单元5二次函数单元教学计划
- 格式:doc
- 大小:35.50 KB
- 文档页数:2
高中数学下册教学计划含教学进度表教学计划单元一:函数与方程- 知识点:- 函数的概念与性质- 基本初等函数的图像与性质- 一次函数与二次函数- 方程的解与解的判定- 教学活动:- 引导学生了解函数与方程的基本概念与性质- 分析基本初等函数的图像与性质,培养学生的函数意识- 探究一次函数和二次函数的特点和应用- 进行方程解的求解方法的探究- 教学评价:- 练题的完成情况- 学生对函数和方程的理解程度- 学生对一次函数和二次函数的掌握情况单元二:不等式与线性规划- 知识点:- 不等式的解集与解集图- 一元一次不等式与一次不等式组- 线性规划问题的建立与解法- 教学活动:- 引导学生理解不等式的解集及解集图的表示方法- 深入研究一元一次不等式与一次不等式组的求解方法- 研究线性规划问题的建立与求解策略- 教学评价:- 练题的完成情况- 学生对不等式解集的准确理解- 学生对线性规划问题的解法的掌握情况单元三:数列与数学归纳法- 知识点:- 数列的概念与性质- 等差数列与等比数列- 数学归纳法的基本思想与应用- 教学活动:- 介绍数列的基本概念与性质- 探索等差数列和等比数列的特点和应用- 研究数学归纳法的基本思想和应用方法- 教学评价:- 练题的完成情况- 学生对数列的理解程度- 学生对数学归纳法的掌握情况单元四:三角函数- 知识点:- 三角函数的概念与性质- 三角函数的图像与性质- 三角函数的基本关系式和诱导公式- 教学活动:- 引导学生理解三角函数的概念和性质- 分析三角函数的图像和性质,培养学生的几何直观- 研究三角函数的基本关系式和诱导公式的推导和应用- 教学评价:- 练题的完成情况- 学生对三角函数的掌握情况- 学生对三角函数的应用能力教学进度表以上是高中数学下册的教学计划和教学进度表。
请根据实际情况进行教学安排,确保学生在规定时间内掌握相关知识点。
北师大九年级下册数学教学计划一、教学内容本册教材共包含六章内容,分别为:直角三角形的边角关系、二次函数、圆与圆的相关性质、概率初步、反比例函数以及投影与视图。
这些内容是初中数学的重要组成部分,涉及到平面几何、函数、概率等知识点,对学生的逻辑思维和数学素养有着重要的影响。
二、教学目标1. 掌握直角三角形的边角关系,能够运用勾股定理和三角函数解决实际问题。
2. 理解二次函数的基本性质,掌握二次函数的图像和性质,能够解决与二次函数相关的最值问题。
3. 了解圆与圆的相关性质,掌握圆与圆的位置关系,理解圆与直线的相切、相交、内含等关系。
4. 理解概率初步的基本概念,掌握概率的计算方法,能够解决简单的概率问题。
5. 理解反比例函数的基本概念,掌握反比例函数的图像和性质,能够解决与反比例函数相关的实际问题。
6. 了解投影与视图的基本概念,掌握基本几何体的三视图,能够运用三视图解决简单的实际问题。
三、教学重点与难点1. 教学重点:勾股定理的应用、二次函数的图像和性质、圆与圆的位置关系、概率初步的基本概念和计算方法、反比例函数的图像和性质以及基本几何体的三视图。
2. 教学难点:运用勾股定理和三角函数解决实际问题、解决与二次函数相关的最值问题、理解圆与直线的相切、相交、内含等关系、解决复杂的概率问题、解决与反比例函数相关的实际问题以及运用三视图解决实际问题。
四、教学方法与手段1. 教学方法:采用启发式、互动式和探究式等教学方法,注重学生独立思考能力和创新思维的培养,强调数学的应用价值。
2. 教学手段:运用多媒体和数字化教学工具辅助教学,建立数学实验室,开展数学实验和探究活动,鼓励学生参与数学建模和数学竞赛等实践活动。
五、教学评价与反馈1. 评价方式:采用形成性评价和终结性评价相结合的方式,注重学生的过程表现和实际应用能力。
2. 反馈机制:及时给予学生反馈和指导,帮助学生发现和纠正错误,鼓励学生提出问题和质疑,促进学生的深度思考和创新意识。
八年级下册数学单元教学计划(北师大版)全文共3篇示例,供读者参考数学是一种精神,一种理性的精神。
正是这种精神,激发、促进、鼓舞并驱使人类的思维得以运用到最完善的程度,为大家分享了北师大版八年级数学教学计划,欢迎借鉴!八年级下册数学单元教学计划(北师大版) 篇1学生有了学习八年级上册数学的经验了,学习八年级下册相对会变得轻松许多,特别是对于反比例函数的学习要容易得多,但分式仍然是八年级下册的一个非常难的学习内容,关于这点还是以后再说吧,先完成人教版八年级下册教学计划吧。
一、学情分析从上学期的期末考试来看,本班无论优秀率还是合格率都有不小的退步。
优秀率仅仅只有13%,而合格率也只达到45%,两极分化的现象再一次增大,与我预期的目标有较大的差距。
通过调阅学生的试卷,发现学生在知识运用上很不熟练,特别是对于解答综合性习题时欠缺灵活性。
二、指导思想坚持党的十七大教育方针,结合《初中数学新课程标准》,根据学生实际情况,积极开展课堂教学改革,提高课堂教学效率,向45 分钟要质量。
一方面巩固学生的基础知识,另一方面提高学生运用知识的能力。
特别是训练学生的探究思维能力,和发散式思维模式,提高学生知识运用的能力。
并通过本学期的课堂教学,完成八年级下册的数学教学任务。
三、教学目标知识技能目标:掌握分式的基本性质及其相关的运算;学习反比例函数图像、性质;掌握勾股定理及其逆定理;探究平行四边形、特殊四边形及梯形、等腰梯形性质与判定;会分析数据并从中获取总体信息。
过程方法目标:发展学生推理能力;建立函数建模的思维方式;理解勾股定理的意义与内涵;提高几何说理能力及统计意识。
态度情感目标:丰富学生数学经验,增加逻辑推理能力,感受数学与生活的关联。
班级教学目标:优秀率:15%;合格率:55%。
四、教材分析第十六章分式:本章主要学习分式及其基本性质,分式的约分、通分,分式的基本运算,分式方程的概念及可化为一元一次方程的分式方程的解法。
第1篇一、活动背景为了进一步提高初二数学教学质量,促进教师专业成长,加强备课组之间的交流与合作,我校初二数学备课组于2021年10月15日开展了教研活动。
本次活动以“探讨有效教学方法,提高课堂教学质量”为主题,旨在通过集体备课、教学研讨、经验分享等形式,提升备课组整体教学水平。
二、活动目标1. 通过集体备课,优化教学设计,提高课堂教学效率。
2. 通过教学研讨,分享教学经验,促进教师专业成长。
3. 通过经验分享,探索适合我校学生的教学方法,提高教学质量。
三、活动内容1. 集体备课(1)活动主题:以《二次函数》这一单元为例,探讨如何优化教学设计,提高课堂教学效率。
(2)活动过程:1. 备课组长介绍本次集体备课的主题和目标。
2. 各成员针对《二次函数》这一单元的教学内容,分别阐述自己的教学思路和教学方法。
3. 成员之间互相交流、讨论,对教学设计进行优化。
4. 备课组长总结本次集体备课的成果,并布置课后备课任务。
2. 教学研讨(1)活动主题:分享教学经验,探讨提高课堂教学质量的方法。
(2)活动过程:1. 各成员依次分享自己在教学过程中遇到的问题和解决方法。
2. 成员之间互相讨论、交流,共同探讨提高课堂教学质量的方法。
3. 备课组长对成员分享的经验进行总结,并提出针对性的建议。
3. 经验分享(1)活动主题:探索适合我校学生的教学方法,提高教学质量。
(2)活动过程:1. 成员结合自身教学实践,分享适合我校学生的教学方法。
2. 成员之间互相学习、借鉴,共同探讨提高教学质量的方法。
3. 备课组长对成员分享的经验进行总结,并提出针对性的建议。
四、活动成果1. 通过集体备课,优化了教学设计,提高了课堂教学效率。
2. 通过教学研讨,分享了教学经验,促进了教师专业成长。
3. 通过经验分享,探索了适合我校学生的教学方法,为提高教学质量奠定了基础。
五、活动总结本次初二数学备课组教研活动取得了圆满成功。
通过集体备课、教学研讨和经验分享,备课组成员在教学方法、教学策略等方面取得了共识,为提高课堂教学质量奠定了基础。
九年级下学期数学教学计划范文5篇九年级下学期数学教学计划范文5篇九年级下学期数学教学计划范文1本学期是初中学习的关键时期,进入初三,学生成绩差距较大。
教学任务非常艰巨。
因此,要完成教学任务,必须紧扣教学大纲,结合教学内容和学生实际,把握好重点、难点。
努力把今学期的任务圆满完成。
本着为了学生的一切为宗旨,把培养高素质人才作为目标,特制定本计划。
一.完成九年级下册的内容1.掌握二次函数的概念,五种基本函数关系式,会建立数学模型来解决实际问题。
2.学会用逻辑推理的思想来证明等腰三角形,平行四边形,矩形,菱形,正方形等几何图形的性质定理。
3.加强学生对数学知识的认识方法,培养他们正确的学习方法。
4通过关於图形和证明的教学,进一步培学生的逻辑思维能力.与空间观念。
二.本学期在提高教学质量上采取的措施。
1.改进教学方法,采用启发式教学。
2.注意教科书的系统性,使学生牢固掌握旧知识的基础上,学习新知识,明确新旧知识的联系。
3.注意发展学生探索知识的能力,提高学生分析问题的能力。
4.开放性问题、探究性问题教学,培养学生创新意识、探究能力。
5.鼓励合作学习,加强个别辅导,提高差生成绩。
三.教学具体安排。
1.第一周.平行四边形,矩形,菱形,正方形.2.第二周.等腰梯形,中位线,反证法,以及复习题3.第三周.数据分析与决策.4.4周.复习数与式5.5周.复习方程与不等式6.6周.复习函数7.7周.复习图形的认识8.8周.复习图形与变换9.9周.复习图形与坐标10.10周.复习概率与统计11.11周.复习课题学习12.12周.模拟考试与讲评13.13周.市检14.14周.重要知识点的再梳理15.15周.一些常见题的训练16.16周.做往年的中考题17.17周.考试方法和考试心理的辅导.九年级下学期数学教学计划范文2新的学期又开始了,九年级时间非常紧张,既要完成新课程的教学又要考虑下学期对初中阶段整个数学知识的全面系统的复习。
2024年人教版九年级上册数学教学计划本部分将对九年数学教学的基本情况展开分析,旨在为学生提供进一步学习所需的数学基础知识和技能,同时强化他们的运算、思维和空间想象能力,使他们能够运用所学知识解决实际问题。
教学目标是使学生掌握必要的基础知识和技能,培养逻辑思维、运算、空间观念和解决实际问题的能力,培养良好的学习习惯,形成实事求是的态度和独立思考的精神。
还将注重提升学生应用数学知识解决问题的能力。
二、教学内容:本学期涵盖五章内容,包括:第22章二次根式,第23章一元二次方程,第24章图形的相似,第25章解直角三角形,以及第26章随机事件的概率。
三、教学重点与难点:重点:1. 教导学生掌握证明的基本技巧和逻辑推理。
2. 激发学生探索证明的多种策略,鼓励证明的多样性。
难点:1. 引导学生主动探索、猜测并理解证明的必要性。
2. 在教学中融入归纳、类比、转化等数学思维方法。
四、教学流程:1. 深入研究教学大纲和教材,明确教学目标,突出关键点和难点,设计教学步骤,注重各章节内容的连贯性和重要性,同时重视课后反思,细化每一节课的师生互动环节。
2. 充分利用课堂时间,精心设计教学环节,确保每节课达到教学目标,突出重点,化解难点,使所有学生积极参与课堂活动,提升课堂效率。
3. 课后进行有效的反馈,选择适当的练习和测试,及时批改作业,对出现的问题及时进行个别指导,确保学生理解和掌握知识,实现学有所得。
1. 深入研究新课标,理解教材内涵。
2. 认真备课,全面了解学生的学习动态。
3. 精心组织每一堂课的教学。
4. 切实执行课后辅导,弥补学习漏洞。
5. 在复习阶段,通过各种练习和测试强化学生对知识点的理解和应用能力。
2024年人教版九年级上册数学教学计划(二)一、指导原则严格遵循____-教育方针,以《初中数学新课程标准》为教学导向,持续深化新课程改革。
教学活动将以提升学生中考成绩为宗旨,重视巩固学生的基础数学知识和技能,强化解题能力的培养。
教学计划教材简析:义务教育教科书九年级下册数学内容包括:二次函数、圆、投影与视图、概率等几大内容。
“二次函数”是初中数学的重要内容之一,也是初中数学和高中数学相联系的纽带,它与代数、几何、三角函数等知识有着密切的联系。
二次函数是学习一次函数、反比例函数之后遇到的又一个重要函数,它是描述现实世界变量之间关系的重要数学模型。
对二次函数的研究,有助于我们进一步理解函数之的概念、领会函数思想,增强数学建模意识。
教材通过具体问题概括了二次函数的解析式及概念,然后详细介绍了二次函数的图象及性质,学习了用待定系数法求二次函数的解析式,探究了二次函数与一元二次方程的内在联系,并在此基础上学习了二次函数的应用;“圆”这一部分是在前面学习了直线型图形的有关性质和判定的基础上,继续探索一种特殊的曲线型图形,圆既是中心对称图形又是轴对称图形,它在初中数学体系中处于核心地位,它既是相对独立的一个知识体系,又是前面所学直线型图形的有关知识的综合与延伸。
本章主要学习圆的概念及性质、圆周角定理及其推论、圆与直线的位置关系、切线的相关性质、弧长与扇形的面积公式及正多边形与圆的关系。
这一章综合性较强,同时渗透着数形结合、分类、运动变化等诸多数学思想和方法,并且在实际生活中有着广泛的应用;“投影与视图”这章是《空间与图形》知识技能板块中的重要组成部分,有助于培养空间想象能力。
教材从平行投影和中心投影入手,引出了直棱柱、圆锥的侧面展开图,介绍了几何体的三视图,把立体图形转化为平面图形,然后再综合这两方面的知识把平面图形组合成立体图形——制件立体模型。
在本章中要了解投影的有关概念(物体的投影、投影线、投影面、中心投影、平行投影、正投影),掌握投影的性质及其运用,能想象出立体图形的侧面展开图,理解三视图的意义,并能根据实物画三视图,根据三视图描述物体的形状。
“概率”是“统计与概率”的重点内容,是在已有的生活经验和掌握了数据整理的一些方式后继续学习的。
2023年沪科版八年级下册数学教学计划第一章:分式与分式方程(3周)1.1 分式的定义与性质1.2 分式的基本运算1.3 分式的乘除混合运算1.4 分式方程的解法第二章:一次函数与一元一次方程(4周)2.1 一次函数的概念与性质2.2 一次函数的运算与表示2.3 一次函数的图象与解析式2.4 一元一次方程的解法第三章:多项式(3周)3.1 多项式的概念与性质3.2 多项式的运算与化简3.3 多项式的乘法公式与因式分解第四章:数轴与坐标系(2周)4.1 直线坐标系的基本概念与性质4.2 直线坐标系中点的坐标与位置关系4.3 距离的计算与问题求解4.4 坐标系中几何变换的基本性质第五章:二次根式、二次方程与二次函数(4周)5.1 二次根式的概念与运算5.2 二次方程的解法5.3 二次函数的图象与性质5.4 二次函数与二次方程的应用第六章:勾股定理与三角形(3周)6.1 勾股定理的概念与证明6.2 直角三角形与勾股定理6.3 特殊三角形与勾股定理的应用6.4 三角形的三边关系与判定第七章:统计与概率(3周)7.1 统计调查与数据分析7.2 频率分布与直方图7.3 概率的基本概念与计算7.4 事件的概率与应用第八章:平面图形的性质和变换(5周)8.1 平面图形的概念与性质8.2 三角形的性质与判定8.3 四边形的性质与判定8.4 平面图形的对称与相似变换8.5 平面图形变换的应用第九章:圆与圆的性质(3周)9.1 圆的概念与性质9.2 圆上点与弧的性质9.3 圆内外点与切线的性质9.4 圆的应用第十章:立体图形的认识(3周)10.1 空间图形的概念与性质10.2 立体图形的投影与展开10.3 正交投影与投影图形求面积10.4 空间图形的应用第十一章:线性方程组与矩阵(4周)11.1 线性方程组的概念与性质11.2 线性方程组的解法11.3 矩阵的基本概念与运算11.4 矩阵的应用第十二章:函数与图像(4周)12.1 函数的概念与性质12.2 函数的运算与复合函数12.3 函数的图像与性质12.4 函数与方程的应用教学计划安排:1. 第一周:1.1 分式的定义与性质2. 第二周:1.2 分式的基本运算3. 第三周:1.3 分式的乘除混合运算4. 第四周:1.4 分式方程的解法5. 第五周:2.1 一次函数的概念与性质6. 第六周:2.2 一次函数的运算与表示7. 第七周:2.3 一次函数的图象与解析式8. 第八周:2.4 一元一次方程的解法9. 第九周:3.1 多项式的概念与性质10. 第十周:3.2 多项式的运算与化简11. 第十一周:3.3 多项式的乘法公式与因式分解12. 第十二周:4.1 直线坐标系的基本概念与性质13. 第十三周:4.2 直线坐标系中点的坐标与位置关系14. 第十四周:4.3 距离的计算与问题求解15. 第十五周:4.4 坐标系中几何变换的基本性质16. 第十六周:5.1 二次根式的概念与运算17. 第十七周:5.2 二次方程的解法18. 第十八周:5.3 二次函数的图象与性质19. 第十九周:5.4 二次函数与二次方程的应用20. 第二十周:6.1 勾股定理的概念与证明21. 第二十一周:6.2 直角三角形与勾股定理22. 第二十二周:6.3 特殊三角形与勾股定理的应用23. 第二十三周:6.4 三角形的三边关系与判定24. 第二十四周:7.1 统计调查与数据分析25. 第二十五周:7.2 频率分布与直方图26. 第二十六周:7.3 概率的基本概念与计算27. 第二十七周:7.4 事件的概率与应用28. 第二十八周:8.1 平面图形的概念与性质29. 第二十九周:8.2 三角形的性质与判定30. 第三十周:8.3 四边形的性质与判定31. 第三十一周:8.4 平面图形的对称与相似变换32. 第三十二周:8.5 平面图形变换的应用33. 第三十三周:9.1 圆的概念与性质34. 第三十四周:9.2 圆上点与弧的性质35. 第三十五周:9.3 圆内外点与切线的性质36. 第三十六周:9.4 圆的应用37. 第三十七周:10.1 空间图形的概念与性质38. 第三十八周:10.2 立体图形的投影与展开39. 第三十九周:10.3 正交投影与投影图形求面积40. 第四十周:10.4 空间图形的应用41. 第四十一周:11.1 线性方程组的概念与性质42. 第四十二周:11.2 线性方程组的解法43. 第四十三周:11.3 矩阵的基本概念与运算44. 第四十四周:11.4 矩阵的应用45. 第四十五周:12.1 函数的概念与性质46. 第四十六周:12.2 函数的运算与复合函数47. 第四十七周:12.3 函数的图像与性质48. 第四十八周:12.4 函数与方程的应用以上是2023年沪科版八年级下册数学教学计划的安排。
单元教学计划
单元名称: 九下第26章 二次函数 教学时间: 2012.11.11-12.14
一、单元教学内容:
本单元教学的主要内容:
1、能用表格、表达式、图像表示变量之间的二次函数关系,发展有条理的
思考能力和语言表达能力,能根据具体问题,选取适当的方法表示变量之间的二
次函数关系。
2、会做二次函数的图像,并能根据图像对二次函数的性质进行分析,逐步
积累研究函数性质的经验。
3、能根据二次函数的表达式确定二次函数图形的开口方向、对称轴和定点
坐标。能根据已知条件确定二次函数的表达式。
4、能利用二次函数解决实际问题,能对变量的变化趋势进行预测。
二、本单元教学要求:
二次函数是描述现实世界变量之间关系的重要数学模型。著名的自由落体运
动公式就是二次函数刻画物体运动的最好例证,是最重要的物理学公式。二次函
数也是某些单变量最优化的数学模型。如本章所提及的求最大利润、最大面积等
实际问题。二次函数的图像-------抛物线,也是人们最为熟悉的曲线之一。喷
泉的水流、标枪的投掷等都形成抛物线路径。同时,抛物线形状在建筑上也有着
广泛的应用,如抛物线拱桥、抛物线型隧道等。二次函数还是一种非常基本的初
等函数,对二次函数的研究将为学生进一步学习函数,进而体会函数的思想奠定
基础、积累经验。
1、通过探究具体问题及实例,引出对应观点下的函数概念及函数值的概念,
使学生进一步理解函数的定义。
2、通过分析实际问题(如探究橙子的数量与橙子树之间的关系),以及用关
系式表示这一关系的过程,引出二次函数的概念。
3、对二次函数性质的研究,采用的是利用图像的、直观的、非形式化的研究
方法,通过学生自己的探索活动(联系、对比、概括和反思等),达到对抛物线
自身特点的认识和对二次函数性质的理解。
4、对二次函数图像的研究,经历了从简单到复杂、从特殊到一般的过程。
5、在研究图像的过程当中,也穿插了实际应用问题,如函数图像与刹车距离、
函数图像与桥梁钢缆等,把图像直观与实际意义相联系。
6、用表格、表达式、图像等多种方法表示二次函数,使学生体会函数的各种
表示方法之间的联系和特点。
7、设计了大量可以表示为二次函数或利用二次函数知识加以解决的问题,发
展学生的数学应用能力。
8、建立一元二次方程的求解问题与二次函数之间的联系,利用二次函数的图
像求一元二次方程的近似根。
三、本单元教学建议:
1、创设丰富的问题情境,使学生理解对应观点下的函数概念及函数值的概念,
会用函数关系表示实际问题,并建立函数模型。
2、创设丰富的实际情景,是学生理解二次函数的意义,会用二次函数表示实
际问题,并建立二次函数模型。
3、在利用图像讨论二次函数的性质时,应尽可能的运用小组活动的形式,以
便使学生能够从多个角度看问题,进而比较准确地理解二次函数的性质。
4、在讨论二次函数的对称轴和定点坐标时,要尽量引导学生进行图像和图像
之间的比较、表达式和表达式之间的比较,建立图像和表达式之间的联系,一
达到学生对二次函数图像的对称轴和定点坐标公式的理解。
5、在解决根据已知条件确定二次函数的表达式问题时,应注意引导学生通过
设出二次函数的表达式,列出方程(组)解决,并总结出待定系数法这一数学
方法。
6、在用二次函数解决最优化问题或其他实际问题时,除运用小组讨论的形式
外,对一开始感到困难的学生可以增加一些引导性的问题。
7、利用图想法求一元二次方程的近似根,重要的是这种求解方程的思路,而
不是求解的结果。应使学生经历这样的求解过程。
四、本单元教学进度安排:
本章教学时约需课时,具体分配如下(供参考)
1、对函数的再认识 2课时
2、结实抛物线 1课时
3、二次函数y=ax2的图像和性质 2课时
4、二次函数y=ax2+bx+c的图像和性质 3课时
5、用三种方式表示二次函数 1课时
6、确定二次函数的表达式 1课时
7、二次函数与一元二次方程 2课时
8、二次函数的应用 3课时
9、回顾与思考 3课时
五、本单元主要教学方法:
1、关注学生是否积极投入,是否乐于交流与合作,并在活动中表现出良好
的分析、推理和表达能力。
2、关注学生是否能建立二次函数图像与表达式之间的联系,是否理解表达式
的变化将要引起图像的何种变化,或者图像的变化将要引起表达式的何种变化。
3、关注学生是否能把实际问题表示为二次函数,是否能够利用二次函数的知
识解决实际问题,并对结果进行解释。
4、关注学生是否能利用图想法求一元二次方程的近似根,是否理解这种求解
方程的思路。
5、关注学生能否用多种方式表示二次函数,并能建立表示方式之间的联系。