2014高考数学第一轮复习_离散型随机变量的均值与方差[1]
- 格式:doc
- 大小:291.50 KB
- 文档页数:11
第七讲 离散型随机变量的分布列、期望与方差(理)知识梳理·双基自测知识梳理知识点一 离散型随机变量随着试验结果变化而变化的变量称为__随机变量__,所有取值可以一一列出的随机变量,称为__离散型__随机变量.知识点二 离散型随机变量的分布列及性质(1)一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则表X x 1 x 2 … x i … x n P p 1p 2…p i…p n称为离散型随机变量X 的__概率分布列__,简称为X 的分布列. (2)离散型随机变量的分布列的性质①p i ≥0(i =1,2,…,n );②∑ni =1p i =__p 1+p 2+…+p n __=1. 知识点三 离散型随机变量的均值与方差若离散型随机变量X 的分布列为P (X =x i )=p i ,i =1,2,…,n .(1)均值:称E (X )=__x 1p 1+x 2p 2+…+x i p i +…+x n p n __为随机变量X 的均值或数学期望. (2)方差:称D (X )=∑ni =1(x i -E (X ))2p i 为随机变量X 的方差,其算术平方根D (X )为随机变量X 的__标准差__.(3)均值与方差的性质 ①E (aX +b )=__aE (X )+b __. ②D (aX +b )=__a 2D (X )__. *③D (X )=E (X 2)-(E (X ))2.知识点四 常见离散型随机变量的分布列(1)两点分布:若随机变量X 服从两点分布,其分布列为X 0 1 P1-pp其中p =P (X =1)称为成功概率.若X 服从两点分布,则E (X )=p ,D (X )=p (1-p ).(2)超几何分布:在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X=k )=C k M C n -k N -MC nN,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N 、M ≤N ,n 、M 、N ∈N +,称随机变量X 服从超几何分布.归纳拓展1.若X 是随机变量,则Y =aX +b (a ,b 是常数)也是随机变量. 2.随机变量ξ所取的值分别对应的事件是两两互斥的.双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)抛掷均匀硬币一次,出现正面的次数是随机变量.( √ )(2)在离散型随机变量的分布列中,随机变量取各个值的概率之和可以小于1.( × ) (3)离散型随机变量的各个可能值表示的事件是彼此互斥的.( √ ) (4)由下列给出的随机变量X 的分布列服从二点分布.( × )(5)从4名男演员和3名女演员中选出4人,其中女演员的人数X 服从超几何分布.( √ ) (6)某人射击时命中的概率为0.5,此人射击三次命中的次数X 服从两点分布.( × ) 题组二 走进教材2.(P 77A 组T1改编)(此题为更换后新题)设随机变量X 的概率分布列为则P (|X -3|=1)=__58__.[解析] 由14+m +18+38=1,解得m =14,P (|X -3|=1)=P (X =2)+P (X =4)=14+38=58.2.(P 77A 组T1改编)(此题为发现的重题,更换新题见上题)设随机变量X 的概率分布列为则P (|X -3|=1)=__512__.[解析] 由13+m +14+16=1,解得m =14,P (|X -3|=1)=P (X =2)+P (X =4)=14+16=512.3.(P 49A 组T1)有一批产品共12件,其中次品3件,每次从中任取一件,在取到合格品之前取出的次品数X 的所有可能取值是__0,1,2,3__.[解析] 因为次品共有3件,所以在取到合格品之前取出的次品数X 的可能取值为0,1,2,3. 题组三 走向高考4.(2020·浙江)盒中有4个球,其中1个红球,1个绿球,2个黄球.从盒中随机取球,每次取1个,不放回,直到取出红球为止.设此过程中取到黄球的个数为ξ,则P (ξ=0)=__13__,E (ξ)=__1__.[解析] 由题意知,随机变量ξ的可能取值为0,1,2; 计算P (ξ=0)=C 11C 14+C 11·C 11C 14·C 13=13;P (ξ=1)=C 12·C 11A 24+C 12C 11A 22C 11A 34=13;P (ξ=2)=A 22·C 11A 34+C 22C 11A 33C 11A 44=13;所以E (ξ)=0×13+1×13+2×13=1.故答案为13,1.5.(2020·课标Ⅲ,3)在一组样本数据中,1,2,3,4出现的频率分别为p 1,p 2,p 3,p 4,且 i =14pi =1,则下面四种情形中,对应样本的标准差最大的一组是(B )A .p 1=p 4=0.1,p 2=p 3=0.4B .p 1=p 4=0.4,p 2=p 3=0.1C .p 1=p 4=0.2,p 2=p 3=0.3D .p 1=p 4=0.3,p 2=p 3=0.2[解析] 根据均值E (X )=∑i =14x i p i ,方差D (X )=∑i =14[x i -E (X )]2·p i ,标准差最大即方差最大,由各选项对应的方差如下表选项 均值E (X ) 方差D (X) A 2.5 0.65 B 2.5 1.85 C 2.5 1.05 D2.51.45由此可知选项B 对应样本的标准差最大,故选B .考点突破·互动探究考点一 离散型随机变量分布列的性质——自主练透例1 (1)(2021·河南南阳联考)随机变量ξ的概率分布规律为P (X =n )=an (n +1)(n =1,2,3,4),其中a 为常数,则P (54<X <134)的值为( D )A .23B .34C .45D .516(2)(2021·银川质检)若随机变量ξ的分布列如表所示,E (ξ)=1.6,则a -b =( B )ξ 0 1 2 3 P0.1ab0.1A .0.2 C .0.8D .-0.8[解析] (1)∵P (X =n )=a n (n +1)(n =1,2,3,4),∴a ⎝⎛⎭⎫11×2+12×3+…+14×5=1,即⎝⎛⎭⎫1-15a =1, ∴a =54,∴P ⎝⎛⎭⎫54<X <134=P (X =2)+P (X =3)=54×16+54×112=516. (2)易知a ,b ∈[0,1],由0.1+a +b +0.1=1,得a +b =0.8,由E (ξ)=0×0.1+1×a +2×b +3×0.1=1.6,得a +2b =1.3,所以a =0.3,b =0.5,则a -b =-0.2.名师点拨(1)利用分布列中各概率之和为1可求参数的值,要注意检查每个概率值均为非负数. (2)求随机变量在某个范围内的概率,根据分布列,将所求范围内随机变量对应的概率值相加即可,其依据是互斥事件的概率加法公式.〔变式训练1〕(2020·天津和平区期末)设随机变量X 的概率分布列如下表,则随机变量X 的数学期望E (X )=__94__.X 1 2 3 4 P13m1416[解析] 13+m +14+16=1,所以m =14.所以E (X )=1×13+2×14+3×14+4×16=94.考点二 离散型随机变量的期望与方差——多维探究例2 角度1 期望、方差的简单计算(1)设随机变量X 的分布列为P (X =k )=16(k =1,2,3,4,5,6),则E (X )=__3.5__,E (2X +3)=__10__,D (X )=__3512__,D (3X -1)=__1054__.[解析] E (X )=x 1p 1+x 2p 2+x 3p 3+…+x 6p 6=3.5, E (2X +3)=2E (X )+3=10.D (X )=(x 1-E (X ))2p 1+(x 2-E (X ))2p 2+…+(x 6-E (X ))2p 6 =16[(1-3.5)2+(2-3.5)2+…+(6-3.5)2] =17.5×16=3512.D (3X -1)=9D (X )=1054.角度2 期望、方差与函数性质(2)(2019·浙江卷,7)设0<a <1.随机变量X 的分布列是X 0 a 1 P131313则当a 在(0,1)内增大时,( D ) A .D (X )增大 B .D (X )减小C .D (X )先增大后减小D .D (X )先减小后增大[解析] 随机变量X 的期望E (X )=0×13+a ×13+1×13=a +13,D (X )=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫0-a +132+⎝ ⎛⎭⎪⎫a -a +132+⎝ ⎛⎭⎪⎫1-a +132×13=29(a 2-a +1) =29⎝⎛⎭⎫a -122+16, 当a ∈⎝⎛⎭⎫0,12时,D (X )单调递减,当x ∈⎝⎛⎭⎫12,1时,D (X )单调递增,故选D . 角度3 实际问题中的期望、方差问题(3)(2021·天津红桥区期中)某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,规定:每位顾客从袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.①求顾客所获的奖励额为60元的概率; ②求顾客所获的奖励额的分布列及数学期望. [解析] ①设顾客所获取的奖励额为X , 依题意,得P (X =60)=C 11·C 13C 24=12,即顾客所获得奖励额为60元的概率为12.②依题意得X 得所有可能取值为20,60, P (X =60)=12,P (X =20)=C 23C 24=12,即X 的分布列为所以这位顾客所获的奖励额的数学期望为 E (X )=20×12+60×12=40.(4)(入座问题)有编号为1,2,3,…,n 的n 个学生,入座编号为1,2,3,…,n 的n 个座位,每个学生规定坐一个座位,设学生所坐的座位号与该生的编号不同的学生人数为X ,已知X =2时,共有6种坐法.(1)求n 的值;(2)求随机变量X 的数学期望和方差. [解析] (1)由题意知C 2n =6,解得n =4. (2)X 所有可能取值为0,2,3,4, 又P (X =0)=1A 44=124,P (X =2)=C 24A 44=624=14,P (X =3)=8A 44=824=13,P (X =4)=9A 44=924=38,∴随机变量X 的分布列为X 0 2 3 4 P124141338∴E (X )=0×124+2×14+3×13+4×38=3,D (X )=(3-0)2×124+(3-2)2×14+(3-3)2×13+(3-4)2×38=1.名师点拨求离散型随机变量的分布列、期望与方差,应按下述步骤进行: (1)明确随机变量的所有可能取值以及取每个值所表示的意义; (2)利用概率的有关知识,求出随机变量取每个值的概率; (3)按规范形式写出分布列,并用分布列的性质验证; (4)根据分布列,正确运用期望与方差的定义或公式进行计算.说明:求离散型随机变量的分布列的关键是求随机变量所取值对应的概率,在求解时,要注意计数原理、排列组合及常见概率模型.〔变式训练2〕(1)(角度1)(2021·江苏镇江调研)随机变量ξ的分布如下表,则E (5ξ+4)=__13__.ξ24(2)(角度当a 在⎝⎛⎭⎫0,23内增大时( D ) X 0 1 2 P1-a212a 2A .D (X )C .D (X )先减小后增大D .D (X )先增大后减小(3)如图,A 、B 两点由5条连线并联,它们在单位时间内能通过的最大信息量依次为2,3,4,3,2,现记从中任取三条线且在单位时间内都通过的最大信息总量为ξ.①写出最大信息总量ξ的分布列; ②求最大信息总量ξ的数学期望.[解析] (1)由题意知E (ξ)=2×0.3+4×0.3=1.8, ∴E (5ξ+4)=5E (ξ)+4=13. (2)由题意:E (X )=0×1-a 2+1×12+2×a 2=a +12,所以D (X )=1-a2⎝⎛⎭⎫0-a -122+12⎝⎛⎭⎫1-a -122+a 2⎝⎛⎭⎫2-a -122=-a 2+a +14=-⎝⎛⎭⎫a -122+12, 因为12∈⎝⎛⎭⎫0,23,所以D (ξ)先增后减,故选D . (3)①由已知,ξ的取值为7,8,9,10,∵P (ξ=7)=C 22C 12C 35=15,P (ξ=8)=C 22C 12+C 22C 11C 35=310, P (ξ=9)=C 12C 12C 11C 35=25, P (ξ=10)=C 22C 11C 35=110.∴ξ的概率分布列为P1531025110②E (ξ)=15×7+310×8+25×9+110×10=425=8.4.考点三,超几何分布——师生共研例3 (2017·山东卷改编)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(1)求接受甲种心理暗示的志愿者中包含A 1但不包含B 1的概率; (2)用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列.[解析] (1)记接受甲种心理暗示的志愿者中包含A 1但不包含B 1的事件为M , 则P (M )=C 48C 510=518.(2)由题意知X 可取的值为0,1,2,3,4,则P (X =0)=C 56C 510=142,P (X =1)=C 46C 14C 510=521,P (X =2)=C 36C 24C 510=1021,P (X =3)=C 26C 34C 510=521,P (X =4)=C 16C 44C 510=142.因此X 的分布列为X 0 1 2 3 4 P1425211021521142[引申1]用X 表示接受乙种心理暗示的男志愿者人数,则X 的分布列为___________. [解析] 由题意可知X 的取值为1,2,3,4,5,则P (X =1)=C 16C 44C 510=142,P (X =2)=C 26C 34C 510=521,P (X =3)=C 36C 24C 510=1021,P (X =4)=C 46C 14C 510=521,P (X =5)=C 56C 510=142.因此X 的分布列为X 1 2 3 4 5 P1425211021521142[引申2]用X 表示接受乙种心理暗示的女志愿者人数与男志愿者人数之差,则X 的分布列为___________.[解析] 由题意知X 可取的值为3,1,-1,-3,-5.则P (X =3)=C 44C 16C 510=142,P (X =1)=C 34C 26C 510=521,P (X =-1)=C 24C 36C 510=1021,P (X =-3)=C 14C 46C 510=521,P (X =-5)=C 56C 510=142,因此X 的分布列为X 3 1 -1 -3 -5 P1425211021521142名师点拨1.超几何分布的两个特点: (1)超几何分布是不放回抽样问题; (2)随机变量为抽到的某类个体的个数.2.超几何分布的应用:超几何分布属于古典概型,主要应用于抽查产品、摸不同类别的小球等概率模型.〔变式训练3〕(2021·安徽省淮北市模拟)有着“中国碳谷”之称的安徽省淮北市,名优特产众多,其中“塔山石榴”因其青皮软籽、籽粒饱满、晶莹剔透、汁多味甘而享誉天下.现调查表明,石榴的甜度与海拔、日照时长、昼夜温差有着极强的相关性,分别用a 、b 、c 表示石榴甜度与海拔、日照时长、温差的相关程度,并对它们进行量化:0表示一般,1表示良,2表示优,再用综合指标λ=a +b +c 的值评定石榴的等级,若λ≥4则为一级;若2≤λ≤3则为二级;若0≤λ≤1则为三级.近年来,周边各地市也开始发展石榴的种植,为了了解目前石榴在周边地市的种植情况,研究人员从不同地市随机抽取了12个石榴种植园,得到如下结果: 种植园编号 A B C D E F (a ,b ,c ) (1,0,0) (2,2,1) (0,1,1) (2,0,2) (1,1,1) (1,1,2) 种植园编号 G H I J K L (a ,b ,c ) (2,2,2)(0,0,1)(2,2,1)(0,2,1)(1,2,0)(0,0,2)(1)若有石榴种植园120个,估计等级为一级的石榴种植园的数量;(2)在所取样本的二级和三级石榴种植园中任取2个,ξ表示取到三级石榴种植园的数量,求随机变量ξ的分布列及数学期望.[解析] (1)计算12个石榴种植园的综合指标,可得下表编号 A B C D E F G H I J K L 综合指标 152434615332由上表可知等级为一级的有5个, 所以等级为一级的频率为512,所以120个石榴种植园中一级种植园约有50个. (2)由题意ξ可以取0、1、2,其中P (ξ=0)=C 02C 25C 27=1021,P (ξ=1)=C 12C 15C 27=1021,P (ξ=2)=C 22C 05C 27=121,∴ξ的分布列为ξ 0 1 2 P10211021121故E (ξ)=0×1021+1×1021+2×121=47.名师讲坛·素养提升离散型随机变量的分布列与统计综合例4 (2021·吉林长春实验中学期中)某学校为了解班级卫生教育系列活动的成效,对全校40个班级进行了一次突击班级卫生量化打分检查(满分100分,最低分20分).根据检查结果:得分在[80,100]评定为“优”,奖励3面小红旗;得分在[60,80)评定为“良”,奖励2面小红旗;得分在[40,60)评定为“中”,奖励1面小红旗;得分在[20,40)评定为“差”,不奖励小红旗.已知统计结果的部分频率分布直方图如图:(1)依据统计结果的部分频率分布直方图,求班级卫生量化打分检查得分的中位数; (2)学校用分层抽样的方法,从评定等级为“优”、“良”、“中”、“差”的班级中抽取10个班级,再从这10个班级中随机抽取2个班级进行抽样复核,记抽样复核的2个班级获得的奖励小红旗面数和为X ,求X 的分布列与数学期望E (X ).[解析] (1)得分[20,40)的频率为0.005×20=0.1;得分[40,60)的频率为0.010×20=0.2;得分[80,100]的频率为0.015×20=0.3;所以得分[60,80)的频率为1-(0.1+0.2+0.3)=0.4.设班级得分的中位数为x 分,于是 0.1+0.2+x -6020×0.4=0.5,解得x =70.所以班级卫生量化打分检查得分的中位数为70.(2)由(1)知题意“优”、“良”、“中”、“差”的频率分别为0.3,0.4,0.2,0.1.又班级总数为40.于是“优”、“良”、“中”、“差”的班级个数分别为12,16,8,4.分层抽样的方法抽取的“优”、“良”、“中”、“差”的班级个数分别为3,4,2,1.由题意可得X 的所有可能取值为1,2,3,4,5,6P (X =1)=C 11C 12C 210=245,P (X =2)=C 22+C 11C 14C 210=19, P (X =3)=C 11C 13+C 12C 14C 210=1145,P (X =4)=C 24+C 12C 13C 210=415, P (X =5)=C 14C 13C 210=415,P (X =6)=C 23C 210=115,所以X 的分布列为X 1 2 3 4 5 6 P245191145415415115E (X )=1×245+2×19+3×1145+4×415+5×415+6×115=17145=195.所以X 的数学期望E (X )=195.〔变式训练4〕(2021·湖南湘潭模拟)为了解贵州省某州2020届高三理科生的化学成绩的情况,该州教育局组织高三理科生进行了摸底考试,现从参加考试的学生中随机抽取了100名理科生,将他们的化学成绩(满分为100分)分为[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]6组,得到如图所示的频率分布直方图.(1)求a 的值;(2)记A 表示事件“从参加考试的所有理科生中随机抽取一名学生,该学生的化学成绩不低于70分”,试估计事件A 发生的概率;(3)在抽取的100名理科生中,采用分层抽样的方法从成绩在[60,80)内的学生中抽取10名,再从这10名学生中随机抽取4名,记这4名理科生成绩在[60,70)内的人数为X ,求X 的分布列与数学期望.[解析] (1)∵(0.005+0.010+0.020+0.030+a +0.010)×10=1, ∴a =0.025.(2)∵成绩不低于70分的频率为 (0.030+0.025+0.010)×10=0.65, ∴事件A 发生的概率约为0.65.(3)抽取的100名理科生中,成绩在[60,70)内的有100×0.020×10=20人, 成绩在[70,80)内的有100×0.030×10=30人,故采用分层抽样抽取的10名理科生中,成绩在[60,70)内的有4人,在[70,80)内的有6人,由题可知,X 的可能取值为0,1,2,3,4, P (X =0)=C 46C 410=15210=114,P (X =1)=C 36·C 14C 410=80210=821,P (X =2)=C 26·C 24C 410=90210=37,P (X =3)=C 16·C 34C 410=24210=435,P (X =4)=C 44C 410=1210.∴X 的分布列为∴E (X )=0×114+1×821+2×37+3×435+4×1210=85.。
第22讲离散型随机变量的均值与方差最新考纲备考明向理解取有限个值的离散型随机变量的均值的概念,会求简单离散型随机变量的均值,并能解决一些实际问题。
离散型随机变量的分布列、期望是高考数学中的热点、重点内容之一,题型以解答题为主,有时也以选择题、填空题的形式出现,难度适中。
确定离散型随机变量的取值,找准其适用的概率模型,求出随机变量的分布列是正确求得其期望的关键。
一、离散型随机变量的均值1.概念:一般地,若离散型随机变量ξ的概率分布为ξ1x2x…nx…P1P2P…n P…则称Eξ=1122n n的数学期望,简称期望。
【理解】⑴数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,是一个数值,不具有随机性。
由定义可知,离散型随机变量的数学期望与它的本身有相同的单位;⑵一般地,在有限取值离散型随机变量的概率分布中,令12np p p===,则有121211,()n np p p E x x xn nξ=====+++⨯,所以ξ的数学期望又称为平均数、均值。
2.性质⑴:若a bηξ=+(,a b是常数),ξ是随机变量,则()E a bξ+=aE bξ+。
性质⑵:若~(,)B n pξ,则E npξ=。
性质⑶:若随机变量ξ服从两点分布,则;(1)E p D p pξξ==-。
【理解】⑴期望是算术平均值概念的推广,是概率意义下的平均;⑵Eξ是一个实数,由ξ的分布列唯一确定,即ξ作为随机变量是可变的,而Eξ是不变的,它描述X值取值平均状态;⑶公式1122n nE x p x p x pξ=++++直接给出了Eξ的求法,即随机变量取值与相应概率分别相乘后相加。
由此可知,求出随机变量的数学期望关键在于写出它的分布列。
三、离散型随机变量的方差1.概念:对于离散型随机变量ξ,如果它所有可能取的值是12,,,,nx x x,且取这些值的概率分别是12,,,np p p,则2()ix Eξ-描述了ix相对于均值EX的偏离程度,而Dξ=2221122()()()n nx E p x E p x E pξξξ-⋅+-⋅++-⋅+为这些偏离程度的加权平均,刻画了随机变量ξ与其均值Eξ的平均偏离程度。
第六节 离散型随机变量的均值与方差复习目标 学法指导1.了解取有限个值的离散型随机变量的均值、方差的概念.2.能计算简单离散型随机变量的均值、方差,并能解决一些简单实际问题.求均值、方差的关键是求分布列.若已知分布列,则可直接按定义(公式)求解;若已知随机变量X 的均值、方差,求X 的线性函数y=aX+b 的均值、方差可直接利用性质求解;若能分析出随机变量服从常用的分布,可直接利用它们的均值、方差公式求解,但在没有准确判断出分布列模型之前,不能乱套公式.一、离散型随机变量的均值与方差若离散型随机变量X 的分布列为P(X=x i )=p i ,i=1,2,3,…,n. (1)均值:称E(X)=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望.(2)方差:称D(X)= ()()21xniii E X p =-∑为随机变量X 的方差,其算术平方根()D X X 的标准差.二、均值与方差的性质1.E(aX+b)=aE(X)+b.2.D(aX+b)=a2D(X)(a,b为常数).三、常用随机变量的均值1.两点分布:若,则E(X)=p.2.二项分布:若X~B(n,p),则E(X)=np.1.概念(公式)理解(1)随机变量的均值反映了随机变量取值的平均水平.(2)均值的单位与随机变量的单位相同.(3)方差刻画了随机变量的取值与其均值的偏离程度.方差越小,则随机变量的取值就越集中在其均值周围;反之,方差越大,则随机变量的取值就越分散.(4)方差的单位是随机变量单位的平方.(5)方差是随机变量与其均值差的平方的均值,即D(X)是(X-E(X))2的期望.2.常用随机变量的方差(1)两点分布:若,则D(X)=p(1-p).(2)二项分布:若X~B(n,p),则D(X)=np(1-p).1.已知离散型随机变量X的分布列如下表.若E(X)=0,D(X)=1,则a,b 的值分别是( D )X -1 0 1 2(A)524,18(B)56,12(C)35,13(D)512,14解析:由分布列的性质可得a+b+c+112=1,①又可得E(ξ)=-a+c+2×112=-a+c+16=0,②D(ξ)=(-1-0)2a+(0-0)2b+(1-0)2c+(2-0)2×112=1,化简可得a+c+13=1,③ 联立②③可解得a=512,c=14,代入①可得b=14. 故选D.2.若随机变量ξ~B(n,p),E(ξ)=53,D(ξ)=109,则p 等于( A ) (A)13 (B)23 (C)25 (D)35解析:由题意可知,()()()5,3101,9E np D np p ξξ⎧==⎪⎪⎨⎪=-=⎪⎩ 解方程组可得5,1.3n p =⎧⎪⎨=⎪⎩故选A.3.(2019·金色联盟联考)已知随机变量X 的分布列如下,若E(X)=0.5,则mn= ,D(X)= .解析:由题意知0.7,0.5m n m n +=⎧⎨-+=⎩⇒0.1,0.6,=⎧⎨=⎩m n 所以mn=0.06;D(X)=E(X 2)-(E(X))2=0.7-0.25=0.45. 答案:0.06 0.45考点一 离散型随机变量的均值与方差[例1] 设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分. (1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若E(η)=53,D(η)=59,求a ∶b ∶c. 解:(1)由题意得ξ=2,3,4,5,6,故P(ξ=2)=3366⨯⨯=14, P(ξ=3)=23266⨯⨯⨯=13, P(ξ=4)=2312266⨯⨯+⨯⨯=518, P(ξ=5)=22166⨯⨯⨯=19, P(ξ=6)=1166⨯⨯=136. 所以ξ的分布列为ξ 23456P141351819136(2)由题意知η的分布列为η 123Pa ab c++b a b c++c a b c++所以E(η)=a a b c +++2b a b c +++3c a b c ++=53, D(η)=(1-53)2·a a b c +++(2-53)2·b a b c +++(3-53)2·c a b c ++=59. 化简得240,4110.a b c a b c --=⎧⎨+-=⎩ 解得a=3c,b=2c, 故a ∶b ∶c=3∶2∶1.(1)求离散型随机变量的均值与方差,可依题设条件求出随机变量的分布列,然后利用均值、方差公式直接求解;(2)由已知均值或方差求参数值,可依据条件利用均值、方差公式列含有参数的方程(组)求解;(3)注意随机变量的均值与方差的性质的应用. 考点二 与两点分布、二项分布有关的均值、方差[例2] 一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列、期望E(X)及方差D(X).解:(1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B表示事件“在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的销售量低于50个”,因此P(A1)=(0.006+0.004+0.002)×50=0.6,P(A2)=0.003×50=0.15,P(B)=0.6×0.6×0.15×2=0.108.(2)X可能取的值为0,1,2,3,相应的概率为P(X=0)=0C·(1-0.6)3=0.064,3P(X=1)=1C·0.6(1-0.6)2=0.288,3P(X=2)=2C·0.62(1-0.6)=0.432,3P(X=3)=3C·0.63=0.216.3分布列为X 0 1 2 3P 0.064 0.288 0.432 0.216因为X~B(3,0.6),所以期望E(X)=3×0.6=1.8,方差D(X)=3×0.6×(1-0.6)=0.72.若随机变量X服从二项分布,则求X的均值或方差可利用定义求解,也可直接利用公式E(X)=np,D(X)=np(1-p)求解.某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X,求X≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?解:(1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这2人的累计得分X≤3”的事件为A, 则事件A的对立事件为“X=5”,因为P(X=5)=23×25=415,所以P(A)=1-P(X=5)=1115,即这2人的累计得分X≤3的概率为1115.(2)设小明、小红都选择方案甲抽奖中奖次数为X1,都选择方案乙抽奖中奖次数为X2,则这两人选择方案甲抽奖累计得分的数学期望为E(2X1),选择方案乙抽奖累计得分的数学期望为E(3X2).由已知可得,X1~B(2,23),X2~B(2,25),所以E(X1)=2×23=43,E(X2)=2×25=45,因此E(2X1)=2E(X1)=83,E(3X2)=3E(X2)=125.因为E(2X1)>E(3X2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.考点三均值与方差在决策中的应用[例3] 现有两种投资方案,一年后投资盈亏的情况如下:(1)投资股市:(2)购买基金:(1)当p=14时,求q的值;(2)已知甲、乙两人分别选择了“投资股市”和“购买基金”进行投资,如果一年后他们中至少有一人获利的概率大于45,求p的取值范围;(3)丙要将家中闲置的10万元钱进行投资,决定在“投资股市”和“购买基金”这两个方案中选择一种,已知p=12,q=16,那么丙选择哪种投资方案,才能使得一年后投资收益的数学期望较大?给出结果并说明理由.解:(1)因为“购买基金”后,投资结果只有“获利”“不赔不赚”“亏损”三种,且三种投资结果相互独立,所以p+13+q=1.又因为p=14,所以q=512.(2)记事件A为“甲投资股市且盈利”,事件B为“乙购买基金且盈利”,事件C为“一年后甲、乙两人中至少有一人投资获利”,则C=A B∪A B ∪AB,且A,B独立.由题意可知P(A)=12,P(B)=p.所以P(C)=P(A B)+P(A B)+P(AB)=1 2p+12(1-p)+12p=1 2+12p.因为P(C)=12+12p>45,即p>35,且p≤23.所以35<p≤23.(3)假设丙选择“投资股市”方案进行投资,且记X为丙投资股市的获利金额(单位:万元),所以随机变量X的分布列为则E(X)=3×12+0×18+(-2)×38=34.假设丙选择“购买基金”方案进行投资,且记Y为丙购买基金的获利金额(单位:万元),所以随机变量Y的分布列为则E(Y)=2×12+0×13+(-1)×16=56.因为E(X)<E(Y),所以丙选择“购买基金”,才能使得一年后的投资收益的数学期望较大.随机变量的均值反映了随机变量取值的平均水平,方差反映了随机变量稳定于均值的程度,它从整体和全局上刻画了随机变量,是生产实际中用于方案取舍的重要理论依据,一般先比较均值,若均值相同,再用方差来决定.张先生家住H小区,他工作在C科技园区,从家开车到公司上班路上有L1,L2两条路线(如图),L1路线上有A1,A2,A3三个路口,各路口遇到红灯的概率均为12;L2路线上有B1,B2两个路口,各路口遇到红灯的概率依次为34,35.(1)若走L1路线,求最多遇到1次红灯的概率;(2)若走L2路线,求遇到红灯次数X的数学期望;(3)按照“平均遇到红灯次数最少”的要求,请你帮助张先生从上述两条路线中选择一条最好的上班路线,并说明理由.解:(1)设走L1路线最多遇到1次红灯为事件A,则P(A)=03C×(12)3+13C×12×(1-12)2=12.所以走L1路线,最多遇到1次红灯的概率为12.(2)依题意,X的可能取值为0,1,2.P(X=0)=(1-34)×(1-35)=110,P(X=1)=34×(1-35)+(1-34)×35=920,P(X=2)=34×35=920.随机变量X的分布列为X 0 1 2P 110920920E(X)=110×0+920×1+920×2=2720.(3)设选择L1路线遇到红灯次数为Y,随机变量Y服从二项分布,Y~B(3,12),所以E(Y)=3×12=32.因为E(X)<E(Y),所以选择L2路线上班最好.分布列与数学期望[例题] 某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球.在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.解:(1)记事件A1={从甲箱中摸出的1个球是红球},A2={从乙箱中摸出的1个球是红球},B1={顾客抽奖1次获一等奖},B2={顾客抽奖1次获二等奖},C={顾客抽奖1次能获奖}.由题意,A1与A2相互独立,A12A与1A A2互斥,B1与B2互斥,且B1=A1A2,B2=A12A+1A A2,C=B1+B2.因为P(A1)=410=25,P(A2)=510=12,所以P(B1)=P(A1A2)=P(A1)P(A2)=25×12=15,①P(B2)=P(A12A+1A A2)=P(A12A)+P(1A A2)=P(A1)P(2A)+P(1A)P(A2)=P(A1)[1-P(A2)]+[1-P(A1)]P(A2)=2 5×(1-12)+(1-25)×12=12.②故所求概率为P(C)=P(B1+B2)=P(B1)+P(B2)=1 5+12=710.③(2)顾客抽奖3次可视为3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为15,所以X~B(3,15).④于是P(X=0)=03C(15) 0(45)3=64125,P(X=1)=13C(15)1(45)2=48125,P(X=2)=23C(15)2(45)1=12125,P(X=3)=33C(15)3(45)0=1125.⑤故X的分布列为X 0 1 2 3P 6412548125121251125⑥X的数学期望为E(X)=3×15=35.⑦规范要求:步骤①②③④⑤⑥⑦应齐全,能利用互斥事件的概率加法公式和相互独立事件的概率乘法公式求复杂事件的概率,能分析出离散型随机变量服从二项分布,进而利用公式求得相应概率,写出分布列,求出数学期望.温馨提示:步骤①②求P(B1),P(B2)时,需将B1,B2转化为可求概率事件的和或积;步骤④⑤,若随机变量服从二项分布,则利用独立重复试验概率公式求取各值的概率,否则,利用古典概型及独立事件概率乘法公式求出取各值的概率;步骤⑦求服从二项分布的随机变量的期望、方差,可直接利用定义求解,也可直接代入E(X)=np,D(X)=np(1-p)求解.[规范训练] (2019·天津卷)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(2)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.解:(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23,故X~B(3,23),从而P(X=k)=3C k(23)k(13)3-k,k=0,1,2,3.所以随机变量X的分布列为X 0 1 2 3P 1272949827随机变量X的数学期望E(X)=3×23=2.(2)设乙同学上学期间的三天中7:30之前到校的天数为Y,则Y~B(3,23),且M={X=3,Y=1}∪{X=2,Y=0}.由题意知事件{X=3,Y=1}与{X=2,Y=0}互斥,且事件{X=3}与{Y=1},事件{X=2}与{Y=0}均相互独立,从而由(1)知P(M)=P({X=3,Y=1}∪{X=2,Y=0})=P(X=3,Y=1)+P(X=2,Y=0)=P(X=3)P(Y=1)+P(X=2)P(Y=0)=827×29+49×127=20243.类型一求方差1.从装有除颜色外完全相同的3个白球和m 个黑球的不透明布袋中随机摸取一球,有放回地摸取5次,设摸得白球数为X,已知E(X)=3,则D(X)等于( B ) (A)85(B)65(C)45(D)25解析:由题意,X ~B(5,33+m ), 又E(X)=533⨯+m =3, 所以m=2,则X ~B(5,35), 故D(X)=5×35×(1-35)=65. 2.(2018·全国Ⅲ卷)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<P(X=6),则p 等于( B ) (A)0.7 (B)0.6 (C)0.4 (D)0.3解析:由题意可知,10位成员中使用移动支付的人数X 服从二项分布,即X ~B(10,p),所以DX=10p(1-p)=2.4, 所以p=0.4或0.6. 又因为P(X=4)<P(X=6),所以410C p 4(1-p)6<610C p 6(1-p)4,所以p>0.5,所以p=0.6.故选B.3.(2019·湖州三校4月联考)已知袋子中装有若干个大小形状相同且标有数字1,2,3的小球,每个小球上有一个数字,它们的个数依次成等差数列,从中随机抽取一个小球,若取出小球上的数字X 的数学期望是2,则X 的方差是( B )(A)13 (B)23 (C)83 (D)43解析:可以设小球的个数为a-d,a,a+d,故数字X 的分布列为:所以E(X)=1×3-a d a +2×13+3×3+a d a =623+a da =2,解得d=0,所以取出小球上的数字X 的分布列为:所以E(X 2)=2221233++=143. 所以D(X)=E(X 2)-E 2(X)=143-22=23. 故选B.4.(2019·绍兴柯桥模拟)随机变量ξ的取值为0,1,2,若P(ξ=0)=13,E(ξ)=1,则P(ξ=1)= ,D(ξ)= . 解析:可设p(ξ=1)=a,p(ξ=2)=b,则2,32 1.⎧+=⎪⎨⎪+=⎩a b a b 解得1,31.3⎧=⎪⎪⎨⎪=⎪⎩a b D(ξ)=E(ξ2)-(E(ξ))2=53-1=23. 答案:13 23类型二 求期望5.(2019·暨阳4月联考)已知随机变量ξ,η满足η=-ξ+8,若E(ξ)=6,D(ξ)=2.4,则E(η),D(η)分别为( C ) (A)E(η)=6,D(η)=2.4 (B)E(η)=6,D(η)=5.6(C)E(η)=2,D(η)=2.4 (D)E(η)=2,D(η)=5.6 解析:E(η)=E(-ξ+8)=-E(ξ)+8=2,D(η)=D(-ξ+8)=(-1)2D(ξ)=2.4. 故选C.6.(2019·嘉兴市高三上期末)已知随机变量ξ的分布列如下,则E(ξ)的最大值是( B )(A)-58 (B)-1564 (C)-14(D)-1964 解析:根据题意:1111,42410,2104⎧+++-=⎪⎪⎪+>⎨⎪⎪->⎪⎩a b a b ⇒a=b,a ∈(-12,14), E(ξ)=(-1)×14+0×(12+a)+a ×(14-a)=-(a-18)2-1564, 当a=18时,E(ξ)取到最大值为-1564. 故选B.7.马老师从课本上抄录一个随机变量ξ的分布列如下表:请小牛同学计算ξ的均值.尽管“!”处完全无法看清,且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案E(ξ)= .解析:设“?”处的数值为x,则“!”处的数值为1-2x, 则E(ξ)=1×x+2×(1-2x)+3x=x+2-4x+3x=2. 答案:28.一个均匀小正方体的六个面中,三个面上标有数字0,两个面上标有数字1,一个面上标有数字2.将这个小正方体抛掷2次,则向上的数之积的数学期望是 .解析:设向上的数之积为X,X 的可能取值为0,1,2,4,P(X=1)=2266⨯⨯=19, P(X=2)=211266⨯+⨯⨯=19, P(X=4)=1166⨯⨯=136, P(X=0)=1-P(X=1)-P(X=2)-P(X=4)=1-936=34, 所以E(X)=0×34+1×19+2×19+4×136=49. 答案:49。
离散型随机变量的均值与方差导学案【知识梳理】1。
离散型随机变量的均值与方差若离散型随机变量X的分布列为:(1)均值:称E(X)=x1p1+x2p2i i n n量取值的平均水平.(2)D(X)=(x i-E(X))2p i为随机变量X的方差,它刻画了随机变量X与其均值E(X)的平均偏离程度,其算术平方根错误!为随机变量X的标准差.2.均值与方差的性质(1)E(aX+b)=aE(X)+b. (2)D(aX+b)=a2D(X)(a,b为常数).(3)D(X)=E(X2)—[E(X)]23.特殊分布的均值与方差【典型例题】【例1】某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n ∈N)的函数解析式;(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以100①若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;②若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.【例2】某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为p(0〈p〈1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0.作为p的值.已(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【例3】为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求①顾客所获的奖励额为60元的概率②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.【例4】有n把看上去样子相同的钥匙,其中只有一把能把大门上的锁打开.用它们去试开门上的锁.设抽取钥匙是相互独立且等可能的.每把钥匙试开后不能放回.求试开次数的数学期望和方差.【例5】某公司计划购买2台机器,该种机器使用三年后被淘汰.机器有一易损零件,在购买机器时,可以额外购买这种零件为备件,每个200元。
第十一章计数原理、随机变量及分布列第6课时离散型随机变量的均值与方差(对应学生用书(理)177~178页)考情分析考点新知离散型随机变量的分布列、期望、方差和概率的计算问题结合在一起进行考查,这是当前高考命题的热点,因为概率问题不仅具有很强的综合性,而且与实际生产、生活问题密切联系,能很好地考查分析、解决问题的能力.1了解取有限值的离散型随机变量的均值、方差的意义.2会求离散型随机变量的均值、方差和标准差,并能解决有关实际问题.1.(选修23P67习题4改编)某单位有一台电话交换机,其中有8个分机.设每个分机在1h内平均占线10min,并且各个分机是否占线是相互独立的,则任一时刻占线的分机数目X的数学期望为________.答案:错误!解析:每个分机占线的概率为错误!,X~B错误!,即X服从二项分布,所以期望E(X)=8×错误!=错误!.2.(选修23P66例2改编)有一批数量很大的商品的次品率为1%,从中任意地连续取出200件商品,设其中次品数为X,则E(X)=________,V(X)=________.答案:21.98解析:X~B(200, 0.01),所以期望E(X)=200×0.01=2,V(X)=200×0.01×(1—0.01)=1.98.3.(选修23P71习题4改编)某人进行射击,每次中靶的概率均为0.8,现规定:若中靶就停止射击,若没中靶,则继续射击,如果只有3发子弹,则射击数X的均值为________.(填数字)答案:1.24解析:射击次数X的分布列为∴E(X)=0.8×1+0.16×2+0.04×3=1.24.习题1改编)随机变量X的分布列如下:4.(选修23P71答案:错误!解析:a、b、c成等差数列,有2b=a+c,又a+b+c=1,E(X)=—1×a+1×c=c—a=错误!.得a=错误!,b=错误!,c=错误!,∴V(X)=错误!2×错误!+错误!2×错误!+错误!2×错误!=错误!.5.一高考考生咨询中心有A、B、C三条咨询热线.已知某一时刻热线A、B占线的概率均为0.5,热线C占线的概率为0.4,各热线是否占线相互之间没有影响,假设该时刻有ξ条热线占线,则随机变量ξ的期望为________.答案:1.4解析:随机变量ξ可能取的值为0、1、2、3.依题意,得P(ξ=0)=0.15, P(ξ=1)=0.4,P(ξ=2)=0.35,P(ξ=3)=0.1∴ξ的分布列为ξ0123P0.150.40.350.1∴它的期望为E(ξ)=0×0.15+1×0.4+2×0.35+3×0.1=1.4.1.均值(1)若离散型随机变量ξ的分布列为:ξx1x2…x nP p1p2…p n则称E(ξ)=x1p1+x2p2+…+x n p n为ξ的均值或数学期望,简称期望.(2)离散型随机变量的期望反映了离散型随机变量取值的平均水平.(3)数学期望的性质.E(c)=c,E(aξ+b)=aEξ+b(a、b、c为常数).2.方差(1)若离散型随机变量ξ所有可能的取值是x1,x2,…,x n且这些值的概率分别是p1,p2,…,p n,则称:V(ξ)=(x1—E(ξ))2p1+(x2—E(ξ))2p2+…+(x n—E(ξ))2p n为ξ的方差.(2)σ=错误!,叫标准差.(3)随机变量ξ的方差反映了ξ取值的稳定性.(4)方差的性质a、b为常数,则V(aξ+b)=a2Vξ.3.若ξ~B(n,p),则E(ξ)=np,V(ξ)=np(1—p).4.期望与方差的关系均值(期望)反映了随机变量取值的平均水平,而方差则表现了随机变量所取的值对于它的均值(期望)的集中与离散的程度,因此二者的关系是十分密切的,且有关系式V(ξ)=E(ξ2)+(E(ξ))2.[备课札记]题型1离散型随机变量的期望例1已知离散型随机变量ξ1的概率分布为ξ11234567P错误!错误!错误!错误!错误!错误!错误!离散型随机变量ξ2的概率分布为ξ23.73.83.944.14.24.3P错误!错误!错误!错误!错误!错误!错误!求这两个随机变量数学期望、方差与标准差.解:E(ξ1)=1×错误!+2×错误!+…+7×错误!=4;V(ξ1)=(1—4)2×错误!+(2—4)2×错误!+…+(7—4)2×错误!=4,σ1=错误!=2.E(ξ2)=3.7×错误!+3.8×错误!+…+4.3×错误!=4;V(ξ2)=0.04,σ2=错误!)=0.2.错误!甲、乙两射手在同一条件下进行射击,分布列如下:射手甲击中环数8,9,10的概率分别为0.2,0.6,0.2;射手乙击中环数8,9,10的概率分别为0.4,0.2,0.4.用击中环数的期望与方差比较两名射手的射击水平.解:Eξ1=8×0.2+9×0.6+10×0.2=9,V(ξ1)=(8—9)2×0.2+(9—9)2×0.6+(10—9)2×0.2=0.4;同理有E(ξ2)=9,V(ξ2)=0.8.由上可知,E(ξ1)=E(ξ2),V(ξ1)<V(ξ2).所以,在射击之前,可以预测甲、乙两名射手所得的平均环数很接近,均在9环左右,但甲所得环数较集中,以9环居多,而乙得环数较分散,得8、10环的次数多些.题型2离散型随机变量的方差与标准差例2某工艺厂开发一种新工艺品,头两天试制中,该厂要求每位师傅每天制作10件,该厂质检部每天从每位师傅制作的10件产品中随机抽取4件进行检查,若发现有次品,则当天该师傅的产品不能通过.已知李师傅第一天、第二天制作的工艺品中分别有2件、1件次品.(1)求两天中李师傅的产品全部通过检查的概率;(2)若厂内对师傅们制作的工艺品采用记分制,两天全不通过检查得0分,通过1天、2天分别得1分、2分,求李师傅在这两天内得分的数学期望.解:(1)设李师傅产品第一天通过检查为事件A;第二天产品通过检查为事件B.则有P(A)=错误!=错误!,P(B)=错误!=错误!,由事件A、B独立,∴P(AB)=P(A)P(B)=错误!.答:李师傅这两天产品全部通过检查的概率为错误!.(2)记得分为ξ,则ξ的可能值为0,1,2.∵P(ξ=0)=错误!×错误!=错误!;P(ξ=1)=错误!×错误!+错误!×错误!=错误!;P(ξ=2)=错误!×错误!=错误!.∴E(ξ)=0×错误!+1×错误!+2×错误!=错误!.答:李师傅在这两天内得分的数学期望为错误!.错误!一盒中装有零件12个,其中有9个正品,3个次品,从中任取一个,如果每次取出次品就不再放回去,再取一个零件,直到取得正品为止.求在取得正品之前已取出次品数的期望.解:设取得正品之前已取出的次品数为ξ,显然ξ所有可能取的值为0,1,2,3当ξ=0时,即第一次取得正品,试验停止,则P(ξ=0)=错误!=错误!.当ξ=1时,即第一次取出次品,第二次取得正品,试验停止,则P(ξ=1)=错误!×错误!=错误!.当ξ=2时,即第一、二次取出次品,第三次取得正品,试验停止,则P(ξ=2)=错误!×错误!×错误!=错误!.当ξ=3时,即第一、二、三次取出次品,第四次取得正品,试验停止,则P(ξ=3)=错误!×错误!×错误!×错误!=错误!.所以,E(ξ)=0×错误!+1×错误!+2×错误!+3×错误!=错误!.题型3期望、方差的性质及应用例3某电器商经过多年的经验发现本店每个月售出的电冰箱的台数ξ是一个随机变量,它的分布列为P(ξ=i)=错误!(i=1,2,…,12);设每售出一台电冰箱,电器商获利300元.如销售不出,则每台每月需花保管费100元. 问电器商每月初购进多少台电冰箱才能使月平均收益最大?解:设x为电器商每月初购进的冰箱的台数,依题意,只需考虑1≤x≤12的情况.设电器商每月的收益为y元,则y是随机变量ξ的函数,且y=300(),300100()()x xx x于是电器商每月获益的平均数,即为数学期望Ey=300x(P x+P x+1+…+P12)+[300—100(x—1)]P1+[2×300—100(x—2)]P2+…+[(x—1)×300—100]P x—1=300x(12—x+1)·错误!+错误!错误!=错误!(—2x2+38x).因为x∈N*,所以当x=9或x=10时,数学期望最大.故电器商每月初购进9或10台电冰箱时,月收益最大,最大收益为1500元.错误!甲、乙两名射手在一次射击中的得分为两个相互独立的随机变量ξ和η,且ξ、η分布列为(1)求a、b的值;(2)计算ξ、η的期望和方差,并以此分析甲、乙的技术状况.解:(1)由离散型随机变量的分布列性质可知a+0.1+0.6=1,即a=0.3,同理0.3+b+0.3=1,b=0.4.(2)E(ξ)=1×0.3+2×0.1+3×0.6=2.3,E(η)=1×0.3+2×0.4+3×0.3=2.V(ξ)=0.81,V(η)=0.6.由计算结果E(ξ)>E(η),说明在一次射击中甲的平均得分比乙高,但V(ξ)>V(η),说明甲得分的稳定性不如乙,因此甲、乙两人技术都不够全面.1.(2013·广东)已知离散型随机变量X的分布列为X123P错误!错误!错误!则X的数学期望E(X)=________.答案:错误!解析:E(X)=1×错误!+2×错误!+3×错误!=错误!=错误!.2.(2013·湖北理)如图,将一个各面都涂了油漆的正方体,切割成125个同样大小的小正方体.经过搅拌后,从中随机取出一个小正方体,记它的涂油漆面数为X,则X的均值为E(X)=________.答案:错误!解析:用分布列解决这个问题,根据题意易知X=0,1,2,3.列表如下:X0123ξ错误!错误!错误!错误!所以E(X)=0×错误!+1×错误!+2×错误!+3×错误!=错误!=错误!.3.(2013·上海理)设非零常数d是等差数列x1,x2,x3,…,x19的公差,随机变量ξ等可能地取值x1,x2,x3,…,x19,则方差V(ξ)=________.答案:错误!|d|解析:Eξ=x10,V(ξ)=错误!=错误!|d|.4.(2013·浙江)设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此两球所得分数之和,求ξ分布列;(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若E (η)=错误!,V(η)=错误!,求a∶b∶C.解:(1)由已知得到:当两次摸到的球分别是红红时ξ=2,此时P(ξ=2)=错误!=错误!;当两次摸到的球分别是黄黄、红蓝、蓝红时ξ=4时,P(ξ=4)=错误!+错误!+错误!=错误!;当两次摸到的球分别是红黄,黄红时ξ=3时,P(ξ=3)=错误!+错误!=错误!;当两次摸到的球分别是黄蓝,蓝黄时ξ=5时,P(ξ=5)=错误!+错误!=错误!;当两次摸到的球分别是蓝蓝时ξ=6时,P(ξ=6)=错误!=错误!.所以ξ的分布列为(2)由已知得到:η有三种取值即1,2,3,所以η的分布列为所以,2225233555253(1)(2)(3)9333a b c E a b c a b c a b ca b c D a b c a b c a b c ηη⎧==++⎪⎪++++++⎨⎪==-⨯+-⨯+-⨯⎪++++++⎩所以b =2c ,a =3c ,所以a∶b∶c=3∶2∶1.1. 袋中有5只红球,3只黑球,现从袋中随机取出4只球,设取到一只红球得2分,取到一只黑球得1分,则得分ξ的数学期望Eξ=________.答案:错误!解析:ξ可取5、6、7、8,P (ξ=5)=错误! (3黑1红); P (ξ=6)=错误! (2黑2红); P (ξ=7)=错误! (3红1黑);P (ξ=8)=错误! (4红).∴Eξ=错误!=6.5.2. 为防止山体滑坡,某地决定建设既美化又防护的绿化带,种植松树、柳树等植物.某人一次种植了n 株柳树,各株柳树成活与否是相互独立的,成活率为p ,设ξ为成活柳树的株数,数学期望E (ξ)=3,标准差σ(ξ)为错误!.(1) 求n 、p 的值并写出ξ的分布列;(2) 若有3株或3株以上的柳树未成活,则需要补种,求需要补种柳树的概率.解:(1) 由E (ξ)=np =3,(σ(ξ))2=np (1—p )=错误!,得1—p =错误!,从而n =6,p =错误!,ξ的分布列为ξ 0 1 2 3 4 5 6 P错误!错误!错误!错误!错误!错误!错误!(2) 记“需要补种柳树”为事件A,则P (A )=P (ξ≤3),得P (A )=错误!=错误!.3.将一枚硬币抛掷6次,求正面次数与反面次数之差ξ的概率分布列,并求出ξ的期望Eξ.解:设正面的次数是η,则η服从二项分布B(6,0.5),概率分布为P(η=k)=C错误!0.56,k=0,1,…,6,且Eη=3.而反面次数为6—η,ξ=η—(6—η)=2η—6.于是ξ的概率分布为P(ξ=2k—6)=P(η=k)=C错误!0.56,k=0,1, (6)故E(ξ)=E(2η—6)=2E(η)—6=2×3—6=0.4.(2013新课标Ⅰ理)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为错误!,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.解:(1)设第一次取出的4件产品中恰有3件优质品为事件A,第一次取出的4件产品中全为优质品为事件B,第二次取出的4件产品都是优质品为事件C,第二次取出的1件产品是优质品为事件D,这批产品通过检验为事件E,∴P(E)=P(A)P(B|A)+P(C)P(D|C)=C错误!错误!错误!×错误!×错误!错误!+错误!错误!×错误!=错误!.(2)X的可能取值为400,500,800,并且P(X=400)=1—C错误!错误!错误!×错误!—错误!错误!=错误!,P(X=500)=错误!,P(X =800)=C错误!错误!错误!×错误!=错误!,∴X的分布列为X400500800P错误!错误!错误!EX=400×错误!+500×错误!+800×错误!=506.25.数学期望中的注意问题:(1)数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平.(2)E(X)是一个常数,由随机变量X的概率分布唯一确定,即随机变量X是可变的,而E(X)是不变的,它描述X取值的平均状态.(3)随机变量的方差和标准差既反映了随机变量取值偏离于均值的平均程度,方差或标准差越小,则随机变量偏离于均值的平均程度越小,也反映了随机变量取值的稳定与波动、集中与离散的程度.(4)标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛.错误![备课札记]。
12.6 离散型随机变量的均值与方差一、填空题1.已知随机变量X 的分布列为:其中m ,n ∈[0,1),且E (X )=6,则m ,n 的值分别为_______,______.解析 由p 1+p 2+…+p 6=1与E (X )=16知⎭⎪⎬⎪⎫m +n =71212-m =16⇒m =13,n =14.答案 13,142.签盒中有编号为1、2、3、4、5、6的六支签,从中任意取3支,设X 为这3支签的号码之中最大的一个,则X 的数学期望为________. 解析 由题意可知,X 可以取3,4,5,6, P (X =3)=1C 36=120,P (X =4)=C 23C 36=320,P (X =5)=C 24C 36=310,P (X =6)=C 25C 36=12.由数学期望的定义可求得E (X )=5.25. 答案 5.253.已知随机变量X 服从二项分布,且E (X )=2.4,V (X )=1.44,则二项分布的参数n ,p 的值分别为________. 解析 由题意得⎩⎨⎧np =2.4,np -p =1.44,解得⎩⎨⎧n =6,p =0.4.答案 6,0.44.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需要再补种2粒,补种的种子数记为X ,则X 的数学期望为________. 解析 种子发芽率为0.9,不发芽率为0.1,每粒种子发芽与否相互独立,故设没有发芽的种子数为Y ,则Y ~B (1 000,0.1),∴E (Y )=1 000×0.1=100, 故需补种的期望为E (X )=2·E (Y )=200. 答案 2005.已知随机变量X +Y =8,若X ~B (10,0.6),则E (Y ),V (Y )分别是________. 解析 若两个随机变量Y ,X 满足一次关系式Y =aX +b (a ,b 为常数),当已知E (X )、V (X )时,则有E (Y )=aE (X )+b ,V (Y )=a 2V (X ).由已知随机变量X +Y =8,所以有Y =8-X .因此,求得E (Y )=8-E (X )=8-10×0.6=2,V (Y )=(-1)2V (X )=10×0.6×0.4=2.4. 答案 2 2.46.已知随机变量X 的分布列为,则E(6X+8)等于________.解析 ()10E X =⨯.220+⨯.430+⨯.4=0.2+0.8+1.2=2.2, ∴E(6X+8)=6E ()862X +=⨯答案21.27.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c (a 、b 、c ∈(0,1)),已知他投篮一次得分的均值为2,则2a +13b 的最小值为________.解析 由已知得,3a +2b +0×c =2, 即3a +2b =2,其中0<a <23,0<b <1.又2a +13b =3a +2b 2⎝ ⎛⎭⎪⎫2a +13b =3+13+2b a +a 2b ≥103+22ba ·a 2b =163, 当且仅当2b a =a2b ,即a =2b 时取“等号”又3a +2b =2,即当a =12,b =14时,2a +13b 的最小值为163.答案1638.有一批产品,其中有12件正品和4件次品,从中有放回地任取3件,若X 表示取到次品的次数,则V (X )=________. 解析 ∵X ~B ⎝ ⎛⎭⎪⎫3,14,∴V (X )=3×14×34=916.答案9169.罐中有6个红球,4个白球,从中任取1球,记住颜色后再放回,连续摸取4次,设X 为取得红球的次数,则X 的均值E (X )=________.解析 因为是有放回地摸球,所以每次摸球(试验)摸得红球(成功)的概率均为35,连续摸4次(做4次试验),X 为取得红球(成功)的次数,则X ~B⎝ ⎛⎭⎪⎫4,35, 从而有E (X )=np =4×35=125.答案12510.已知离散型随机变量X 的概率分布如右表, 若E (X )=0,V (X )=1,则a =________,b =________.解析 由题意知⎩⎪⎨⎪⎧ a +b +c =1112,-a +c +16=0,a +c +13=1,解得⎩⎪⎨⎪⎧a =512,b =14,c =14.答案 512 1411.有一批产品,其中有12件正品和4件次品,从中任取3件,若X 表示取到次品的个数,则E (X )=________. 解析 X 的取值为0,1,2,3,则P (X =0)=C 312C 316=1128;P (X =1)=C 212C 14C 316=3370;P(X=2)=C112C24C316=970;P(X=3)=C34C316=1140.∴E(X)=0×1128+1×3370+2×970+3×1140=34.答案3 412.马老师从课本上抄录一个随机变量X的概率分布列如下表:请小牛同学计算X且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案E(X)=________.解析令“?”为a,“!”为b,则2a+b=1.又E(X)=a+2b+3a=2(2a+b)=2.答案 213. “好运”出租车公司按月将某辆车出租给司机,按照规定:无论是否出租,该公司每月都要负担这辆车的各种管理费100元,如果在一个月内该车被租的概率是0.8,租金是2 600元,那么公司每月对这辆车收入的期望值为______元.解析设公司每月对这辆车的收入为X元,则其分布列为:故E(X)=(-100)×0.2+2 500×0.8=1 980元.答案 1 980二、解答题14.一个口袋装有5个红球,3个白球,这些球除颜色外完全相同,某人一次从中摸出3个球,其中白球的个数为X.(1)求摸出的三个球中既有红球又有白球的概率;(2)求X的分布列及X的数学期望.解析(1)记“摸出的三球中既有红球又有白球”为事件A,依题意知P(A)=C15C23+C25C13C38=4556.所以摸出的三个球中既有红球又有白球的概率为45 56 .(2)X可取0,1,2,3,P(X=0)=C35C38=528,P(X=1)=C25C13C38=1528,P(X=2)=C15C23C38=1556,P(X=3)=C33C38=156.∴X的概率分布为所以X的数学期望为E(X)=0×528+1×1528+2×1556+3×156=98.15.有一种闯三关游戏的规则规定如下:用抛掷正四面体骰子(各面上分别有1,2,3,4点数的质地均匀的正四面体)决定是否过关,在闯第n(n=1,2,3)关时,需要抛掷n次骰子,当n次骰子面朝下的点数之和大于n2时,则算闯此关成功,并且继续闯关,否则停止闯关.每次抛掷骰子相互独立.(1)求仅闯过第一关的概率;(2)记成功闯过的关数为X,求X的概率分布和均值.解析(1)记“仅闯过第一关的概率”这一事件为A,则P(A)=34×616=932.(2)由题意,得X的取值有0,1,2,3,且P(X=0)=14,P(X=1)=932,P(X=2)=34×1016×5464=4051 024,P(X=3)=34×1016×1064=751 024,即随机变量的概率分布为所以E(X)=0×14+1×32+2×1 024+3×1 024=1 024.16.济南市有大明湖、趵突泉、千佛山、园博园4个旅游景点,一位客人游览这四个景点的概率分别是0.3,0.4,0.5,0.6,且客人是否游览哪个景点互不影响,设ξ表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值. (1)求ξ=0对应的事件的概率; (2)求ξ的分布列及数学期望.解析 (1)分别记“该客人游览大明湖景点”,“该客人游览趵突泉景点”,“该客人游览千佛山景点”,“该客人游览园博园景点”为事件A 1,A 2,A 3,A 4.由题意,知A 1,A 2,A 3,A 4相互独立,且P (A 1)=0.3,P (A 2)=0.4,P (A 3)=0.5,P (A 4)=0.6.客人游览的景点数的可能取值为0,1,2,3,4.相应地,客人没有游览的景点数的可能取值为4,3,2,1,0.所以ξ的可能取值为0,2,4.故P (ξ=0)=P (A 1A 2A 3A 4)+P (A 1A 2A 3A 4)+P (A 1A 2A 3A 4)+P (A 1A 2A 3A 4)+P (A 1A 2A 3A 4)+P (A 1A 2A 3A 4)=0.38.(2)P (ξ=4)=P (A 1A 2A 3A 4)+P (A 1A 2A 3A 4)=0.12.P (ξ=0)=0.38,P (ξ=2)=1-P (ξ=0)-P (ξ=4)=0.5. 所以ξ的分布列为E ξ17.一种抛硬币游戏的规则是:抛掷一枚硬币,每次正面向上得1分,反面向上得2分.(1)设抛掷5次的得分为X ,求X 的概率分布和数学期望E (X ); (2)求恰好得到n (n ∈N *)分的概率.解析 (1)所抛5次得分X 的概率为P (X =i )=C i -55⎝ ⎛⎭⎪⎫125(i =5,6,7,8,9,10), 其概率分布如下:E (X )=∑i =510i ·C i -5i⎝ ⎛⎭⎪⎫125=152(2)令p n 表示恰好得到n 分的概率,不出现n 分的唯一情况是得到n -1分以后再掷出一次反面.因为“不出现n 分”的概率是1-p n ,“恰好得到(n -1)分”的概率是p n -1,因为“掷一次出现反面”的概率是12,所以有1-p n =12p n -1,即p n -23=-12⎝⎛⎭⎪⎫p n -1-23.于是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫p n -23是以p 1-23=12-23=-16为首项,以-12为公比的等比数列.所以p n -23=-16⎝ ⎛⎭⎪⎫-12n -1,即p n =13⎣⎢⎡⎦⎥⎤2+⎝ ⎛⎭⎪⎫-12n .故恰好得到n 分的概率是13⎣⎢⎡⎦⎥⎤2+⎝ ⎛⎭⎪⎫-12n .18.某车站每天上午发出两班客车,第一班客车在8:00,8:20,8:40这三个时刻随机发出,且在8:00发出的概率为14,8:20发出的概率为12,8:40发出的概率为14;第二班客车在9:00,9:20,9:40这三个时刻随机发出,且在9:00发出的概率为14,9:20发出的概率为12,9:40发出的概率为14.两班客车发出时刻是相互独立的,一位旅客预计8:10到站. (1)请预测旅客乘到第一班客车的概率;(2)求旅客候车时间的概率分布; (3)求旅客候车时间的数学期望.解析 (1)第一班若在8:20或8:40发出,则旅客能乘到,其概率为P =12+14=34.(2)旅客候车时间的概率分布为(3)10×12+30×14+50×116+70×18+90×116=5+152+258+354+458=30. 故这名旅客候车时间的数学期望是30分钟.。
配餐作业(七十二)离散型随机变量的均值与方差(时间:40分钟)1.为了响应上级号召,某省级重点中学准备从学校30至50岁(包括30岁,但不包括50岁)的15名数学高级教师中选取3名参加送教下乡活动,其年龄分布的茎叶图如图所示。
(1)若教师年龄分布的极差为15,求教师年龄的平均数与众数;(2)若选取的3名教师中有2名男教师和1名女教师,将他们分配到甲、乙两所学校,每校至少有1名教师,记分配到甲学校的男教师人数为ξ,求ξ的分布列与数学期望。
解析 (1)因为教师年龄分布的极差为15,所以40+x -30=15,解得x =5。
所以教师年龄的平均数为115×(30+31+32+34×2+35+36+37×3+40+41+42+44+45)=37,众数为37。
(2)随机变量ξ的可能取值为0,1,2,P (ξ=0)=1C 13C 12=16, P (ξ=1)=C 12C 12C 13C 12=23,P (ξ=2)=C 22C 13C 12=16。
故ξ的分布列为ξ 0 1 2 P162316数学期望E (ξ)=0×16+1×3+2×6=1。
答案 (1)平均数为37,众数为37 (2)见解析2.据《中国新闻网》报道,全国很多省、市将英语考试作为高考改革的重点,一时间“英语考试该如何改”引起广泛关注。
为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3 600人就是否应该“取消英语听力”的问题进行调查,调查统计的结果如下表:。
(1)现用分层抽样的方法在所有参与调查的人中抽取360人进行问卷访谈,则应在持“无所谓”态度的人中抽取多少人?(2)在持“应该保留”态度的人中,用分层抽样的方法抽取6人平均分成两组进行深入交流,求第一组中在校学生人数ξ的分布列和数学期望E (ξ)。
解析 (1)∵抽到持“应该保留”态度的人的概率为0.05, ∴120+x3 600=0.05,解得x =60。
离散型随机变量的均值与方差 【2014年高考会这样考】 1.考查有限个值的离散型随机变量均值、方差的概念. 2.利用离散型随机变量的均值、方差解决一些实际问题. 【复习指导】 均值与方差是离散型随机变量的两个重要数字特征,是高考在考查概率时考查的重点,复习时,要掌握期望与方差的计算公式,并能运用其性质解题.
基础梳理 离散型随机变量的均值与方差 若离散型随机变量X的分布列为 X x1 x2 „ xi „ xn P p1 p2 „ pi „ pn
两个防范 在记忆D(aX+b)=a2D(X)时要注意:D(aX+b)≠aD(X)+b,D(aX+b)≠aD(X). 三种分布 (1)若X服从两点分布,则E(X)=p,D(X)=p(1-p); (2)X~B(n,p),则 E(X)=np,D(X)=np(1-p);
(1)均值 称E(X)=x1p1+x2p2+„+xipi+„+xnpn为随机变量X的均值 或 ,它反映了离散型随机变量取值的 . (2)方差
称D(X)=i=1n[xi-E(X)]2pi为随机变量X的方差,它刻画了随机变量X与其均值E(X)的平均 ,其算术平方根DX为随机变量X的标准差.
数学期望 平均水平
偏离程度 (3)若X服从超几何分布, 则E(X)=nMN. 六条性质 (1)E(C)=C(C为常数) (2)E(aX+b)=aE(X)+b(a、b为常数) (3)E(X1+X2)=EX1+EX2 (4)如果X1,X2相互独立,则E(X1·X2)=E(X1)E(X2) (5)D(X)=E(X2)-(E(X))2 (6)D(aX+b)=a2·D(X) 双基自测 1.(2010·山东)样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为( ).
A. 65 B.65 C.2 D.2 解析 由题意知a+0+1+2+3=5×1,解得,a=-1. s2=-1-12+0-12+1-12+2-12+3-125 =2. 答案 D 2.已知X的分布列为 X -1 0 1
P 12 13 16
设Y=2X+3,则E(Y)的值为( ).
A.73 B.4 C.-1 D.1
解析 E(X)=-12+16=-13, E(Y)=E(2X+3)=2E(X)+3=-23+3=73. 答案 A 3.(2010·湖北)某射手射击所得环数ξ的分布列如下: ξ 7 8 9 10 P x 0.1 0.3 y 已知ξ的期望E(ξ)=8.9,则y的值为________. A.0.4 B.0.6 C.0.7 D.0.9 解析 x+0.1+0.3+y=1,即x+y=0.6.① 又7x+0.8+2.7+10y=8.9,化简得7x+10y=5.4.② 由①②联立解得x=0.2,y=0.4. 答案 A 4.设随机变量X~B(n,p),且E(X)=1.6,D(X)=1.28,则( ). A.n=8,p=0.2 B.n=4,p=0.4 C.n=5,p=0.32 D.n=7,p=0.45 解析 ∵X~B(n,p),∴E(X)=np=1.6,
D(X)=np(1-p)=1.28,∴ n=8,p=0.2. 答案 A 5.(2010·上海)随机变量ξ的概率分布列由下表给出: ξ 7 8 9 10 P 0.3 0.35 0.2 0.15 该随机变量ξ的均值是________. 解析 由分布列可知E(ξ)=7×0.3+8×0.35+9×0.2+10×0.15=8.2. 答案 8.2
考向一 离散型随机变量的均值和方差 【例1】►A、B两个代表队进行乒乓球对抗赛,每队三名队员,A队队员是A1、A2、A3,B队队员是B1、B2、B3,按以往多次比赛的统计,对阵队员之间的胜负概率如下: 对阵队员 A队队员胜的概A队队员负的概率 率 A1和B1 23 13
A2和B2 25 35
A3和B3 25 35
现按表中对阵方式出场胜队得1分,负队得0分,设A队,B队最后所得总分分别为X,Y (1)求X,Y的分布列;(2)求E(X),E(Y). [审题视点] 首先理解X,Y的取值对应的事件的意义,再求X,Y取每个值的概率,列成分布列的形式,最后根据期望的定义求期望. (1)求离散型随机变量的期望关键是写出离散型随机变量的分布列,然后利用公式计算. (2)由X的期望、方差求aX+b的期望、方差是常考题之一,常根据期望和方差的性质求解. 【训练1】 (2011·四川)本着健康、低碳的生活理念,租自行车骑游的人越来越多,某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算).有甲、乙两人相互独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率
分别为14,12;两小时以上且不超过三小时还车的概率分别为12,14;两人租车时间都不会超过四小时. (1)求甲、乙两人所付的租车费用相同的概率; (2)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列及数学期望E(ξ).
解 (1)由题意得,甲、乙在三小时以上且不超过四小时还车的概率分别为14,14. 记甲、乙两人所付的租车费用相同为事件A,则 P(A)=14×12+12×14+14×14=516.
所以甲、乙两人所付的租车费用相同的概率为516. (2)ξ可能取的值有0,2,4,6,8. P(ξ=0)=14×12=18;
P(ξ=2)=14×14+12×12=516; P(ξ=4)=12×14+14×12+14×14=516; P(ξ=6)=12×14+14×14=316; P(ξ=8)=14×14=116. 甲、乙两人所付的租车费用之和ξ的分布列为 ξ 0 2 4 6 8
P 18 516 516 316 116
所以E(ξ)=0×18+2×516+4×516+6×316+8×116=72. 考向二 均值与方差性质的应用 【例2】►设随机变量X具有分布P(X=k)=15,k=1,2,3,4,5,求E(X+2)2,D(2X-1),DX-1. [审题视点] 利用期望与方差的性质求解.
解 ∵E(X)=1×15+2×15+3×15+4×15+5×15=155=3.
E(X2)=1×15+22×15+32×15+42×15+52×15=11. D(X)=(1-3)2×15+(2-3)2×15+(3-3)2×15+(4-3)2×15+(5-3)2×15=15(4+1+0+1+4)=2. ∴E(X+2)2=E(X2+4X+4) =E(X2)+4E(X)+4=11+12+4=27. D(2X-1)=4D(X)=8,DX-1=DX=2. 若X是随机变量,则η=f(X)一般仍是随机变量,在求η的期望和方差时,熟练应用期望和方差的性质,可以避免再求η的分布列带来的繁琐运算. 【训练2】 袋中有20个大小相同的球,其中记上0号的有10个,记上n号的有n个(n=1,2,3,4).现从袋中任取一球,X表示所取球的标号. (1)求X的分布列、期望和方差; (2)若η=aX+b,E(η)=1,D(η)=11,试求a,b的值. 解 (1)X的分布列为 X 0 1 2 3 4
P 12 120 110 320 15
∴E(X)=0×12+1×120+2×110+3×320+4×15=1.5.
D(X)=(0-1.5)2×12+(1-1.5)2×120+(2-1.5)2×110+(3-1.5)2×320+(4-1.5)2×15=2.75.
(2)由D(η)=a2D(X),得a2×2.75=11,即a=±2. 又E(η)=aE(X)+b, 所以当a=2时,由1=2×1.5+b,得b=-2. 当a=-2时,由1=-2×1.5+b,得b=4.
∴ a=2,b=-2,或 a=-2,b=4,即为所求. 考向三 均值与方差的实际应用 【例3】►(2011·福建)某产品按行业生产标准分成8个等级,等级系数X依次为1,2,„,8,其中X≥5为标准A,X≥3为标准B.已知甲厂执行标准A生产该产品,产品的零售价为6元/件;乙厂执行标准B生产该产品,产品的零售价为4元/件,假定甲、乙两厂的产品都符合相应的执行标准. (1)已知甲厂产品的等级系数X1的概率分布列如下所示: X1 5 6 7 8 P 0.4 a b 0.1 且X1的数学期望E(X1)=6,求a,b的值; (2)为分析乙厂产品的等级系数X2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下: 3 5 3 3 8 5 5 6 3 4 6 3 4 7 5 3 4 8 5 3 8 3 4 3 4 4 7 5 6 7 用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X2的数学期望. (3)在(1)、(2)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.
注:(1)产品的“性价比”=产品的等级系数的数学期望产品的零售价; (2)“性价比”大的产品更具可购买性. [审题视点] (1)利用分布列的性质P1+P2+P3+P4=1及E(X1)=6求a,b值. (2)先求X2的分布列,再求E(X2),(3)利用提示信息判断. 解 (1)因为E(X1)=6,所以5×0.4+6a+7b+8×0.1=6,即6a+7b=3.2. 又由X1的概率分布列得0.4+a+b+0.1=1,即a+b=0.5.
由 6a+7b=3.2,a+b=0.5,解得 a=0.3,b=0.2. (2)由已知得,样本的频率分布表如下: X2 3 4 5 6 7 8 f 0.3 0.2 0.2 0.1 0.1 0.1 用这个样本的频率分布估计总体分布,将频率视为概率,可得等级系数X2的概率分布列如下: X2 3 4 5 6 7 8 P 0.3 0.2 0.2 0.1 0.1 0.1 所以 E(X2)=3×0.3+4×0.2+5×0.2+6×0.1+7×0.1+8×0.1=4.8. 即乙厂产品的等级系数的数学期望等于4.8. (3)乙厂的产品更具可购买性.理由如下:
因为甲厂产品的等级系数的数学期望等于6,价格为6元/件,所以其性价比为66=1. 因为乙厂产品的等级系数的数学期望等于4.8,价格为4元/件,所以其性价比为4.84=1.2.