2018届四川省泸州市高三第一次诊断性考试 数学理 Word版 含答案
- 格式:doc
- 大小:564.50 KB
- 文档页数:10
凉山州2018届高中毕业班第一次诊断性检测文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则集合的元素个数为()A. 6B. 5C. 4D. 3【答案】B【解析】【详解】集合,根据集合交集的概念得到个数为5个。
故答案为:B。
2.命题“,”的否定是()A. ,B. ,C. ,D.【答案】C【解析】因为“,”是全称命题,所以依据含一个量词的命题的否定可知:其否定是存在性命题,即“,”,应选答案C 。
3.已知复数,则()A. B. 0 C. 1 D.【答案】C【解析】复数,故答案为:C。
4.已知,则的最小正周期是()A. B. C. D.【答案】A【解析】根据三角函数周期的概念得到故答案为:A。
5.以椭圆短轴为直径的圆经过此椭圆的长轴的两个三等分点,则椭圆的离心率是()A. B. C. D.【答案】D【解析】根据题意,以椭圆短轴为直径的圆经过此椭圆的长轴的两个三等分点,则有2b=,即a=3b,则c==2b,则椭圆的离心率e==;故选:D.6.已知锐角满足,则等于()A. B. C. D.【答案】A【解析】由cos(α﹣)=cos2α,得,∴sinα+cosα>0,则cosα﹣sinα=.两边平方得:,∴.故答案为:A。
7.执行如图所示的程序框图,当输出时,则输入的值可以为A.B.C.D.【答案】B【解析】由题意,模拟执行程序,可得程序框图的功能是计算S=n×(n-1)×…×5的值,由于S=210=7×6×5,可得:n=7,即输入n的值为7.故选:B.8.已知点的坐标满足不等式组,为直线上任一点,则的最小值是()A. B. C. 1 D.【答案】A【解析】点的坐标满足不等式组的可行域如图:点的坐标满足不等式组,为直线上任一点,则的最小值,就是两条平行线与之间的距离:,故选A.点睛:本题考查线性规划的应用,平行线之间的距离的求法,考查转化思想以及计算能力,解决本题的关键是作出不等式组所表示的平面区域与的位置关系,难度一般;画出约束条件的可行域,利用已知条件,把的最小值转化求解平行线间的距离即可.9.在中,已知,则该的形状为()A. 等腰三角形B. 直角三角形C. 正三角形D. 等腰或直角三角形【答案】D【解析】试题分析:由正弦定理,得,则即,即,所以,即,即为等腰或直角三角形.考点:三角形形状的判定.10.设是上的奇函数,且在区间上递减,,则的解集是()A. B.C. D.【答案】C【解析】根据题意,函数f(x)是奇函数,在区间(0,+∞)上单调递减,且f (2)=0,则函数f(x)在(-∞,0)上单调递减,且f(-2)=-f(2)=0,当x>0时,若f(x)>0,必有0<x<2,当x<0时,若f(x)>0,必有x<-2,即f(x)>0的解集是(-∞,-2)∪(0,2);故答案选:C.点睛:本题考查函数的单调性与奇偶性的综合应用,注意奇函数的在对称区间上的单调性的性质;对于解抽象函数的不等式问题或者有解析式,但是直接解不等式非常麻烦的问题,可以考虑研究函数的单调性和奇偶性等,以及函数零点等,直接根据这些性质得到不等式的解集。
凉山州2018届高中毕业班第一次诊断性检测文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则集合的元素个数为()A. 6B. 5C. 4D. 3【答案】B【解析】【详解】集合,根据集合交集的概念得到个数为5个。
故答案为:B。
2.命题“,”的否定是()A. ,B. ,C. ,D.【答案】C【解析】因为“,”是全称命题,所以依据含一个量词的命题的否定可知:其否定是存在性命题,即“,”,应选答案C 。
3.已知复数,则()A. B. 0 C. 1 D.【答案】C【解析】复数,故答案为:C。
4.已知,则的最小正周期是()A. B. C. D.【答案】A【解析】根据三角函数周期的概念得到故答案为:A。
5.以椭圆短轴为直径的圆经过此椭圆的长轴的两个三等分点,则椭圆的离心率是()A. B. C. D.【答案】D【解析】根据题意,以椭圆短轴为直径的圆经过此椭圆的长轴的两个三等分点,则有2b=,即a=3b,则c==2b,则椭圆的离心率e==;故选:D.6.已知锐角满足,则等于()A. B. C. D.【答案】A【解析】由cos(α﹣)=cos2α,得,∴sinα+cosα>0,则cosα﹣sinα=.两边平方得:,∴.故答案为:A。
7.执行如图所示的程序框图,当输出时,则输入的值可以为A.B.C.D.【答案】B【解析】由题意,模拟执行程序,可得程序框图的功能是计算S=n×(n-1)×…×5的值,由于S=210=7×6×5,可得:n=7,即输入n的值为7.故选:B.8.已知点的坐标满足不等式组,为直线上任一点,则的最小值是()A. B. C. 1 D.【答案】A【解析】点的坐标满足不等式组的可行域如图:点的坐标满足不等式组,为直线上任一点,则的最小值,就是两条平行线与之间的距离:,故选A.点睛:本题考查线性规划的应用,平行线之间的距离的求法,考查转化思想以及计算能力,解决本题的关键是作出不等式组所表示的平面区域与的位置关系,难度一般;画出约束条件的可行域,利用已知条件,把的最小值转化求解平行线间的距离即可.9.在中,已知,则该的形状为()A. 等腰三角形B. 直角三角形C. 正三角形D. 等腰或直角三角形【答案】D【解析】试题分析:由正弦定理,得,则即,即,所以,即,即为等腰或直角三角形.考点:三角形形状的判定.10.设是上的奇函数,且在区间上递减,,则的解集是()A. B.C. D.【答案】C【解析】根据题意,函数f(x)是奇函数,在区间(0,+∞)上单调递减,且f (2)=0,则函数f(x)在(-∞,0)上单调递减,且f(-2)=-f(2)=0,当x>0时,若f(x)>0,必有0<x<2,当x<0时,若f(x)>0,必有x<-2,即f(x)>0的解集是(-∞,-2)∪(0,2);故答案选:C.点睛:本题考查函数的单调性与奇偶性的综合应用,注意奇函数的在对称区间上的单调性的性质;对于解抽象函数的不等式问题或者有解析式,但是直接解不等式非常麻烦的问题,可以考虑研究函数的单调性和奇偶性等,以及函数零点等,直接根据这些性质得到不等式的解集。
四川省泸州市泸州高中高2018届高考模拟考试文科数学第Ⅰ卷(共60分)一.选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z 的共轭复数为z ,且()310z i +=(i 是虚数单位),则在复平面内,复数z 对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合{|25}A x x =-<<,{B x y ==,则A B =( )A . (2,1)-B .(0,1]C .[1,5)D .(1,5) 3.阅读如下框图,运行相应的程序,若输入n 的值为10,则输出n 的值为( )A .0B .1C .3D .44.已知函数(),0()21,0g x x f x x x >⎧=⎨+≤⎩是R 上的奇函数,则(3)g =( )A .5B .-5C .7D .-7 5.“1a =”是“直线20ax y +-=和直线70ax y a -+=互相垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 6.已知函数sin(2)y x ϕ=+在6x π=处取得最大值,则函数cos(2)y x ϕ=+的图像( )A .关于点(0)6π,对称B .关于点(0)3π,对称 C.关于直线6x π=对称 D .关于直线3x π=对称7.若实数a 满足142log 1log 3aa >>,则a 的取值范围是( ) A.2,13⎛⎫ ⎪⎝⎭ B.23,34⎛⎫⎪⎝⎭ C.3,14⎛⎫ ⎪⎝⎭ D.20,3⎛⎫ ⎪⎝⎭8.在ABC △中,角B 为34π,BC 边上的高恰为BC 边长的一半, 则cos A =( )C.239.某几何体的三视图如图所示,则该几何体的外接球的表面积为( ) A .136π B .144π C .36π D .34π 10.若函数()f x x =,则函数12()log y f x x =-的零点个数是( )A .5个B .4个 C. 3个 D .2个11.已知抛物线2:4C y x =的焦点为F ,准线为l ,点A l ∈,线段AF 交抛物线C 于点B ,若3FA FB =,则AF =( )A .3B .4 C.6 D .712.已知ABC ∆是边长为2的正三角形,点P 为平面内一点,且3CP =则()PC P A P B ⋅+的取值范围是( )A .[]0,12B .30,2⎡⎤⎢⎥⎣⎦C .[]0,6D .[]0,3二.填空题(每题5分,满分20分,将答案填在答题纸上)13.计算:=-3log 87732log .14.若x ,y 满足约束条件001x y x y y -≤⎧⎪+≥⎨⎪≤⎩,则12y z x +=+的最大值为 .15.已知2)4tan(=-πα,则=-)22sin(πα . 16.已知双曲线C 的中心为坐标原点,点(2,0)F是双曲线C 的一个焦点,过点F 作渐近线的垂线l ,垂足为M ,直线l 交y 轴于点E ,若3F M M E =,则双曲线C 的方程为 .三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤)17.(本大题满分12分)已知数列{}n a 的前n 项和是n S ,且()21n n S a n =-∈*N .(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)令2log n n b a =,求数列(){}21nnb -前2n 项的和T .18.(本大题满分12分)2018年中央电视台春节联欢晚会分会场之一落户黔东南州黎平县肇兴侗寨,黔东南州某中学高二社会实践小组就社区群众春晚节目的关注度进行了调查,随机抽取80名群众进行调查,将他们的年龄分成6段:[)20,30,[)30,40,[)40,50,[)50,60,[)60,70,[]70,80,得到如图所示的频率分布直方图.问: (Ⅰ)求这80名群众年龄的中位数;(Ⅱ)若用分层抽样的方法从年龄在[)2040,中的群众随机抽取6名,并从这6名群众中选派3人外出宣传黔东南,求选派的3名群众年龄在[)3040,的概率.19.(本大题满分12分)如图,已知四棱锥P ABCD -的底面为菱形,且60ABC ∠=,E 是DP 中点.(Ⅰ)证明://PB 平面ACE ;(Ⅱ)若AP PB ==2AB PC ==,求三棱锥C PAE -的体积.20.(本大题满分12分)已知动点(,)M x y (Ⅰ)求动点M 的轨迹E 的方程;(Ⅱ)设过点(1,0)N -的直线l 与曲线E 交于,A B 两点,点A 关于x 轴的对称点为C (点C 与点B 不重合),证明:直线BC 恒过定点,并求该定点的坐标.21.(本大题满分12分)已知函数()ln f x x =,()(1)g x a x =-(Ⅰ)当2a =时,求函数()()()h x f x g x =-的单调递减区间;(Ⅱ)若1x >时,关于x 的不等式()()f x g x <恒成立,求实数a 的取值范围; (Ⅲ)若数列{}n a 满足11n n a a +=+,33a =,记{}n a 的前n 项和为n S ,求证:ln(1234)n n S ⨯⨯⨯⨯⨯<.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(本大题满分10分)选修4-4:坐标系与参数方程 在直角坐标系xOy 中,抛物线C 的方程为24y x =.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是2cos sin x t y t αα=+⎧⎨=⎩(t 为参数),l 与C 交于,A B 两点,AB =求l的倾斜角.23.(本大题满分10分)选修4-5:不等式选讲 已知函数()|3||2|f x a x x =--+. (Ⅰ)若2a =,解不等式()3f x ≤;(Ⅱ)若存在实数a ,使得不等式()14|2|f x a x --+≤成立,求实数a 的取值范围.四川省泸州市泸州高中高2018届高考模拟考试文数学答案1-5:ACCAA 6-10:ACADD 11-12:BA13.34- 14.2 15.54 16.1322=-y x 17.解:(Ⅰ)由112121n n n n S a S a --=-⎧⎨=-⎩得()12,1n n a a n n -=∈≥*N ,于是{}n a 是等比数列.令1n =得11a =,所以12n n a -=. (Ⅱ)122log log 21n n n b a n -===-, 于是数列{}n b 是首项为0,公差为1的等差数列.2222221234212n n T b b b b b b -=-+-+--+L 123212n n bb b b b -=+++++L , 所以()()221212n n T n n -==-.18. 解(Ⅰ)设80名群众年龄的中位数为x ,则()0.005100.010100.020100.030500.5x ⨯+⨯+⨯+⨯-=,解得55x =,即80名群众年龄的中位数55.(Ⅱ)由已知得,年龄在[20,30)中的群众有0.0051080=4⨯⨯人,年龄在[30,40)的群众有0.011080=8⨯⨯人, 按分层抽样的方法随机抽取年龄在[20,30)的群众46248⨯=+人,记为1,2;随机抽取年龄在[30,40)的群众86=448⨯+人, 记为,,,a b c d .则基本事件有:()()()()(),,,,,,,,1,,,2,,,,a b c a b d a b a b a c d()()()(),,1,,,2,,,1,,,2a c a c a d a d ,()()()()(),,,,,1,,,2,,,1,,,2,b c d b c b c b d b d()(),,1,,,2,c d c d ()()()(),1,2,,1,2,,1,2,,1,2a b c d 共20个,参加座谈的导游中有3名群众年龄都在[30,40)的基本事件有:()()(),,,,,,,,,a b c a b d a c d (),,,b c d 共4个,设事件A 为“从这6名群众中选派3人外出宣传黔东南,选派的3名群众年龄都在[30,40)”,则41()205p A == 19.(Ⅰ)证明:如图,连接BD ,BD AC F =,连接EF ,∵四棱锥P ABCD -的底面为菱形,∴F 为BD 中点,又∵E 是DP 中点, ∴在BDP △中,EF 是中位线,//EF PB ∴,又∵EF ⊂平面ACE ,而PB ⊄平面ACE ,//PB ∴平面ACE . (Ⅱ)解:如图,取AB 的中点Q ,连接PQ ,CQ ,∵ABCD 为菱形,且60ABC ∠=︒,∴ABC △为正三角形,CQ AB ⊥∴,AP PB ==∵,2AB PC ==,CQ =∴,且PAB △为等腰直角三角形,即90APB ∠=︒, PQ AB⊥,且1PQ =,222PQ CQ CP +=∴,PQ CQ ⊥∴,又ABCQ Q=,PQ ⊥∴平面ABCD ,11111323122232C PAE E ACPD ACP P ACD V V V V ----=====∴.20.解:(Ⅰ)由已知,动点M 到点(1,0)P -,(1,0)Q 的距离之和为且PQ <M 的轨迹为椭圆,而a =1c =,所以1b =,所以,动点M 的轨迹E 的方程:2212x y +=.(Ⅱ)设11(,)A x y ,22(,)B x y ,则11(,)C x y -,由已知得直线l 的斜率存在,设斜率为k ,则直线l 的方程为:(1)y k x =+由22(1)12y k x x y =+⎧⎪⎨+=⎪⎩ 得2222(12)4220k x k x k +++-=, 所以2122412k x x k +=-+,21222212k x x k -=+,直线BC 的方程为:212221()y y y y x x x x +-=--,所以2112212121y y x y x y y x x x x x ++=---, 令0y =,则1221121212122112122()2()2()2()2x y x y kx x k x x x x x x x y y k x x k x x +++++====-+++++,所以直线BC 与x 轴交于定点(2,0)D -.21.解:(Ⅰ)由2a =,得()()()l n 22h x f x g x x x x =-=-+>.所以'112()2x h x x x-=-= 令'()0h x <,解得12x >或0x <(舍去),所以函数()()()h x f x g x =-的单调递减区间为 1(,)2+∞ (Ⅱ)由()()f x g x <得,(1)ln 0a x x -->当0a ≤时,因为1x >,所以(1)ln 0a x x -->显然不成立,因此0a >.令()(1)ln F x a x x =--,则'1()1()a x a F x a x x-=-=,令'()0F x =,得1x a =. 当1a ≥时,101a<≤,'()0F x >,∴()(1)0F x F >=,所以(1)ln a x x ->,即有()()f x g x <.因此1a ≥时,()()f x g x <在(1,)+∞上恒成立. ②当01a <<时,11a >,()F x 在1(1,)a 上为减函数,在1(,)a+∞上为增函数, ∴min ()(1)0F x F <=,不满足题意.综上,不等式()()f x g x <在(1,)+∞上恒成立时,实数a 的取值范围是[1,)+∞(III )证明:由131,3n n a a a +=+=知数列{}n a 是33,1a d ==的等差数列,所以3(3)n a a n d n =+-=所以1()(1)22n n n a a n n S ++== 由(Ⅱ)得,ln (1)1x a x x x <-≤-<在(1,)+∞上恒成立.所以ln 22,ln33,ln 44,,ln n n <<<⋅⋅⋅<. 将以上各式左右两边分别相加,得ln 2ln 3ln 4ln 234n n +++⋅⋅⋅+<+++⋅⋅⋅+.因为ln101=<所以(1)ln1ln 2ln 3ln 4ln 12342n n n n n S +++++⋅⋅⋅+<++++⋅⋅⋅+== 所以ln(1234)n n S ⨯⨯⨯⨯⋅⋅⋅⨯<22.解:(1)∵cos sin x y ρθρθ=⎧⎨=⎩,代入24y x =,∴2sin 4cos 0ρθθ-=(2)不妨设点A ,B 对应的参数分别是1t ,2t ,把直线l 的参数方程代入抛物线方程得:22sin 4cos 80t t αα-⋅-=,∴12212224cos sin 8sin 1616sin 0t t t t αααα⎧+=⎪⎪-⎪=⎨⎪⎪∆=+>⎪⎩,则12AB t t =-==sin α=4πα=或34πα=. 23.解:(Ⅰ)不等式()3f x ≤化为|23||2|3x x --+≤,则22323x x x -⎧⎨-++⎩≤≤或2232323x x x ⎧-<⎪⎨⎪---⎩≤≤,或233223x x x ⎧>⎪⎨⎪---⎩≤, 解得3742x -≤≤,所以不等式()3f x ≤的解集为37{|}42x x -≤≤;(Ⅱ)不等式()14|2|f x a x --+≤等价于|3|3|2|1a x x a -++-≤ 即|3|3|2|1a x x a -++-≤,因为|3|3|2||3||63||363||6|a x x a x x a x x a -++=-++-++=+≥, 若存在实数a ,使不等式()14|2|f x a x --+≤成立, 则|6|1a a +-≤,解得:52a -≤,实数a 的取值范围是5(]2-∞-,。
泸州市高2015级(2018届)第二次教学质量诊断性考试数 学(理科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 第I 卷1至2页,第II 卷3至4 页.共150分.考试时间120分钟.第I 卷 (选择题 共60分)一、 选择题:本大题共有12个小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合要求的.1.复数12i2i +-的虚部是A .iB .1C .i -D .1-2.已知全集U =R ,{|1}M x x =<-,{|(3)0}N x x x =+<,则图中阴影部分表示的集合是A .{|31}x x -<<-B .{|30}x x -<<C .{|10}x x -<≤D .{|3}x x <-3.在1,2,3,4,5,6,7这组数据中,随机取出五个不同的数,则数字5是取出的五个不同数的中位数的所有取法为A .6B .12C .18D .244.抛物线C :24y x =的焦点为F ,P 为C 上一点,过点P 作其准线的垂线,垂足为Q ,若||3PF =,则||FQ 的长度为A .B C .D .5.将函数()sin f x x =的图像向右平移m 个长度单位后得到函数()g x ,若()g x 与()cos()3h x x π=+的零点重合,则m 的一个可能的值为 A .3πB .6πC .23πD .π6.如图是2017年第一季度五省GDP 情况图,则下列陈述中不正确的是A .2017年第一季度GDP 总量和增速由高到低排位均居同一位的省只有1个B .与去年同期相比,2017年第一季度五个省的GDP 总量均实现了增长C .去年同期河南省的GDP 总量不超过4000亿元D .2017年第一季度GDP 增速由高到低排位第5的是浙江省7.设a ,b 是两条不同的直线,α、β是不重合的两个平面,则下列命题中正确的是A .若a b ⊥,a α⊥,则//b αB .若//a α,αβ⊥,则//a βC .若//a α,//a β,则//αβD .若//a b ,a α⊥,b β⊥,则//αβ8.甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后,甲说:“丙被录用了”;乙说:“甲被录用了”;丙说:“我没被录用”.若这三人中仅有一人说法错误,则下列结论正确的是 A .甲被录用了B .乙被录用了C .丙被录用了D .无法确定谁被录用了9.若正整数N 除以正整数m 后的余数为n ,则记为()mod N n m =,例如()102mod4=.如图程序框图的算法源于我国古代闻名中外的《中国剩余定理》.执行该程序框图,则输出的n 等于 A .20 B .21 C .22 D .23 10.一个几何体的三视图及尺寸如图所示,则该几何体的外接球的表面积为 A .24πB .48πC .96πD .384π11.双曲线22221(0,0)x y a b a b-=>>的左右焦点分别为1F 、2F ,点P 是双曲线右支上一点,若双曲线的一条渐近线垂直平分1PF ,则该双曲线的离心率是ABC .2D .512.已知函数2,0()e ,xx x f x x >⎧=⎨⎩≤0,()e x g x =(e 是自然对数的底数),若关于x 的方程(())0g f x m -=恰有两个不等实根1x 、2x ,且12x x <,则21x x -的最小值为A .1(1ln 2)2-B .1ln 22+C .1ln2-D .1(1ln 2)2+第II 卷 (非选择题 共90分)注意事项:(1)非选择题的答案必须用0.5毫米黑色签字笔直接答在答题卡上,作图题可先用铅笔绘出,确认后再用0.5毫米黑色签字笔描清楚,答在试题卷和草稿纸上无效. (2)本部分共10个小题,共90分.二、填空题:本大题共4个小题,每小题5分,共20分.13.已知变量x y ,满足约束条件02200x y x y x y +≥⎧⎪-+≥⎨⎪-≤⎩,则2z x y =-的最大值为 .14.二项式8(x 展开式中的常数项是 (用数字做答).15.已知函数()sin f x x x =-,若2(2)()f a f a -+≥0,则实数a 的取值范围是 .16.如图,在ABC △中,角,,A B C 的对边分别为,,a b c ,(sin cos )a b C C =+.若2A π=,D 为ABC △外一点,2DB =,1DC =,则四边形ABDC 面积的最大值为 .三、解答题:共70分。
泸州市高2015级(2018届)第二次教学质量诊断性考试数 学(理科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 第I 卷1至2页,第II 卷3至4 页.共150分.考试时间120分钟.第I 卷 (选择题 共60分)一、 选择题:本大题共有12个小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合要求的. 1.复数12i 2i+-的虚部是A .iB .1C .i -D .1-2.已知全集U =R,{|1}Mx x =<-,{|(3)0}Nx x x =+<,则图中阴影部分表示的集合是A .{|31}x x -<<-B .{|30}x x -<<C .{|10}x x -<≤D .{|3}x x<-3.在1,2,3,4,5,6,7这组数据中,随机取出五个不同的数,则数字5是取出的五个不同数的中位数的所有取法为A .6B .12C .18D .244.抛物线C :24y x=的焦点为F ,P 为C 上一点,过点P 作其准线的垂线,垂足为Q ,若||3P F =,则||F Q 的长度为A .22B .3C .23D .425.将函数()sin f x x=的图像向右平移m 个长度单位后得到函数()g x ,若()g x 与()co s()3h x x π=+的零点重合,则m 的一个可能的值为 A .3π B .6π C .23π D .π6.如图是2017年第一季度五省GDP 情况图,则下列陈述中不正确的是A .2017年第一季度GDP 总量和增速由高到低排位均居同一位的省只有1个B .与去年同期相比,2017年第一季度五个省的GDP 总量均实现了增长C .去年同期河南省的GDP 总量不超过4000亿元D .2017年第一季度GDP 增速由高到低排位第5的是浙江省 7.设a ,b 是两条不同的直线,α、β是不重合的两个平面,则下列命题中正确的是A .若ab⊥,aα⊥,则//b αB .若//a α,αβ⊥,则//a β C .若//a α,//a β,则//αβD .若//a b ,aα⊥,bβ⊥,则//αβ8.甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后,甲说:“丙被录用了”;乙说:“甲被录用了”;丙说:“我没被录用”.若这三人中仅有一人说法错误,则下列结论正确的是 A .甲被录用了B .乙被录用了C .丙被录用了D .无法确定谁被录用了9.若正整数N 除以正整数m 后的余数为n ,则记为()m o d Nn m=,例如()102m o d 4=.如图程序框图的算法源于我国古代闻名中外的《中国剩余定理》.执行该程序框图,则输出的n 等于 A .20 B .21 C .22 D .23 10.一个几何体的三视图及尺寸如图所示,则该几何体的外接球的表面积为A .24πB .48πC .96πD .384π11.双曲线22221(0,0)x y a b ab-=>>的左右焦点分别为1F 、2F ,点P 是双曲线右支上一点,若双曲线的一条渐近线垂直平分1P F ,则该双曲线的离心率是A .2B .5C .2D .512.已知函数2,0()e ,xx x f x x >⎧=⎨⎩≤0,()exg x =(e 是自然对数的底数),若关于x 的方程(())0g f x m-=恰有两个不等实根1x 、2x ,且12x x <,则21x x -的最小值为A .1(1ln 2)2- B .1ln 22+ C .1ln 2- D .1(1ln 2)2+第II 卷 (非选择题 共90分)注意事项:(1)非选择题的答案必须用0.5毫米黑色签字笔直接答在答题卡上,作图题可先用铅笔绘出,确认后再用0.5毫米黑色签字笔描清楚,答在试题卷和草稿纸上无效. (2)本部分共10个小题,共90分.二、填空题:本大题共4个小题,每小题5分,共20分. 13.已知变量x y ,满足约束条件0220x y x y x y +≥⎧⎪-+≥⎨⎪-≤⎩,则2zx y=-的最大值为 .14.二项式831()x x-展开式中的常数项是 (用数字做答).15.已知函数()sin f x x x=-,若2(2)()f a f a -+≥0,则实数a 的取值范围是 .16.如图,在A B C △中,角,,A B C 的对边分别为,,a b c ,(sin co s )ab C C =+.若2Aπ=,D 为A B C △外一点,2D B=,1D C =,则四边形A B D C 面积的最大值为 .三、解答题:共70分。
绵阳市2017-2018学年第一次诊断性考试数学试题(理工类)姓名:__________一、选择题(共60分)1.集合错误!未找到引用源。
,则错误!未找到引用源。
A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
2.错误!未找到引用源。
为A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
.错误!未找到引用源。
3.《九章算术》是我国古代内容极为丰富的一部数学专著,书中有如下问题:今有女子善织,日增等尺,七日织28尺,第二日,第五日,第八日所织之和为15尺,则第九日所织尺数为A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
4.实数错误!未找到引用源。
满足错误!未找到引用源。
,则错误!未找到引用源。
最大值为A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
5.错误!未找到引用源。
,则p是q成立的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.2016年国庆期间,某大型商场举行购物送劵活动,一名顾客计划到该商场购物,他有三张商场优惠劵,商场规定每购买一件商品只能使用一张优惠劵,根据购买商品的标价,三张优惠劵的优惠方式不同,具体如下:优惠劵A:若商品标价超过100元,则付款时减免标价的10%;优惠劵B:若商品标价超过200元,则付款时减免30元;优惠劵C:若商品标价超过200元,则付款时减免超过200元部分的20%.若顾客想使用优惠劵C,并希望比使用优惠劵A或优惠劵B减免的钱都多,则他购买的商品的标价应高于A.300元B.400元C.500元D.600元7.要得到函数错误!未找到引用源。
的图象,可将错误!未找到引用源。
的图象向左平移多少个单位A.错误!未找到引用源。
个B. 错误!未找到引用源。
个C. 错误!未找到引用源。
本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至4页.共150分.考试时间120分钟2024-2025学年四川省泸州市泸县高三上学期第一次诊断性考试数学试题(一模).第I 卷(选择题 共58分)一、选择题:本大题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1. 已知全集U =R ,集合{|11}A x x =-<,{|1B x x =<或4}x ³,则()U A B =U ð( )A. {|12}x x <<B. {|04}x x <<C. {|12}x x £<D. {|04}x x <£【答案】B 【解析】【分析】根据并集、补集的定义进行计算得出结果.【详解】由{|1B x x =<或4}x ³得{|14}U B x x =£<ð,又{{|11}|02}A x x x x =-<=<<,所以(){|04}U x A x B =<<U ð.故选:B.2. 命题“(),1x $Î-¥,3210x x +-<”的否定是( )A. [1,]x $Î+¥,3210x x +-≥ B. (),1x $Î-¥,3210x x +-≥C. [1,]x "Î+¥,3210x x +-≥ D. (),1x "Î-¥,3210x x +-≥【答案】D 【解析】【分析】根据全称命题与存在性命题的关系,准确改写,即可求解.【详解】根据全称命题与存在性命题的关系,可得:命题“(),1x $Î-¥,3210x x +-<”的否定是“(),1x "Î-¥,3210x x +-≥”.故选:D.3. 已知sin 4πsin 3aa =æö-ç÷èø,则tan a =( )A. -B.C.D.【答案】D 【解析】【分析】由正弦展开式和三角函数化简求值得出.【详解】sin 4πsin 3a a ==æö-ç÷èø,4=,所以tan 2tan a a =,解得tan a =故选:D4.已知tan q =,则cos2q =( )A. 89-B.89C. 79-D.79【答案】C 【解析】【分析】根据给定条件,利用二倍角公式,结合正余弦齐次式法计算即得.【详解】由tan q =,得22222222cos sin 1tan 7cos2cos sin cos sin 1tan 9q q q q q q q q q --=-===-++.故选:C5. 将函数()cos3f x x =的图象向右平移π6个单位,得到函数()g x 的图象,则函数()g x 的一条对称轴方程是( )A. π2x =B. π3x =C. π9x = D. π18x =【答案】A【解析】【分析】根据三角函数的图象变换及诱导公式结合三角函数的性质即可判定.【详解】由题意得()ππcos 3cos 3sin 362g x x x x éùæöæö=-=-=ç÷ç÷êúèøèøëû显然由()()πππ3πZ Z 263k x k k x k =+ÎÞ=+Î,当1k =时,π2x =是其一条对称轴,而B 、C 、D 三项,均不存在整数k 满足题意.故选:A6. {}n a 为等差数列,若11100a a +<,1190a a +>,那么n S 取得最小正值时,n 的值( )A. 11 B. 17C. 19D. 21【答案】C 【解析】【分析】由等差数列的性质可得10110,0a a ><,从而得0d <,由1()2n n n a a S +=,结合条件得到19200,0S S ><,即可求解.【详解】因为11100a a +<,1191020a a a +=>,所以10110,0a a ><,故等差数列{}n a 的公差0d <,又1()2n n n a a S +=,又11120100a a a a +=+<,1191020a a a +=>,得到1202020()02a a S +=<,1191919()02a a S +=>,所以n S 取得最小正值时,n 的值为19,故选:C.7. 如图,在正方形ABCD 中,E 为BC 的中点,P 是以AB 为直径的半圆弧上任意一点,设(,)AE xAD y AP x y =+ÎR uuu r uuu r uuu r,则2x y +的最小值为( )A. 1-B. 1C. 2D. 3【答案】B 【解析】【分析】建立平面直角坐标系,设00(,)P x y ,利用坐标法将,x y 用P 点坐标表示,即可求出2x y +的最小值.【详解】以A 点为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴,建立如图所示的平面直角坐标系,设2AB =,00(,)P x y ,则(0,0)A ,(0,2)D ,(2,1)E ,半圆的方程为22(1)1(0)x y y -+=³,所以(2,1)AE =uuu r ,(0,2)AD =uuu r ,00(,)AP x y =uuu r,因为(,)AE xAD y AP x y =+ÎR uuu r uuu r uuu r,即00(2,1)(0,2)(,)x y x y =+,所以00212yx x yy =ìí=+î,即0002221y x y x x ì=ïïíï=-ïî,所以01212y x y x -+=+×,又00(,)P x y 是半圆上的任意一点,所以01cos x θ=+,0sin y q =,[0,]q p Î,所以1sin 2121cos θx y θ-+=+×+,所以当2pq =时,2x y +取得最小值1.故选:B【点睛】关键点点睛:本题主要考查二元变量的最值求法,关键是根据已知把几何图形放在适当的坐标系中,把有关点与向量用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决.8. 已知函数ln ,0()ln(),0ax x x f x ax x x ->ì=í+-<î,若()f x 有两个极值点12,x x ,记过点11(,())A x f x ,22(,())B x f x 的直线的斜率为k ,若02e k <£,则实数a 的取值范围为( )A. 1,e e æùçúèûB. 1,2eæùçúèûC. (e,2e]D. 12,2eæ+ùçúèû【答案】A【解析】【分析】当0x >时,求导,根据()f x 有两个极值点可得0a >,由奇函数的定义可得()f x 为奇函数,不妨设210x x =->,则有21x a =,所以1,1ln B a a æö+ç÷èø,()1,1ln A a a æö--+ç÷èø.由直线的斜率公式k 的表达式,可得1(1ln ),e k a a a =+>,令1()(1ln ),e h a a a a =+>,利用导数可得()h a 在1,e æö+¥ç÷èø上单调递增,又由10,(e)2e e h h æö==ç÷èø,根据单调性可得实数a 的取值范围.【详解】当0x >时,函数()ln f x ax x =-的导数为()11ax f x a x x-¢=-=,由函数()f x 由两个极值点得0a >.当10x a<<时,()0f x ¢<,()f x 单调递减;当1x a>时,()0f x ¢>,()f x 单调递增.故当0x >时,函数()f x 的极小值点为1x a=.当0x <时,则0x ->,则()()()()()ln ln f x a x x ax x f x -=---=-+-=-éùëû,同理当0x >时,也有()()f x f x -=-,故()f x 为奇函数.不妨设210x x =->,则有21x a =,所以1,1ln B a a æö+ç÷èø,可得()1,1ln A a a æö--+ç÷èø,由直线的斜率公式可得2121()()(1ln ),0f x f x k a a a x x -==+>-,又0,1ln 0k a >+>,所以1e >a 设()1(1ln ),eh a a a a =+>,得()2ln 1(1ln )0h a a a =+=++>¢,所以()h a 在1,eæö+¥ç÷èø上单调递增,又由10,(e)2e e h h æö==ç÷èø,.由02e k <<,得()1()e e h h a h æö<£ç÷èø,所以1e ea <£.故选:A.【点睛】对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知关于x 的不等式20ax bx c ++>的解集为()(),12,-¥+¥U ,则()A. 0a >且0c >B. 不等式0bx c +>的解集是23x x ìü>íýîþC. 0a b c -+>D. 不等式20cx bx a ++<的解集为1,12æöç÷èø【答案】ACD 【解析】【分析】由题意可知a >0且1和2是方程ax 2+bx +c =0的两个根,根据韦达定理可得3,2b a c a =-=,由此易判断A,将b c 、替换成a ,由此可求B 、D ,结合二次函数的图象可以判断C.【详解】Q 关于的的不等式20ax bx c ++>的解集为()(),12,¥¥-È+,0a \>且1和2是方程ax 2+bx +c =0的两个根,12123,2b cx x x x a a\+=-===,3,2b a c a \=-=对A,0,20a c a >\=>Q ,故A 正确.对B,3,2,0b a c a bx c =-=\+>Q 可化为320ax a -+>0320a x >\-+>Q ,解的23x <,\不等式0bx c +>的解集为23x x ìü<íýîþ,故B 错误.对C,0a >Q ,1和2是方程ax 2+bx +c =0的两个根,且二次函数y =ax 2+bx +c 开口向上,\当x =―1时,0y >,即0a b c -+>,故C 正确.对D ,不等式20cx bx a ++<可化为2230ax ax a -+<,202310a x x >\-+<Q ,即()()2110x x --<,解得112x <<,\不等式20cx bx a ++<的的集为1{1}2x x <<∣,故D 正确.故选:ACD10. 已知函数2()log (1)f x x =-,若12x x <,12()()f x f x =,则( )A. 122x x << B. 122x x << C.12111x x +=D. 1223x x ++>【答案】ACD 【解析】【分析】作出函数2()log (1)f x x =-的图象,根据12x x <,12()()f x f x =,结合函数图象逐项判断.【详解】作出函数2()log (1)f x x =-的图象,如图所示:因为12x x <,12()()f x f x =,由图象可知:12122,x x <<<,故A 正确;B 错误;由12()()f x f x =,得2122log (1)log (1)x x -=-,即2122log (1)log (1)x x --=-,所以12(1)(1)1x x --=,即1212x x x x =+,所以12111x x +=,故C 正确;因为121223(1)2(1)x x x x +=-+-³=-12(1)2(1)x x -=-时,等号成立,因12x x <,所以122(1)12(1)x x x -<-<-,所以取不到等号,故D 正确.故选:ACD【点睛】关键点点睛:本题关键是将12()()f x f x =转化为12(1)(1)1x x --=而得解.11. 已知数列{}n a 满足11a =,211n n a a +=+,则( )A. 2n a n³ B. 12n n a -³C. 12161n n a -³+ D. 122log 4n n a -³【答案】BCD 【解析】【分析】先证明{}n a 是递增数列,且各项均为正,由递推公式求得234,,a a a 发现A 错误,然后由递推关系利用基本不等式变成不等式2n n a a ³,让n 依次减1进行归纳得出B 正确,由递推式适当放缩得222421()n n n n a a a a ++>>=,这样对2n a 进行归纳得出21444222242()()()n n n n a a a a --->>>>L 142n -=,此不等式两边取以2为底的对数可证明选项D ,对142n -由指数幂运算法则变形为1244216n n --=,然后证明241n n ->-,再结合{}n a 是正整数可得证C .【详解】221131()024n n n n n a a a a a +-=-+=-+>,∴1n n a a +>,{}n a 是递增数列,又11a =,所以0n a >,22a =,35a =,426a =,233a <,A 显然错误;2211112222n n n n n n a a a a a +-=+³³³³=L ,∴12n n a -³,B 正确;对选项C ,222421()n n n n a a a a ++>>=,∴244442222424()()n n n n a a a a --->>=,依此类推:21444222242()()()n n n n a a a a --->>>>L 142n -=,1244216n n --=,下证241n n -³-,1n =时,140-³,2n =时,0411=³,3n =时,242>,假设n k =时,241k k -³-成立,2k >,为则1n k =+时,1224444(1)(1)1k k k k +--=׳->+-,所以对任意不小于3的正整数n ,241n n ->-,所以24121616n n n a --=>,又2n a 是正整数,所以12161n n a -³+,C 正确;对选项D ,由选项C 得1422n n a -³,所以141222log log 24n n n a --³=, D 正确.故选:BCD .第II 卷(非选择题共92分)注意事项:(1)非选择题的答案必须用0.5毫米黑色签字笔直接答在答题卡上,作图题可先用铅笔绘出,确认后再用0.5毫米黑色签字笔描清楚,答在试题卷和草稿纸上无效.(2)本部分共8个小题,共92分.三、填空题:本大题共3小题,每小题5分,共计15分.12. 已知函数()2log ,02,12,2,2x x f x x x ì<£ï=í-+>ïî则()()3f f =______.【答案】1【解析】【分析】结合分段函数解析式,由内向外计算即可.【详解】由题意得()1133222f =-´+=,211log 122f æö==ç÷èø.所以((3))1f f =,故答案为:1.13. 计算:14cos10tan10-=o o____________【解析】【分析】切化弦,通分后结合二倍角和两角和差正弦公式可化简求得结果.【详解】1cos10cos104sin10cos10cos102sin 204cos104cos10tan10sin10sin10sin10---=-==o o o o o o o oo o o o()cos102sin 3010sin10--====o o o o.14. 已知函数2()(1)ln 2x f x mx x mx =-+-,函数()()g x f x ¢=有两个极值点12,x x .若110,e x æùÎçúèû,则()()12g x g x -的最小值是______.【答案】4e【解析】【分析】求导后可知12,x x 是方程210x mx ++=在()0,¥+上的两根,结合韦达定理可得211x x =,111a x x æö=-+ç÷èø;将()()12g x g x -化为11111112ln 2x x x x x æöæö-++-ç÷ç÷èøèø,令()11122ln 0e h x x x x x x x æöæöæö=--+<£ç÷ç÷ç÷èøèøèø,利用导数可求得()min h x ,从而得到结果.【详解】因为2()(1)ln 2x f x mx x mx =-+-,令()()g x f x ¢=()11ln ln 0mx m x x m m x x x x x-=++-=+->,因为()222111m x mx g x x x x++=++=¢,()g x 有两个极值点12,x x ,所以12,x x 是方程210x mx ++=在()0,¥+上的两根,所以12x x m +=-,121x x =,所以211x x =,111m x x æö=-+ç÷èø,所以()()1211221211ln ln g x g x m x x m x x x x -=+---+111111*********ln ln 2ln 2m x x m x x x x x x x x x æöæö=+-+-+=-++-ç÷ç÷èøèø,设()11122ln ,0e h x x x x x x x æöæöæö=--+<£ç÷ç÷ç÷èøèøèø,则()()()222221122122ln 21ln x x h x x x x x x x +-æöæö¢=+---+=-ç÷ç÷èøèø,所以当10,ex æùÎçúèû时,()0h x ¢<,所以()h x 在10,e æùçúèû上单调递减,所以()min 11142e 2e e e e eh x h æöæöæö==-++=ç÷ç÷ç÷èøèøèø,即()()12g x g x -的最小值为4e .故答案为:4e.【点睛】思路点睛:本题考查利用导数求解函数最值的问题;本题求解最值的基本思路是将多个变量统一为关于一个变量的函数的形式,通过构造函数将问题转化为函数最值的求解问题.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知函数()()sin f x x w j =+(其中0w >,π02j <<)的最小正周期为π,且___________.①点π,112æöç÷èø在函数()y f x =的图象上;②函数()f x 的一个零点为π6-;③()f x 的一个增区间为5ππ,1212æö-ç÷èø.请你从以上三个条件选择一个(如果选择多个,则按选择的第一个给分),补充完整题目,并求解下列问题:(1)求()f x 的解析式;(2)用“五点作图法”画出函数()f x 一个周期内的图象.【答案】(1)无论选哪个条件,函数()f x 的解析式均为()πsin 23f x x æö=+ç÷èø. (2)答案见解析【解析】【分析】(1)若选①,则ππsin 211212f j æöæö=´+=ç÷ç÷èøèø,若选②,则ππsin 063f j æöæö-=-+=ç÷ç÷èøèø,若选③,则5ππππ,,6622j j æöæö-++=-ç÷ç÷èøèø,由此求出分别求出j 即可得解.(2)直接用“等距法”按照五点画图的步骤作图即可.【小问1详解】由题意最小正周期为2ππ,>0T w w==,解得2w =,所以()()sin 2f x x j =+,若选①,则ππsin 211212f j æöæö=´+=ç÷ç÷èøèø,所以ππ2π,Z 62k k j +=+Î,又π02j <<,所以π0,3k j ==,所以函数()f x 的解析式为()πsin 23f x x æö=+ç÷èø;若选②,则ππsin 063f j æöæö-=-+=ç÷ç÷èøèø,所以ππ,Z 3k k j -+=Î,又π02j <<,所以π0,3k j ==,所以函数()f x 的解析式为()πsin 23f x x æö=+ç÷èø;若选③,即()f x 的一个增区间为5ππ,1212æö-ç÷èø,当5ππ,1212x æöÎ-ç÷èø时,5ππ2,66t x j j j æö=+Î-++ç÷èø,又π02j <<,由复合函数单调性可知,只能5ππππ,,6622j j æöæö-++=-ç÷ç÷èøèø,π3j =,所以函数()f x 解析式为()πsin 23f x x æö=+ç÷èø;综上所述,无论选哪个条件,函数()f x 的解析式均为()πsin 23f x x æö=+ç÷èø.【小问2详解】列表如下:xπ6-π12π37π125π6π23t x =+π2π3π22π()πsin 23f x x æö=+ç÷èø0101-0的描点、连线(光滑曲线)画出函数()f x 一个周期内的图象如图所示:16. 已知定义在R 上的函数1()1xxa f x a-=+(0a >且1a ¹).(1)判断函数奇偶性,并说明理由;(2)若1(1)2f =-,试判断函数()f x 的单调性并加以证明;并求()10f x m +-=在[2,3]-上有解时,实数m 的取值范围.【答案】(1)()f x 为奇函数,理由见解析 (2)()f x 为减函数,证明见解析;51914,m éùÎêúëû【解析】【分析】(1)先判断函数的奇偶性,再利用定义证明即可.(2)求出参数值得到原函数,再转化为交点问题求解参数范围即可.【小问1详解】()f x 为奇函数对任意x ÎR ,都有R x -Î,且该函数的定义域为R ,显然关于原点对称,可得1111()()01111x x x x x x xx a a a a f x f x a a a a ------+-=+=+=++++.()f x \为奇函数.【小问2详解】当1(1)2f =-时,可得2111a a -+=-,解得3a =,此时13()13xxf x -=+在R 上为严格减函数,证明如下:任取21x x >,且12,R x x Î,则()()21212113131313x x x x f x f x ---=-++的()()()()()12121122123(13)(13)(13)(13)2131313133x x x x x x x x x x -+--++++=+-=,21x x >Q ,21330x x >>,()()210f x f x \-<,()f x \在R 上为严格减函数,而413(2),(4)513f f -=-=-,13()13xxf x -\=+在[2,3]-上的值域为13,5414éù-êúëû,要使()10f x m +-=在[2,3]-上有零点,此时等价于y m =与()1y f x =+在[2,3]-上有交点,而当[2,3]x Î-时,可得()1,,51914f x éù+Îêúëû故51914,m éùÎêúëû.17. 在ABCV 中,已知)tan tan tan tan 1A B A B +=-.(1)求C ;(2)记G 为ABC V 的重心,过G 的直线分别交边,CA CB 于,M N 两点,设,CM CA CN CB l m ==uuuu r uuu r uuu r uuu r .(i )求11lm+的值;(ii )若CA CB =,求CMN V 和ABC V 周长之比的最小值.【答案】(1)π3C = (2)(i )3(ii )23【解析】【分析】(1)借助三角形内角关系及两角和的正切公式化简并计算即可得;(2)(i )设D 为AB 的中点,结合重心的性质及向量运算可得1133CG CM CN l m=+uuu r uuuu r uuu r,再利用三点共线定理即可得解;(ii )由题意可得ABC V 为等边三角形,可设其边长为1,则可用,l m 表示两三角形周长之比,结合(i )中所得与基本不等式即可得解.【小问1详解】由题可知()()tan tan tan tan πtan 1tan tan A BC A B A B A B+=--=-+=-=-又()0,πC Î,所以π3C =;【小问2详解】(i )设D 为AB 的中点,则1122CD CA CB =+uuu r uuu r uuu r,又因为23CG CD =uuu r uuu r,所以11113333CG CA CB CM CN l m=+=+uuu r uuu r uuu r uuuu r uuu r ,因,,M G N 三点共线,所以11133l m +=,所以113l m+=;(ii )由CA CB =,π3C =,可得ABC V 为等边三角形,设ABC V 的边长为1,CMN V 与ABC V 周长分别为12,C C ,则23C =,MN =,所以1C l m =+所以12C C =由113lm+=可得,3lm l =+,解得49lm ³,易知函数y x =4,9éö+¥÷êëø上单调递增,所以12C C lm =³所以CMN V 和ABC V 的周长之比的最小值为23.18. 已知等比数列{}n a 的各项均为正数,5462,,4a a a 成等差数列,且满足2434a a =,等差数列数列{b n }的前n 项和244,6,10n S b b S +==.(1)求数列{}n a 和{b n }的通项公式;(2)设{}*252123,,n n n n n n b d a n d b b +++=ÎN 的前n 项和n T ,求证:13n T <.(3)设()()n n n n b n c a b n ìï=í×ïî为奇数为偶数,求数列{}n c 的前2n 项和.【答案】(1)1()2nn a =;n b n =(2)证明见解析 (3)2868994nn n ++-×【解析】为【分析】(1)设等比数列{}n a 的公比为q ,等差数列{b n }的公差为d ,根据题意,列出方程组,分别求得11,,,a q b d 的值,即可求得数列{}n a 和{b n }的通项公式;(2)由(1)求得111(21)2(23)2[]2n n n d n n +-=+×+×,结合裂项法求和,求得数列{}n d 的前n 项和113(23)2n nT n =-+×,即可得证;(3)根据题意,求得数列{}n c 的通项公式,结合等差数列的求和公式和乘公比错位法求和,即可求解.【小问1详解】解:由等比数列{}n a 的各项均为正数,设公比为(0)q q >,因为5462,,4a a a 成等差数列,且满足2434a a =,可得4562432244a a a a a =+ìí=î,即()3451112321124a q a q a q a q a q ì=+ïí=ïî,即211214q q a q ì=+í=î,解得111,22a q ==,所以1111((222n nn a -=×=,设等差数列{b n }的公差为d ,因为2446,10b b S +==,可得112464610b d b d +=ìí+=î,解得11b d ==,所以1(1)1n b n n =+-´=,即数列{b n }的通项公式为n b n =.【小问2详解】证明:由(1)知1()2nn a =,n b n =,可得252123125111()(21)(23[)2(21)2(23)22n n n n n n n n b d a b b n n n n n +++++=×-+++×+×=,则()()11111111123254547878916212232n n n T n n +éùæöæöæöæö=-+-+-++-êúç÷ç÷ç÷ç÷ç÷××××××+×+×èøèøèøêúèøëûL 111112[]6(23)23(23)2n nn n +=×-=-+×+×,因为10(23)2n n >+×,所以1113(23)23n n -<+×,故13nT <.【小问3详解】解:因为()()n n n n b n c a b n ìï=í×ïî为奇数为偶数,可得,1,2n n n n c n n ìï=íæö×ïç÷èøî为奇数为偶数,则数列{}n c 的前2n 项和2111(1321)(2424162n n M n n =+++-+×+×++×L L ,令()2(121)13212n n n U n n +-=+++-==L ,令21112424162n n V n =×+×++×L ,则221111242416642n n V n +=×+×++×L ,两式相减得21222211(1)3111111242214283222214n n n n n n n -++×-=++++-×=-×-L 21212141112341()3222332n n n n n ++++=×--×=-×,所以8681868994994n n nn n V ++=-×=-×,所以数列{}n c 的前2n 项和2868994n n n nn M U V n +=+=+-×.19. 已知函数()()()ln 3cos 2f x x x =-+-的图象与()g x 的图象关于直线1x =对称.(1)求函数()g x 的解析式;(2)若()1g x ax -£在定义域内恒成立,求a 的取值范围;(3)求证:()2*11ln 2ni n g n n i =+æö<+Îç÷èøåN .【答案】(1)()()ln 1cos g x x x =++ (2)1 (3)证明见解析【解析】【分析】(1)根据两函数关于1x =对称求解析式即可;(2)先探求1a =时成立,再证明当1a =时恒成立,证明过程利用导数求出函数极大值即可;(3)根据(2)可得111g i i æö£+ç÷èø,转化为211111112212ni n g n i n n n n =+æöæö£+++++ç÷ç÷++-èøèøåL ,再由()11ln ln 1ln 1n n n n n+<=+-+,累加相消即可得证.【小问1详解】设()g x 图象上任意一点00(,)P x y ,则其关于直线1x =的对称点为00(2,)P x y ¢-,由题意知,P ¢点在函数()f x 图象上,所以()()()000002ln 1cos y g x f x x x ==-=++,所以()()ln 1cos g x x x =++.【小问2详解】不妨令()()1ln(1)cos 1(1)h x g x ax x x ax x =--=++-->-,则()0≤h x 在(1,)-+¥上恒成立,注意到(0)0h =且()h x 在(1,)Î-+¥x 上是连续函数,则0x =是函数()h x 的一个极大值点,所以(0)0h ¢=,又()1sin 1h x x a x ¢=--+,所以()010h a =¢-=,解得 1.a =下面证明:当1a =时,()0≤h x 在()1,x ¥Î-+上恒成立,令()()()ln 11x x x x j =+->-,则()1111x x x x j -=-=¢++,当(1,0)x Î-时,()0x j ¢>,()j x 单调递增;当(0,)x Î+¥时,()0,()x x j j ¢<单调递减,所以()(0)0x j j £=,即ln(1)x x +£在(1,)Î-+¥x 上恒成立,又cos 10x -£,所以()0≤h x ,综上,1a =.【小问3详解】由(2)知,()1g x x -£,则111g i iæö-£ç÷èø,111g i iæö\£+ç÷èø,211111112212ni n g n i n n n n =+æöæö\£+++++ç÷ç÷++-èøèøåL ,又由(2)知:ln(1)x x +£在(1,)-+¥恒成立,则ln 1£-x x 在(0,+∞)上恒成立,当且仅当1x =时取等号,则令()*0,1,N 1nx n n =ÎÎ+,则1<1ln 1n n n +-+,()11ln ln 1ln .1n n n n n +\<=+-+()()()()()111ln 1ln ln 2ln 1ln 2ln 21ln 2.122n n n n n n n n n\+++<+-++-+++--=++L L()2*11ln 2ni n g n n i =+æö\<+Îç÷èøåN ,证毕.【点睛】关键点点睛:在证明第(3)问时,关键应用(2)后合理变形,得到211111112212ni n g n i n n n n =+æöæö£+++++ç÷ç÷++-èøèøåL ,再令()*0,1,N 1n x n n =ÎÎ+,利用(2)中式子得()11ln ln 1ln 1n n n n n+<=+-+,能够利用累加相消是证明的关键.。
凉山州2018届高中毕业班第一次诊断性检测文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则集合的元素个数为()A. 6B. 5C. 4D. 3【答案】B【解析】【详解】集合,根据集合交集的概念得到个数为5个。
故答案为:B。
2.命题“,”的否定是()A. ,B. ,C. ,D.【答案】C【解析】因为“,”是全称命题,所以依据含一个量词的命题的否定可知:其否定是存在性命题,即“,”,应选答案C 。
3.已知复数,则()A. B. 0 C. 1 D.【答案】C【解析】复数,故答案为:C。
4.已知,则的最小正周期是()A. B. C. D.【答案】A【解析】根据三角函数周期的概念得到故答案为:A。
5.以椭圆短轴为直径的圆经过此椭圆的长轴的两个三等分点,则椭圆的离心率是()A. B. C. D.【答案】D【解析】根据题意,以椭圆短轴为直径的圆经过此椭圆的长轴的两个三等分点,则有2b=,即a=3b,则c==2b,则椭圆的离心率e==;故选:D.6.已知锐角满足,则等于()A. B. C. D.【答案】A【解析】由cos(α﹣)=cos2α,得,∴sinα+cosα>0,则cosα﹣sinα=.两边平方得:,∴.故答案为:A。
7.执行如图所示的程序框图,当输出时,则输入的值可以为A.B.C.D.【答案】B【解析】由题意,模拟执行程序,可得程序框图的功能是计算S=n×(n-1)×…×5的值,由于S=210=7×6×5,可得:n=7,即输入n的值为7.故选:B.8.已知点的坐标满足不等式组,为直线上任一点,则的最小值是()A. B. C. 1 D.【答案】A【解析】点的坐标满足不等式组的可行域如图:点的坐标满足不等式组,为直线上任一点,则的最小值,就是两条平行线与之间的距离:,故选A.点睛:本题考查线性规划的应用,平行线之间的距离的求法,考查转化思想以及计算能力,解决本题的关键是作出不等式组所表示的平面区域与的位置关系,难度一般;画出约束条件的可行域,利用已知条件,把的最小值转化求解平行线间的距离即可.9.在中,已知,则该的形状为()A. 等腰三角形B. 直角三角形C. 正三角形D. 等腰或直角三角形【答案】D【解析】试题分析:由正弦定理,得,则即,即,所以,即,即为等腰或直角三角形.考点:三角形形状的判定.10.设是上的奇函数,且在区间上递减,,则的解集是()A. B.C. D.【答案】C【解析】根据题意,函数f(x)是奇函数,在区间(0,+∞)上单调递减,且f (2)=0,则函数f(x)在(-∞,0)上单调递减,且f(-2)=-f(2)=0,当x>0时,若f(x)>0,必有0<x<2,当x<0时,若f(x)>0,必有x<-2,即f(x)>0的解集是(-∞,-2)∪(0,2);故答案选:C.点睛:本题考查函数的单调性与奇偶性的综合应用,注意奇函数的在对称区间上的单调性的性质;对于解抽象函数的不等式问题或者有解析式,但是直接解不等式非常麻烦的问题,可以考虑研究函数的单调性和奇偶性等,以及函数零点等,直接根据这些性质得到不等式的解集。
山东省20l5级高三第一次诊断性考试数学试题(理科)2017.09说明:本试卷满分l50分,分为第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷为第l 页至第3页,第II 卷为第3页至第5页.试题答案请用2B 铅笔或0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效.考试时间120分钟.第I 卷 (共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}{}234005A x x xB x x A B =--<=≤≤⋃=,,则A .[)0,4B .[]0,4C .[]15-, D .(]15-,2.已知1213,3z i z i =+=+,其中i 是虚数单位,则的虚部为A .1-B 。
C .i -D .453.在602,6A B C A B C A B B C B C ∆∠===中,,,在上任取一点D,使A B D ∆为钝角三角形的概率为A. B 。
C. D 。
4.在等比数列{}na 中,13282,81nn a a a a -+=⋅=,且前n 项和121nS =,则此数列的项数n 等于A .4B .5C .6D .75.(421x x ⎛⎫+ ⎪⎝⎭的展开式中x 的系数是A 。
1-B 。
3C 。
3- D. 16.将长方体截去一个四棱锥得到的几何体如右图所示,则该几何体的侧视图为的展开式中x 的系数是A 。
16163π-B 。
32163π- C.1683π-D 。
3283π-7.设偶函数()[)0f x +∞在,上单调递增,则使得()()21fx f x >-成立的x 的取值范围是A .1,13⎛⎫ ⎪⎝⎭B .()1,1,3⎛⎫-∞⋃+∞ ⎪⎝⎭ C 。
11,33⎛⎫- ⎪⎝⎭D 。
11,,33⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭8.下图是一个算法流程图,则输出的x 的值是A .37B .42C .59D .659.已知曲线12:2c o s ,:3s i n 2c o s 2C y x C y x x ==-,则下面结论正确的是A .把1C 各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移23π个单位长度,得到曲线C 2B .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移至个单位长度,得到曲线C 2C .把1C 上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移23π个单位长度,得到曲线C 2的D .把1C 上各点的横坐标缩短到原来倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 210.过抛物线24y x =的焦点F 的直线交抛物线于A ,B 两点,若3=A FB F =,则A .B .2C .D .11.已知函数()42x xf x m =⋅-,若存在非零实数0x ,使得()()0f x fx -=成立,则实数m 的取值范围是A .1,2⎡⎫+∞⎪⎢⎣⎭B .10,2⎛⎫⎪⎝⎭C. ()0,2 D 。
四川省泸州市数学高三理数第一次考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2018·永州模拟) 设集合,,若,则()A .B .C .D .2. (2分) (2019高二上·田阳月考) 设复数满足,则复平面内表示的点位于()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (2分) (2019高三上·建平期中) 若函数是偶函数,则的一个值可能是()A . 0B .C .D .4. (2分)(2018·重庆模拟) 中国古代名著《孙子算经》中的“物不知数”问题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”即“有数被三除余二,被五除余三,被七除余二,问该数为多少?”为解决此问题,现有同学设计如图所示的程序框图,则框图中的“ ”处应填入()A .B .C .D .5. (2分) (2016高三上·黄冈期中) 已知函数f(x)=cosx(x∈(0,2π))有两个不同的零点x1、x2 ,方程f(x)=m有两个不同的实根x3、x4 .若把这四个数按从小到大排列构成等差数列,则实数m的值为()A .B .C .D . -6. (2分) (2017高三下·黑龙江开学考) “α≠β”是“sinα≠sinβ”的()A . 充分而不必要条件B . 必要而不充分条件C . 充要条件D . 既不充分也不必要条件7. (2分) (2019高一下·三水月考) 下表是高一级甲,乙,丙三位同学在先后五次数学考试中的成绩折线图,那么下列说法正确的是()A . 甲平均分比丙要高;B . 按趋势,第6次的考试成绩最高分必定是丙;C . 每个人五次成绩的标准差最大的是乙;D . 从第1次考试到第5次考试,进步幅度最大的是丙.8. (2分) (2018高二下·佛山期中) 是抛物线的焦点,以为端点的射线与抛物线相交于,与抛物线的准线相交于,若,则()A .B .C .D .9. (2分) (2018高二下·凯里期末) 某几何体的三视图及尺寸大小如图所示,则该几何体的体积为()A . 6B . 3C . 2D . 410. (2分) (2018高二下·遵化期中) 设,分别是定义在上的奇函数和偶函数,当时,,且,则不等式的解集是()A .B .C .D .11. (2分)如图,抛物线的焦点为,准线为,经过且斜率为的直线与抛物线在轴上方的部分相交于点,,垂足为,则的面积是()A .B .C .D .12. (2分) (2017高二下·南昌期末) 已知函数f(x)= ,则f(a)>2的实数a的取值范围是()A . (﹣∞,﹣2)∪(0,+∞)B . (﹣2,﹣1)C . (﹣2,0)D . (∞,﹣2)∪(﹣1,+∞)二、填空题 (共4题;共4分)13. (1分)(2018·上海) 在平面直角坐标系中,已知点A(-1,0),B(2,0),E,F是y轴上的两个动点,且| |=2,则· 的最小值为________14. (1分)已知点,动点满足条件 .记动点的轨迹方程为________.15. (1分) (2016高二下·宜春期中) 如图所示,EFGH是以O为圆心,半径为1的圆的内接正方形,将一粒豆子随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形OHE(阴影部分)内”,则P(B|A)=________.16. (1分)(2017·郎溪模拟) 数列{an}满足:,,n∈N* ,,Sn=b1+b2+…+bn ,Pn=b1b2…bn ,则Sn+2Pn=________.三、解答题 (共7题;共35分)17. (5分)(2017·蚌埠模拟) 在△ABC中,内角A,B,C所对的边分别为a,b,c,已知2sin2A+sin(A﹣B)=sinC,且.(Ⅰ)求的值;(Ⅱ)若c=2,,求△ABC的面积.18. (5分) (2017高二下·洛阳期末) 第35届牡丹花会期间,我班有5名学生参加志愿者服务,服务场所是王城公园和牡丹公园.(1)若学生甲和乙必须在同一个公园,且甲和丙不能在同一个公园,则共有多少种不同的分配方案?(2)每名学生都被随机分配到其中的一个公园,设X,Y分别表示5名学生分配到王城公园和牡丹公园的人数,记ξ=|X﹣Y|,求随机变量ξ的分布列和数学期望E(ξ)19. (5分)(2020·湖南模拟) 四棱锥与直四棱柱组合而成的几何体中,四边形是菱形,,,,,交于,平面,为的中点.(1)证明:平面;(2)动点在线段上(包括端点),若二面角的余弦值为,求的长度.20. (5分)(2020·攀枝花模拟) 已知椭圆的短轴顶点分别为 ,且短轴长为为椭圆上异于的任意-一点,直线的斜率之积为(1)求椭圆的方程;(2)设为坐标原点,圆的切线与椭圆C相交于两点,求面积的最大值.21. (5分) (2017高二下·雅安期末) 已知函数f(x)=px﹣﹣2lnx.(Ⅰ)若p=2,求曲线f(x)在点(1,f(1))处的切线方程;(Ⅱ)若函数f(x)在其定义域内为增函数,求正实数p的取值范围;(Ⅲ)设函数g(x)= (e为自然对数底数),若在[1,e]上至少存在一点x0 ,使得f(x0)>g(x0)成立,求实数p的取值范围.22. (5分)(2020·攀枝花模拟) 平面直角坐标系中,曲线的参数方程为 ( 为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为(1)写出曲线的极坐标方程和曲线的直角坐标方程;(2)若射线平分曲线,且与曲线交于点,曲线上的点满足,求 .23. (5分)若,求证 .参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共35分)17-1、18-1、18-2、19-1、19-2、20-1、20-2、22-1、22-2、23-1、。
四川省泸州市2018届高三第一次诊断性考试
数学理试题
第Ⅰ卷(共60分)
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只
有一项是符合题目要求的.
1.若21)4tan(,则tan的值为( )
A.31 B.31 C.3 D.3
2.已知集合}12|{xyxA,}|{2xyyB,则BA( )
A.)}1,1{( B.),0[ C.)1,1( D.
3.“0x”是“3)31(x”的( )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.即不充分也不必要条件
4.在正方体1111DCBAABCD中,E为BC的中点,F为11CB的中点,则异面直线AF与EC1所成角
的正切值为( )
A.25 B.32 C.552 D.35
5.函数||lnxxy的大致图象是( )
6.设ba,是空间中不同的直线,,是不同的平面,则下列说法正确的是( )
A.bba,//,则//a B.//,,ba,则ba//
C. //,//,,baba,则// D.a,//,则//a
7.已知函数)2sin(xy在6x处取得最大值,则函数)2cos(xy的图象( )
A.关于点)0,6(对称 B.关于点)0,3(对称
C.关于直线6x对称 D.关于直线3x对称
8.如图,CD是山的高,一辆汽车在一条水平的公路上从正东方向往正西方向行驶,在点A处时测得点
D
的仰角为030,行驶300m 后到达B处,此时测得点C在点B的正北方向上,且测得点D的仰角为045,
则此山的高CD( )
A.m3150 B.m275 C.m2150 D.m2300
9.已知圆锥的高为5,底面圆的半径为5,它的顶点和底面的圆周都在同一个球的球面上,则该球的表
面积为( )
A.4 B.36 C. 48 D.24
10.定义在R上的函数)(xf的导函数)('xf无零点,且对任意Rx都有2))((2xxff,若函数
kxxfxg)()(在]1,1[上与函数)(xf
具有相同的单调性,则k的取值范围是( )
A.),0[ B.]3,( C.]0,( D.),3[
11.已知一几何体的三视图如图所示,俯视图是一个等腰直角三角形和半圆,则该几何体的体积为( )
A.62 B.21 C.32 D.32
12.函数14)2ln()(aaxeexxxf,其中e为自然对数的底数,若存在实数0x使3)(0xf成立,
则实数a的值为( )
A.2ln B.12ln C. 2ln D.12ln
第Ⅱ卷(共90分)
二、填空题(每题5分,满分20分,将答案填在答题纸上)
13.已知函数)2cos(2)(xxf,且31)(af,则)(af的值为 .
14.设函数2,1220,4log)(2xxxxfx,若9)(af,则a的值为 .
15.已知函数)212()(xxxxf,若)()1(xfxf,则x的取值范围是 .
16.一个长、宽、高分别为1、2、3密封且透明的长方体容器中装有部分液体,如果任意转动该长方体,
液面的形状都不可能是三角形,那么液体体积的取值范围是 .
三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)
17.已知函数axxxxf2coscossin)(的最大值为22.
(1)求a的值;
(2)若方程01)(mxf在]2417,4[内有两个零点,求m的取值范围.
18.设)2cos()(xaexfx,其中0a.
(1)求证:曲线)(xfy在点))0(,0(f处的切线过定点;
(2)若函数)(xf在)1,1(上存在唯一极值,求正数a的取值范围.
19.如图,在ABC中,角CBA,,所对的边分别为cba,,,)sin(2sinBAA,它的面积21675cS.
(1)求Bsin的值;
(2)若D是BC边上的一点,43cosADB,求DCBD的值.
20.如图,在四棱锥ABCDS中,底面ABCD是梯形,DCAB//,090ABC,SDAD,
ABCDBC21
,侧面SAD底面ABCD.
(1)求证:平面SBD平面SAD;
(2)若SD与底面ABCD所成角为060,求二面角DSBC的余弦值.
21.已知函数)0(ln21)(2axaaxxxf.
(1)讨论)(xf的单调性;
(2)当1a时,若方程)2(21)(2mmxxf有两个相异实根21,xx,且21xx,证明:2221xx.
选做题:
22.在直角坐标系中,以原点为极点,x轴的正半轴为极轴,以相同的长度单位建立极坐标系,已知直线
l
的极坐标方程为3)3cos(,曲线C的极坐标方程为)0(cos4aa.
(1)设t为参数,若ty2132,求直线l的参数方程;
(2)已知直线l与曲线C交于QP,,设)32,0(M,且||||||2MQMPPQ,求实数a的值.
23.已知函数|2||3|)(xxaxf.
(1)若2a,解不等式3)(xf;
(2)若存在实数x,使得不等式|2|41)(xaxf成立,求实数a的取值范围.
试卷答案
一、选择题
1-5:BBACD 6-10:DACBA 11、12:CD
二、填空题
13.31 14.3 15.)21,( 16.)5,1(
三、解答题
17.(1)axxxxf2coscossin)(
axx212cos2sin
2
1
ax21)42sin(
2
2
由Rx,得)(xf的最大值为222122a
故21a.
(2)方程01)(mxf即01)42sin(22mx
所以1)42sin(22xm
因为方程01)(mxf在]2417,4[内有两个零点,
所以直线my与函数1)42sin(22xy的图象在]2417,4[内有两个交点,
因为24174x,所以67424x,
结合图象可得m的取值范围是]23,221[.
18.证明:(1)因为)2sin(2)('xaexfx
所以af)0(',又1)0(af,
所以曲线)(xfy在点))0(,0(f处的切线方程为
axay)1(,即1)1(xay
,
所以曲线)(xfy在))0(,0(f处的切线过定点)1,1(.
(2)因为)2sin(2)('xaexfx,
当0a,函数xaey与)2sin(2xy在)1,1(上都是增函数,
所以)2sin(2)('xaexfx在)1,1(上是增函数,
因为函数)(xf在)0,1(上存在唯一极值,
所以0)1('0)1('ff即02sin20)2sin(21aeae
所以22eae
所以正数a的取值范围是)2,0(e.
19、(1)因为)sin(2sinBAA,所以CAsin2sin,
由正弦定理得ca2,
因为221675sinsin21cBcBacS
所以1675sinB
(2)因为43cosADB,所以47sinADB,
在ABD中,由正弦定理得ADBABBADsinsin,
所以cAD45
由余弦定理得43452)45(222BDcBDcc,
所以cBD23或c83,
因为D是BC边上的一点,所以cBD23,
因为ca2,所以cCD21,
所以3DCBD.
20、(1)因为090ABC,CDBC,
所以045CBD,BCD是等腰直角三角形,
故CBBD2,
因为BDAB2,045ABD,
所以ABD∽BCD,
0
90ADB
,即ADBD,
因为侧面SAD底面ABCD,交线为AD,
所以BD平面SAD,所以平面SBD平面SAD.
(2)过点S作ADSE交AD的延长线于点E,
因为侧面SAD底面ABCD,
所以SE底面ABCD,