一层金属电极,以加强电路连通性。
二、太阳能电池的工作原理太阳能电池是通过光电效应实现将光能转换为电能的。
当光线经过太阳能电池表面时,会被吸收,产生光电子激发,使电子跃迁到导带中,形成相应的空穴。
通过PN结的内部电场作用使空穴向P型半导体集中,电子向N型半导体集中,形成电动势。
在外部电路的作用下,电子流进入电路的负载,使得负载发生电流,从而实现转换效果。
在实际应用中,太阳能电池的转换效率与多种因素有关,如太阳能的强度与方向、电池板的温度与表面状况、电池板质量等因素。
同时,太阳能电池的制造也对其转换效率产生重要影响。
通过多样化材质结构的选择,制造出转换效率高、成本低、稳定性好的太阳能电池,对于太阳能电池的推广应用产生了积极推动作用。
三、太阳能电池的种类太阳能电池种类较多,根据主要材料不同,太阳能电池可分为硅太阳能电池和非硅太阳能电池。
其中,硅太阳能电池占据了市场主导地位,非硅太阳能电池虽然目前市场份额较小,但这种新型太阳能电池的研究及发展有着重要意义。
太阳能电池技术的原理及应用太阳能电池,顾名思义是利用太阳辐射能转换为电能的装置。
相较于传统的火力发电、水力发电等方式,太阳能电池可以减少极大的能源消耗和空气污染,成为当今世界逐渐普及的新型能源技术之一。
一、太阳能电池技术的原理太阳能电池是利用光电效应来转换太阳能。
光电效应指的是光线照射到低功函数的物体上时,就会打出电子,从而形成电流。
太阳能电池正是利用这一原理,将太阳光直接转换为电能。
具体来说,太阳能电池的基本构造是由两个半导体材料,即P 型半导体与N型半导体,通过P-N结相连接而成。
当光线照射到这个结上时,电子会从P型半导体的能级跃至N型半导体的低位能级,从而形成电流。
这一过程需要光子的能量大于硅等材料的能隙。
硅的能隙为1.12eV,因此只有波长小于1100nm的光线被吸收,形成电流。
二、太阳能电池技术的应用太阳能电池广泛应用于各种领域,从家庭照明到卫星能源系统。
1. 家庭应用随着人们环保意识的增强和能源价格的攀升,太阳能电池在家庭应用中越来越常见。
普及太阳能发电能够减少家庭的能源消耗,节约开支,并对减缓气候变化产生深远影响。
2. 太阳能水泵太阳能水泵可以在没有电力供应的地方使用,如偏远区域或者农村地区。
水泵的运转需要电力,而在没有电网的地方,太阳能水泵的这一不足就得到了弥补。
这就可以使得农业灌溉、家庭供水等问题得到优解。
3. 卫星能源系统太阳能电池作为卫星能源系统的核心之一,是目前卫星最广泛使用的能源系统。
卫星中的太阳能电池通过转换太阳辐射能为电能,以此为卫星提供能源。
三、太阳能电池技术的优缺点太阳能电池作为新兴能源技术,其优缺点非常明显。
1. 优点太阳能电池是一种清洁、绿色、可再生的能源技术。
其不会产生有害气体和污染物,对环境和生态的影响非常小。
而且太阳能电池是不受能源分布限制的,有非常广阔的应用前景。
此外,太阳能电池在长时间使用时还可以带来节能、节约成本的效果,十分经济实用。
2. 缺点太阳能电池的缺点主要是受环境影响。
太阳能利用太阳能电池的原理和应用在当今日益关注环境可持续发展的社会背景下,太阳能成为一种备受瞩目的清洁能源。
太阳能电池作为太阳能利用的主要装置,具有广泛的应用前景。
本文将介绍太阳能电池的原理及其应用,并探讨其在可再生能源领域的重要性。
一、太阳能电池的原理太阳能电池是将太阳能直接转化为电能的装置,其工作原理基于光电效应。
光电效应是指在材料表面受到光照时,光能转化为电能的现象。
太阳能电池的基本结构由多个层次组成,包括P型半导体、N型半导体和PN结。
当光照射在PN结上时,光子将带动电子进行跃迁,从而产生电流。
这种光生电流可通过连接电路来供应电器设备使用。
二、太阳能电池的种类目前市面上常见的太阳能电池种类有多晶硅太阳能电池、单晶硅太阳能电池和薄膜太阳能电池。
多晶硅太阳能电池采用多晶硅材料制成,造价相对低廉且效率适中。
单晶硅太阳能电池则采用单晶硅材料制成,具有更高的转化效率。
薄膜太阳能电池是利用薄膜材料制成,灵活性较好,并可应用于多种场合。
不同种类的太阳能电池在工作效率、成本和应用范围上各有优劣。
三、太阳能电池的应用1. 家庭光伏发电系统太阳能电池可安装在建筑物的屋顶或阳台等区域,将太阳能转化为电能供应家庭使用。
光伏发电系统不仅可以满足家庭的日常用电需求,还可以将多余的电能储存起来,以备不时之需。
此外,将多个家庭光伏发电系统连接成微电网,还可以向电网供电,实现对能源的共享和利用。
2. 太阳能灯具太阳能电池可以应用于太阳能路灯、庭院灯和景观灯等太阳能照明设备中。
这些设备具有自主发电功能,白天通过太阳能电池板储存电能,在夜晚作为照明光源使用。
太阳能灯具不仅具有节能环保的特点,而且无需外部电源,减少了电网压力,适应于远离电网供电的场所。
3. 太阳能充电器随着移动设备的普及,太阳能充电器逐渐成为人们生活中的必备品。
太阳能电池板可将阳光转化为电能,通过充电器将电能储存在移动电池中,方便随时为手机、平板电脑、音乐播放器等移动设备充电。
太阳能电池的工作原理是什么
太阳能电池利用光电效应将太阳光能转化为电能。
太阳能电池内部由多个半导体材料层叠组成,其中最常用的是硅。
太阳能电池的工作原理可以分为以下几个步骤:
1. 吸收太阳光:太阳能电池的表面涂有能够吸收太阳光的材料,如硅。
当太阳光照射到太阳能电池表面时,光子(太阳光的组成单位)会穿过材料并与其内部的原子相互作用。
2. 电子激发:太阳能电池中的硅材料由两种类型的原子组成,即硅中的磷和硅中的硼。
当太阳光照射到硅材料上时,光子与硅原子相互作用,激发出电子和空穴对(带正电荷的空位)。
3. 电子分离:激发出的电子和空穴会分离并沿着不同的方向移动。
电子会从n型(掺磷)硅层中向p型(掺硼)硅层移动,而空穴则会相反地从p型层向n型层移动。
这种分离过程发生在通过太阳能电池的金属接触处。
4. 电流输出:由于电子和空穴在分离的过程中发生位移,形成了电场,这将导致电子在金属电极之间形成电流。
通过连接到太阳能电池的电路,电流可以在外部设备中实现功效,如充电电池或给电器供电。
总之,太阳能电池的工作原理是利用光电效应将太阳光能转化为电能,通过光子的激发和电子分离来产生电流输出。
因此,太阳能电池可以作为一种可再生能源的来源,用于为各种设备和系统供电。
第25卷第2期2011年3月PO WER EQ U IPM EN TVol.25,No.2M ar.2011收稿日期:2010-08-24作者简介:许伟民(1981),男,工程师,主要从事工业工程设计。
E -mail:xuw m@ch 太阳能电池的原理及种类许伟民1, 何湘鄂2, 赵红兵1, 冯秋红1(1.中国联合工程公司,杭州310022; 2.浙江大学信息与电子工程学系,杭州310027)摘 要:介绍太阳能电池的原理和种类,分析了各类太阳能电池的优缺点,比较了各类太阳能电池的转换效率、制造难易程度和发展前景。
关键词:太阳能电池;原理;种类;光电转换效率中图分类号:T M 615 文献标识码:A 文章编号:1671-086X(2011)02-0137-04Working Principles and Type of Solar CellsX U We-i min 1, HE X iang -e 2, Z HA O Hong -bing 1, FENG Q iu -hong 1(1.China U nited Engineering Corporation,Hangzhou 310022,China;2.Department of Info rmat ion Science and Electronic Engineering,Z hejiang U niversity,Hangzhou 310027,China)Abstract:A n intr oduct io n is being prese nted to w or king princ iples and categ or y of so la r cells,tog ether with an analysis to adva nt ages and disadvanta ges o f e ach type and a c ompar ison o f photo electr ic conv er sio n eff iciency,manufacturing co mplex it y and de velopment pr ospe ct amo ng v ario us cells.Keywords:solar cell;pr inciple;type;pho to ele ctric conv ersio n eff iciency太阳能是人类取之不尽、用之不竭的能源。
在目前创导节能减排、保护环境的形势下应大力提倡太阳能利用。
本文对太阳能电池的原理及种类作一概括的介绍。
1 太阳能发电方式1.1光热电转换方式利用太阳辐射产生的热能发电,一般是由太阳能集热器将所吸收的热能转换成工质(蒸汽)的势能和动能,再驱动汽轮机发电。
前一个过程是光热转换过程;后一个过程是热电转换过程,与普通的火力发电一样。
太阳能热发电的缺点是效率很低而成本很高,其投资估计至少要比普通火电站高5~10倍。
一座1000M W 的太阳能热电站需要投资20~25亿美元,平均每千瓦的投资为2000~2500美元。
因此,目前只能小规模地应用于特殊的场合,而大规模利用在经济上很不合算,还不能与普通的火电站或核电站相竞争。
1.2光电直接转换方式该方式是利用光电效应,将太阳辐射能直接转换成电能,光电转换的基本装置就是太阳能电池。
太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,太阳能电池工作原理见图1。
图1 太阳能电池工作原理当许多个电池串联或并联起来,就可以成为较大输出功率的太阳能电池方阵[12]。
太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点。
太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期第25卷使用;与火力发电、核能发电相比,太阳能电池不会引起环境污染;太阳能电池可以大中小并举,大到百万千瓦的中型电站,小到只供一户用的太阳能电池组,这是其他电源无法比拟的。
2 对太阳能电池材料的要求对太阳能电池材料一般的要求有:(1)半导体材料的禁带不能太宽。
(2)要有较高的光电转换效率。
(3)材料本身对环境不造成污染。
(4)材料便于工业化生产,且材料性能稳定。
基于以上几个方面考虑,硅是最理想的太阳能电池材料,这也是太阳能电池以硅材料为主的主要原因。
但随着新材料的不断开发和相关技术的发展,以其他材料为基础的太阳能电池也越来越显示出诱人的前景[13]。
3 太阳能电池分类根据所用材料的不同,太阳能电池可分为:硅太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极型太阳能电池、纳米晶太阳能电池和有机太阳能电池等,其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位[23]。
3.1硅太阳能电池硅太阳能电池又分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。
3.1.1单晶硅太阳能电池硅系列太阳能电池中,单晶硅太阳能电池转换效率最高,技术也最为成熟。
高性能单晶硅电池是建立在高质量单晶硅材料和相关的成熟的加工处理工艺基础上的。
现在,单晶硅的电池工艺一般都采用表面结构化、发射区钝化、分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。
光电的转化效率主要取决于单晶硅表面微结构处理和分区掺杂工艺,在这方面,德国(夫朗霍费)费莱堡太阳能系统研究所保持着世界领先水平。
该研究所采用光刻照相技术,将电池表面结构化,制成倒金字塔结构;并在表面把13nm厚的氧化物钝化层与两层减反射涂层相结合;改进电镀过程增加栅极的宽度和高度的比率。
通过以上措施制得的电池转化效率超过23%,最大值可达23.3%。
Kyo-cera公司制备的大面积(225cm2)单晶硅太阳能电池转换效率为19.44%,国内北京太阳能研究所也积极进行高效晶体硅太阳能电池的研究和开发,研制的平面高效单晶硅电池(2cm 2cm)转换效率达到19.79%,刻槽埋栅电极晶体硅电池(5cm 5cm)转换效率达8.6%。
单晶硅太阳能电池转换效率无疑是最高的,在实验室里最高的转换效率为24.7%,规模生产时的效率为15%。
在大规模应用和工业生产中单晶硅太阳能电池仍占据主导地位,但由于受单晶硅材料价格及繁琐的电池工艺影响,致使单晶硅太阳能电池成本价格居高不下,要想大幅度降低其成本是非常困难的。
3.1.2多晶硅薄膜太阳能电池为了节省高质量材料,薄膜太阳能电池就成了单晶硅电池的替代产品,其中多晶硅薄膜太阳能电池和非晶体硅薄膜太阳能电池就是典型代表。
实验室的最高转换效率为18%,工业规模生产的转换效率为10%。
通常的晶体硅太阳能电池是在厚度350~450 m的高质量硅片上制成的,这种硅片从提拉或浇铸的硅锭上锯割而成,因此实际消耗的硅材料更多。
为了节省材料,从20世纪70年代中期就开始在廉价衬底上沉积多晶硅薄膜,但由于生长的硅膜晶粒太小,未能制成有价值的太阳能电池。
目前制备多晶硅薄膜电池多采用化学气相沉积法,包括低压化学气相沉积(LPCVD)和等离子增强化学气相沉积(PECVD)工艺。
此外,液相外延法(LPPE)和溅射沉积法也可用来制备多晶硅薄膜电池。
化学气相沉积主要是以SiH2Cl2、SiH Cl3、SiCl4或SiH4为反应气体,在一定的保护气氛下反应生成硅原子,并沉积在加热的衬底上,衬底材料一般选用Si、SiO2或Si3N4等。
但研究发现,在非硅衬底上很难形成较大的晶粒,并且容易在晶粒间形成空隙,解决这一问题的办法是先用LPCVD在衬底上沉积一层较薄的非晶硅层,再将这层非晶硅层退火,得到较大的晶粒,然后再在这层籽晶上沉积厚的多晶硅薄膜,因此,再结晶技术无疑是很重要的一个环节,目前采用的技术主要有固相结晶法和中区熔再结晶法。
多晶硅薄膜电池除采用了再结晶工艺外,另外采用了几乎所有制备单晶硅太阳能电池的技术,这样制得的太阳能电池转换效率明显提高。
德国费莱堡太阳能系统研究所采用区域再结晶技术在FZ Si衬底上制得的多晶硅电池转换效率为19%,日本三菱公司用该法制备的电池效率达16.42%。
液相外延(LPE)法的原理是通过将硅138第2期许伟民,等:太阳能电池的原理及种类熔融在母体里,降低温度析出硅膜。
美国Astro-pow er公司采用LPE制备的电池效率达12.2%。
中国光电发展技术中心采用液相外延法在冶金级硅片上生长出硅晶粒,并设计了一种类似于晶体硅薄膜太阳能电池的新型太阳能电池,称之为 硅粒 太阳能电池,但有关性能方面的报道还未见到。
多晶硅薄膜电池由于所使用的硅材料远较单晶硅少,又无效率衰退问题,并且有可能在廉价衬底材料上制成,其成本远低于单晶硅电池,而效率高于非晶体硅薄膜电池,因此,预计多晶硅薄膜电池不久将会在太阳能电池市场上占据主导地位。
3.1.3非晶体硅薄膜太阳能电池由于非晶体硅薄膜太阳能电池的成本低,便于大规模生产,普遍受到人们的重视并得到迅速发展。
早在20世纪70年代初,Carlso n等就已经开始了对非晶体硅电池的研制工作,目前世界上己有许多公司生产这种产品。
非晶体硅作为太阳能电池材料尽管是一种很好的材料,但由于其光学带隙为1.7eV,使得材料本身对太阳辐射光谱的长波区域不敏感,这就限制了非晶体硅太阳能电池的转换效率。
此外,其光电效率会随着光照时间的延续而衰减,即所谓的光致衰退S-W效应,使得电池性能不稳定。
解决这些问题的途径就是制备叠层太阳能电池,叠层太阳能电池是在制备的p--i n层单结太阳能电池上再沉积一个或多个p--i n子电池制得的。
叠层太阳能电池能提高转换效率、解决单结电池的不稳定性,其关键在于:(1)把不同禁带宽度的材料组合在一起,提高了光谱的响应范围;(2)顶电池的i层较薄,光照产生的电场强度变化不大,保证i层中的光生载流子抽出;(3)底电池产生的载流子约为单电池的一半,光致衰退效应减小;(4)叠层太阳能电池各子电池是串联在一起的。
非晶硅薄膜太阳能电池的制备方法有很多,其中包括反应溅射法、PECVD法、LPCVD法等,反应原料气体为H2稀释的SiH4,衬底主要为玻璃及不锈钢片,制成的非晶体硅薄膜经过不同的电池工艺过程可分别制得单结电池和叠层太阳能电池。
目前非晶体硅太阳能电池的研究取得两大进展:(1)三叠层结构非晶体硅太阳能电池转换效率达到13%,创下新的记录;(2)三叠层太阳能电池生产能力达5M W。
美国联合太阳能公司(V SSC)制得的单结太阳能电池最高转换效率为9.3%,三带隙三叠层电池最高转换效率为13%,上述最高转换效率是在小面积(0.25cm2)电池上取得的。
曾有文献报道,单结非晶体硅太阳能电池转换效率超过12.5%,日本中央研究院采用一系列新措施,制得的非晶体硅电池的转换效率为13.2%。