初中数学第十六章复习讲义
- 格式:doc
- 大小:363.50 KB
- 文档页数:8
人教版数学八年级下册《第十六章章末复习》说课稿一. 教材分析人教版数学八年级下册《第十六章章末复习》主要包括了本章所学的主要知识点和技能,如二次根式、平行四边形、一次函数等。
这一章节的内容是学生对之前学习内容的巩固和提高,也是为接下来的学习打下基础。
在教材中,通过例题和习题的讲解,帮助学生掌握解题方法和技巧,提高他们的数学能力。
二. 学情分析在教学过程中,我们需要了解学生的学习情况。
八年级下的学生已经掌握了二次根式、平行四边形、一次函数等基本概念和性质,但部分学生在解题技巧和逻辑思维方面还存在一定的困难。
因此,在教学过程中,我们需要关注这部分学生的学习需求,帮助他们解决学习中的问题。
三. 说教学目标1.知识与技能目标:通过本节课的学习,使学生巩固二次根式、平行四边形、一次函数等基本概念和性质,提高他们的解题能力。
2.过程与方法目标:培养学生独立思考、合作交流的学习习惯,提高他们的逻辑思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们勇于探究、积极向上的学习态度。
四. 说教学重难点1.教学重点:二次根式、平行四边形、一次函数等基本概念和性质的巩固。
2.教学难点:解题技巧的运用和逻辑思维能力的培养。
五. 说教学方法与手段1.教学方法:采用启发式教学法、案例教学法和小组合作学习法,引导学生独立思考、主动探究。
2.教学手段:利用多媒体课件、板书和教学道具,生动形象地展示教学内容。
六. 说教学过程1.导入新课:通过复习导入,回顾二次根式、平行四边形、一次函数等基本概念和性质,为新课的学习做好铺垫。
2.知识讲解:采用案例教学法,讲解典型例题,引导学生掌握解题方法和技巧。
3.课堂互动:设置小组讨论环节,让学生合作交流,共同解决问题。
4.练习巩固:布置适量习题,让学生独立完成,巩固所学知识。
5.课堂小结:总结本节课所学内容,强调重点和难点。
6.课后作业:布置针对性作业,让学生进一步巩固所学知识。
第十六章二次根式16.1二次根式16.2二次根式的乘除16.3二次根式的加减【知识精要】二次根式及其性质一、一周知识概述1、二次根式一般地,我们把形如(≥0)的式子叫做二次根式,其中为整式或分式,叫做被开方式.2、二次根式有意义的条件二次根式有意义的条件是≥0,即被开方式是非负数.3、二次根式的性质(3)4、积的算术平方根的性质(a≥0,b≥0)即两个非负数的积的算术平方根,等于积中各因式的算术平方根的积.5、商的算术平方根的性质(a≥0,b>0)商的算术平方根,等于被除式的算术平方根除以除式的算术平方根.6、最简二次根式如果二次根式的被开方式中都不含分母,并且被开方式中不含有能开得尽方的因式,这样的二次根式称为最简二次根式.二、重难点知识归纳1、从二次根式的定义看出,二次根式的被开方数可以是一个数,也可以是一个式子,且被开方数必须是非负数.2、二次根式的性质具有双重非负性,即二次根式中被开方数非负(a≥0),算术平方根非负 (≥0).3、利用得到成立,可以把任意一个非负数或式写成一个数或式的平方的形式.如.4、注意逆用二次根式的性质,即,,利用这两个性质可以对二次根式进行化简.5、运用二次根式的性质化简时,最后结果中的二次根式要化为最简二次根式或整式.最简二次根式必须满足两个条件:(1)被开方式中不含分母;(2)被开方式中不含能开得尽方的因数或因式.三、典型例题讲解例1、已知实数a、b在数轴上的位置如图.化简:.分析:待求式中的五个二次根式的被开方数都是完全平方式,且结构特征符合性质3的,但由题设中的a、b在数轴上的位置可知a、b有正有负,因此本题的关键是确定各个数的正负性.解:由数轴上点的位置可知a>b,0<a<1,b<-1,∴a>0,b<0,a-b>0,b-1<0,a-1<0总结:(1)由数轴上点的位置应确定两个要素:一是各数的正负性,二是比较各数的大小;(2)在运用性质计算时一定要明确底数的正负性.例2、化简下列二次根式:(1)~(4)题均不含分母,因此要将其化为最简二次根式,即是将被开方数中能开得尽方的因数或因式运用积的算术平方根的性质,将其移至根号外,(5)~(8)题都含有分母,应首先根据分式的基本性质,将分母化为能开得尽方的,然后再运用商的算术平方根的性质将其化简,但不要忽视分子中含有能开得尽方的因式或因数也要化简.总结:(1)当被开方数中不含有分母,则用积的算术平方根性质进行化简;(2)当被开方数中含有分母,化简时既要用到商的算术平方根,也要用到积的算术平方根.例3、若x为实数,化简下列各式(1)(2)由于x为实数,要确定中的x+1和中的x-2的正负号,必须将实数划分为几个区域来讨论.解:(1)==|x+1|当x+1≥0,即x≥-1时,|x+1|=x+1当x+1<0,即x<-1时,|x+1|=-(x+1)=-x-1(2)=+2=|x-2|+2|1+x| 令x-2=0,则x=2,令x+1=0,则x=-1,x=2,x=-1称为零点值把x=2,x=-1这两点标在数轴上(如上图)这时数轴被分成三段:x≥2,-1≤x<2,x<-1,就按这三种情况去讨论脱绝对值符号.1)当x≥2时|x-2|+2|1+x|=(x-2)+2(1+x)=3x;2)当-1≤x<2时,|x-2|+2|1+x|=-(x-2)+2(1+x)=x+4;3)当x<-1时|x-2|+2|1+x|=-(x-2)-2(1+x)=-3x解这类题的大致步骤:①找出零点值(使绝对值等于零的x的值);②在数轴上标出这些点,将整个数轴分成若干区间;③按区间范围逐个讨论如何脱绝对值符号;从而达到化简目的.例4、已知x、y为实数,且实数m适合关系式,试确定m的值.分析:∵x-199+y与199-x-y互为相反数,且x-199+y≥0,199-x-y≥0同时成立,∴x-199+y=0,即x+y=199,又由算术平方根是非负数,可得到关于x、y、m的方程组,从而求出m的值.解:由二次根式有意义的条件知,∴x+y=199将其代入已知等式得.又根据算术平方根为非负实数有②×2-①得x+y-m+2=0,结合③得m=x+y+2=199+2=201.当两个二次根式的被开方数互为相反数时,可用“夹逼”的方法推出,两个被开方数同时为零.中考解析例1、(河南)实数a、b在数轴上的位置如图所示,化简:解析:由数轴上实数a、b的位置可知,a-b<0,例2、(绵阳市)已知是正整数,则实数n的最大值为()A.12 B.11 C.8 D.3解析:是正整数,12-n是一个整数的平方数,当n增大时,12-n减小,所以当n=11时,12-n=1,所以n的最大值为11.答案:B例3、(荆门市)若,则x-y的值为()A .-1B .1C .2D .3 解析:本题考查二次根式的意义, 由题意可知 x -1≥0且1-x ≥0, ∴,,∴x -y=2,故选C . 答案:C一、选择题(共20分):1、下列各式中,不是二次根式的是( )AB2、下列根式中,最简二次根式是( )3、计算:3÷6的结果是 ( )A 、12B 、62C 、32 D 、 2 4、如果a 2=-a ,那么a 一定是 ( )A 、负数B 、正数C 、正数或零D 、负数或零 5、下列说法正确的是( )A 、若,则a <0 B 、若 ,则a >0C 、D 、5的平方根是6、若2m-4与3m-1是同一个数的平方根,则m 为( ) A 、-3 或1 D 、-17、能使等式成立的x 值的取值范围是( )8X C.6X 3 D.X 2+1a 2=- a a 2= a 5a 4b 8=a 2b 4A 、x ≠2B 、x ≥0C 、x >2D 、x ≥2 8、已知xy >0,化简二次根式2x yx -的正确结果是( )9、已知二次根式2x 的值为3,那么x 的值是( ) A 、3B 、9C 、-3D 、3或-310、若a =,b =,则a b 、两数的关系是( )A 、a b =B 、5ab =C 、a b 、互为相反数D 、a b 、互为倒数 二、填空题(共30分):11、当a=-3时,二次根式1-a 的值等于 。
第十六章二次根式小结与复习二次根式我们将数的范围扩大到实数的同时,代数式中也就随之引进了根式.根式的研究使我们初步了解了无理数的性质,数与式相辅相成,相互促进,体现了代数知识紧密的联系性,因此,根式问题不但是初中阶段常规试题和竞赛试题的重点和难点之一,同时,对高中乃至更深层的数学学习都有深远的意义.典题精讲二次根式的意义典题精讲——实数的大小比较数的大小比较秘决:1、正数>零>负数;对于两个负数,绝对值大的反而小,这是比较法则.2、大小比较的常用方法:①作差法;②倒数法;③作比法.分析:尝试直接比较或作差比较,难以实现.因此可考虑倒数法.分析:尝试直接比较或作差比较,难以实现.因此可考虑倒数法.A典题精讲——二次根式的运算及应用计算:解:有条件的二次根式的化简与求值问题是代数式变形的重点,也是难点,这类内容包括了整式,分式,二次根式等众多知识,且往往联系着分解变形、整体代换等重要的数学思想方法,其解题的基本思路:1.直接代入:直接将已知条件代入到待化简求值的式子中;2.变形代入:适当的条件,适当的结论,同时变形条件与结论,再代入求值.对一些有关二次根式的代数式求值问题,我们不能孤立地看待已知与已知、已知与未知,而应从整体的角度去分析已知与已知、已知与未知的关系,然后采取相应的措施,如做一些必要的运算变形、恒等变形、整体代入求值等.构造方程与方程组复合二次根式的化简【点评】复合二次根式的化简,一般是将二次根式中的被开方数配成完全平方式,然后再求解的方法,这也叫用配方法.配方时有时需要通过几次拼凑方可达到目的.配方法主要用来解竞赛中经常出现的复合二次根式的化简问题和需要用完全平方公式解决的问题.二次根式中的数学方法数学方法是数学的灵魂,只有掌握了数学思想方法,才能真正地学好数学知识,将知识转化为能力。
初中数学竞赛中渗透了不少数学思想方法,下面本章的有关赛题为例,说明数学竞赛中常用的数学方法。
二次根式中的数学方法一换元法换元法是一种重要的数学方法,它在解题中有着广泛的应用.对于一些复杂的根式运算,通过换元,将其转化为有理式的运算,可以使得运算简便.例1.点评:本例运用换元法变形整理,换元的主要目的是化繁为简,化无理式为有理式,再求代数式的值.分母有理化二次根式运算经常涉及到分母有理化.其基本方法为“分子、分母同乘以分母的有理化因式”.其实分母有理化还有其它方法,下面以部分赛题为,针对题目的特征,介绍几种分母有理化妙招,以开拓思路,提高大家的数学素质.分母有理化一巧用因式分解法分母有理化。
人教版数学八年级下册第十六章章末复习说课稿一. 教材分析人教版数学八年级下册第十六章主要包括了平行四边形的性质、矩形的性质、菱形的性质、正方形的性质以及梯形的性质。
这一章节是初中数学中的重要内容,不仅巩固了之前所学的基础知识,而且为后续学习其他数学知识打下了基础。
本章内容的掌握情况直接影响到学生对初中数学的整体理解。
二. 学情分析学生在学习本章内容时,已经具备了一定的几何基础,对图形的认知和理解能力有所提高。
但是,学生在解决实际问题时,往往还是不能灵活运用所学的性质,对图形的理解和运用能力有待提高。
另外,部分学生在学习过程中对概念的理解不够深入,容易混淆概念。
三. 说教学目标1.知识与技能:使学生掌握平行四边形、矩形、菱形、正方形、梯形的性质,并能够灵活运用。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生学习几何的兴趣,培养学生的团队合作意识和自主学习能力。
四. 说教学重难点1.教学重点:掌握平行四边形、矩形、菱形、正方形、梯形的性质。
2.教学难点:对性质的理解和运用,特别是解决实际问题时如何运用所学的性质。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、合作学习法等,引导学生主动探究、积极思考。
2.教学手段:利用多媒体课件、几何模型等辅助教学,提高学生的学习兴趣和效果。
六. 说教学过程1.导入:通过复习之前学过的三角形和四边形的性质,引出本章内容,激发学生的学习兴趣。
2.新课导入:介绍平行四边形的性质,引导学生通过观察、操作、思考,总结出性质。
3.案例分析:通过具体的案例,使学生理解并掌握矩形、菱形、正方形、梯形的性质。
4.练习与讨论:布置一些具有代表性的题目,让学生独立完成,并进行小组讨论,交流解题心得。
5.课堂小结:对本章内容进行总结,使学生明确各个图形性质之间的关系。
6.课后作业:布置一些巩固知识的作业,让学生在课后进一步消化和吸收。
初中数学第十六章分式复习讲义【思想方法】 1.转化思想转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等. 2.建模思想本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3.类比法本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程.第一讲 分式的运算【知识要点】1.分式的概念以及基本性质;2.与分式运算有关的运算法则3.分式的化简求值(通分与约分)4.幂的运算法则【主要公式】1.同分母加减法则:()0b c b ca a a a±±=≠2.异分母加减法则:()0,0b d bc da bc daa c a c ac ac ac±±=±=≠≠;3.分式的乘法与除法:b d bd a c ac ∙=,b c b d bda d a c ac÷=∙=4.同底数幂的加减运算法则:实际是合并同类项5.同底数幂的乘法与除法;am●a n =a m+n ; a m ÷ a n =a m -n6.积的乘方与幂的乘方:(ab)m= a m b n , (a m)n= amn7.负指数幂: a-p=1pa a 0=18.乘法公式与因式分解:平方差与完全平方式(a+b)(a-b)= a2- b 2 ;(a ±b)2= a 2±2ab+b 2 第二讲 分式方程【知识要点】1.分式方程的概念以及解法;2.分式方程产生增根的原因3.分式方程的应用题【主要方法】1.分式方程主要是看分母是否有外未知数;2.解分式方程的关健是化分式方程为整式方程;方程两边同乘以最简公分母.3.解分式方程的应用题关健是准确地找出等量关系,恰当地设末知数.(一)、分式定义及有关题型题型一:考查分式的定义【例1】下列代数式中:y x yx y x y x ba b a y x x -++-+--1,,,21,22π,是分式的有: .题型二:考查分式有意义的条件【例2】当x 有何值时,下列分式有意义(1)44+-x x (2)232+x x (3)122-x (4)3||6--x x(5)xx 1-题型三:考查分式的值为0的条件【例3】当x 取何值时,下列分式的值为0.(1)31+-x x(2)42||2--x x (3)653222----x x x x题型四:考查分式的值为正、负的条件【例4】(1)当x 为何值时,分式x-84为正; (2)当x 为何值时,分式)1(35-+-x x 为负;(3)当x 为何值时,分式32+-x x 为非负数. 练习:1.当x 取何值时,下列分式有意义:(1)3||61-x(2)1)1(32++-x x (3)x111+2.当x 为何值时,下列分式的值为零: (1)4|1|5+--x x(2)562522+--x x x3.解下列不等式(1)012||≤+-x x(2)03252>+++x x x(二)分式的基本性质及有关题型1.分式的基本性质:M B MA MB M A B A ÷÷=⨯⨯= 2.分式的变号法则:bab a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数【例1】不改变分式的值,把分子、分母的系数化为整数.(1)y x yx 41313221+- (2)ba ba +-04.003.02.0题型二:分数的系数变号【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号.(1)y x yx --+- (2)b a a --- (3)b a ---题型三:化简求值题【例3】已知:511=+y x ,求yxy x yxy x +++-2232的值.提示:整体代入,①xy y x 3=+,②转化出yx 11+. 【例4】已知:21=-x x ,求221xx +的值. 【例5】若0)32(|1|2=-++-x y x ,求yx 241-的值.练习:1.不改变分式的值,把下列分式的分子、分母的系数化为整数.(1)yx yx 5.008.02.003.0+-(2)b a ba 10141534.0-+ 2.已知:31=+x x ,求1242++x x x 的值.3.已知:311=-b a ,求aab b bab a ---+232的值. 4.若0106222=+-++b b a a ,求ba ba 532+-的值.5.如果21<<x ,试化简x x --2|2|xx x x |||1|1+---. (三)分式的运算1.确定最简公分母的方法:①最简公分母的系数,取各分母系数的最小公倍数; ②最简公分母的字母因式取各分母所有字母的最高次幂.2.确定最大公因式的方法:①最大公因式的系数取分子、分母系数的最大公约数;②取分子、分母相同的字母因式的最低次幂. 题型一:通分【例1】将下列各式分别通分. (1)cb ac a b ab c 225,3,2--; (2)a b b b a a 22,--; (3)22,21,1222--+--x x x x xx x ; (4)aa -+21,2 题型二:约分【例2】约分: (1)322016xy y x -;(3)n m m n --22;(3)6222---+x x x x .题型三:分式的混合运算【例3】计算:(1)42232)()()(a bc ab c c b a ÷-⋅-;(2)22233)()()3(xy x y y x y x a +-÷-⋅+; (3)mn mn m n m n n m ---+-+22;(4)112---a a a ;(5)874321814121111x x x x x x x x +-+-+-+--; (6))5)(3(1)3)(1(1)1)(1(1+++++++-x x x x x x ; (7))12()21444(222+-⋅--+--x x x x x x x 题型四:化简求值题【例4】先化简后求值(1)已知:1-=x ,求分子)]121()144[(48122x x x x -÷-+--的值; (2)已知:432zy x ==,求22232z y x xz yz xy ++-+的值;(3)已知:0132=+-a a ,试求)1)(1(22a a aa --的值. 题型五:求待定字母的值【例5】若111312-++=--x Nx M x x ,试求N M ,的值. 练习:1.计算(1))1(232)1(21)1(252+-++--++a a a a a a ;(2)a b abb b a a ----222; (3)ba c cb ac b c b a c b a c b a ---++-+---++-232; (4)b a b b a ++-22;(5))4)(4(ba abb a b a ab b a +-+-+-;(6)2121111x x x ++++-; (7))2)(1(1)3)(1(2)3)(2(1--+-----x x x x x x . 2.先化简后求值(1)1112421222-÷+--⋅+-a a a a a a ,其中a 满足02=-a a . (2)已知3:2:=y x ,求2322])()[()(yxx y x y x xy y x ÷-⋅+÷-的值. 3.已知:121)12)(1(45---=---x Bx A x x x ,试求A 、B 的值. 4.当a 为何整数时,代数式2805399++a a 的值是整数,并求出这个整数值.(四)、整数指数幂与科学记数法题型一:运用整数指数幂计算【例1】计算:(1)3132)()(---⋅bc a(2)2322123)5()3(z xy z y x ---⋅ (3)24253])()()()([b a b a b a b a +--+--(4)6223)(])()[(--+⋅-⋅+y x y x y x题型二:化简求值题【例2】已知51=+-x x ,求(1)22-+x x 的值;(2)求44-+x x 的值. 题型三:科学记数法的计算【例3】计算:(1)223)102.8()103(--⨯⨯⨯;(2)3223)102()104(--⨯÷⨯. 练习:1.计算:(1)20082007024)25.0()31(|31|)51()5131(⋅-+-+-÷⋅--(2)322231)()3(-----⋅n m n m(3)23232222)()3()()2(--⋅⋅ab b a b a ab(4)21222)]()(2[])()(4[----++-y x y x y x y x2.已知0152=+-x x ,求(1)1-+x x ,(2)22-+x x 的值.第二讲 分式方程【知识要点】1.分式方程的概念以及解法;2.分式方程产生增根的原因3.分式方程的应用题【主要方法】1.分式方程主要是看分母是否有外未知数;2.解分式方程的关健是化分式方程为整式方程;方程两边同乘以最简公分母.3.解分式方程的应用题关健是准确地找出等量关系,恰当地设末知数.(一)分式方程题型分析题型一:用常规方法解分式方程 【例1】解下列分式方程(1)x x 311=-;(2)0132=--x x ;(3)114112=---+x x x ;(4)x x x x -+=++4535 提示易出错的几个问题:①分子不添括号;②漏乘整数项;③约去相同因式至使漏根;④忘记验根.题型二:特殊方法解分式方程 【例2】解下列方程(1)4441=+++x x x x ; (2)569108967+++++=+++++x x x x x x x x提示:(1)换元法,设y x x =+1;(2)裂项法,61167++=++x x x . 【例3】解下列方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+)3(4111)2(3111)1(2111x z z y y x 题型三:求待定字母的值 【例4】若关于x 的分式方程3132--=-x mx 有增根,求m 的值. 【例5】若分式方程122-=-+x ax 的解是正数,求a 的取值范围. 提示:032>-=ax 且2≠x ,2<∴a 且4-≠a . 题型四:解含有字母系数的方程 【例6】解关于x 的方程)0(≠+=--d c dcx b a x 提示:(1)d c b a ,,,是已知数;(2)0≠+d c . 题型五:列分式方程解应用题练习:1.解下列方程: (1)021211=-++-xxx x ; (2)3423-=--x x x ; (3)22322=--+x x x ;(4)171372222--+=--+x x x x xx(5)41215111+++=+++x x x x (6)6811792--+-+=--+-x x x x x x x x 2.解关于x 的方程: (1)b x a 211+=)2(a b ≠;(2))(11b a xb b x a a ≠+=+. 3.如果解关于x 的方程222-=+-x xx k 会产生增根,求k 的值. 4.当k 为何值时,关于x 的方程1)2)(1(23++-=++x x kx x 的解为非负数. 5.已知关于x 的分式方程a x a =++112无解,试求a 的值. (二)分式方程的特殊解法解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验,但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下:一、交叉相乘法例1.解方程:231+=x x 二、化归法例2.解方程:012112=---x x 三、左边通分法例3:解方程:87178=----x x x 四、分子对等法例4.解方程:)(11b a xb b x a a ≠+=+五、观察比较法例5.解方程:417425254=-+-x x x x 六、分离常数法例6.解方程:87329821+++++=+++++x x x x x x x x 七、分组通分法例7.解方程:41315121+++=+++x x x x (三)分式方程求待定字母值的方法例1.若分式方程xmx x -=--221无解,求m 的值。