最新pkpm参数意义与调整
- 格式:doc
- 大小:56.00 KB
- 文档页数:32
tu高层结构设计需要控制的七个比值及调整方法1、轴压比:主要为控制结构的延性,规范对墙肢和柱均有相应限值要求,见抗规6.3.7和6.4.6,高规 6.4.2和7.2.14。
轴压比不满足时的调整方法:1)程序调整:SATWE程序不能实现。
2)人工调整:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。
2、剪重比:主要为控制各楼层最小地震剪力,确保结构安全性,见抗规5.2.5,高规3.3.13。
这个要求如同最小配筋率的要求,算出来的地震剪力如果达不到规范的最低要求,就要人为提高,并按这个最低要求完成后续的计算。
剪重比不满足时的调整方法:1)程序调整:在SATWE的“调整信息”中勾选“按抗震规范5.2.5调整各楼层地震内力”后,SATWE按抗规5.2.5自动将楼层最小地震剪力系数直接乘以该层及以上重力荷载代表值之和,用以调整该楼层地震剪力,以满足剪重比要求。
2)人工调整:如果还需人工干预,可按下列三种情况进行调整:a)当地震剪力偏小而层间侧移角又偏大时,说明结构过柔,宜适当加大墙、柱截面,提高刚度;b)当地震剪力偏大而层间侧移角又偏小时,说明结构过刚,宜适当减小墙、柱截面,降低刚度以取得合适的经济技术指标;c)当地震剪力偏小而层间侧移角又恰当时,可在SATWE的“调整信息”中的“全楼地震作用放大系数”中输入大于1的系数增大地震作用,以满足剪重比要求。
3、刚度比:主要为控制结构竖向规则性,以免竖向刚度突变,形成薄弱层,见抗规3.4.2,高规4.4.2;对于形成的薄弱层则按高规5.1.14予以加强。
刚度比不满足时的调整方法:1)程序调整:如果某楼层刚度比的计算结果不满足要求,SATWE自动将该楼层定义为薄弱层,并按高规5.1.14将该楼层地震剪力放大1.15倍。
2)人工调整:如果还需人工干预,可适当降低本层层高和加强本层墙、柱或梁的刚度,适当提高上部相关楼层的层高和削弱上部相关楼层墙、柱或梁的刚度。
4、位移比:主要为控制结构平面规则性,以避免产生过大的偏心而导致结构产生较大的扭转效应。
satwe处理后最主要控制以下几个参数就可以了,对于新手来说反复看,慢慢消化。
贵州建筑结构设计群(143562456)高层结构设计需要控制的七个比值及调整方法高层设计的难点在于竖向承重构件(柱、剪力墙等)的合理布置,设计过程中控制的目标参数主要有如下七个:一、轴压比:主要为限制结构的轴压比,保证结构的延性要求,规范对墙肢和柱均有相应限值要求,见抗规6.3.7和6.4.6,高规 6.4.2和7.2.14及相应的条文说明。
轴压比不满足要求,结构的延性要求无法保证;轴压比过小,则说明结构的经济技术指标较差,宜适当减少相应墙、柱的截面面积。
轴压比不满足时的调整方法:1、程序调整:SATWE程序不能实现。
2、人工调整:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。
二、剪重比:主要为限制各楼层的最小水平地震剪力,确保周期较长的结构的安全,见抗规5.2.5,高规3.3.13及相应的条文说明。
这个要求如同最小配筋率的要求,算出来的水平地震剪力如果达不到规范的最低要求,就要人为提高,并按这个最低要求完成后续的计算。
剪重比不满足时的调整方法:1、程序调整:在SATWE的“调整信息”中勾选“按抗震规范5.2.5调整各楼层地震内力”后,SATWE按抗规5.2.5自动将楼层最小地震剪力系数直接乘以该层及以上重力荷载代表值之和,用以调整该楼层地震剪力,以满足剪重比要求。
2、人工调整:如果还需人工干预,可按下列三种情况进行调整:1)当地震剪力偏小而层间侧移角又偏大时,说明结构过柔,宜适当加大墙、柱截面,提高刚度。
2)当地震剪力偏大而层间侧移角又偏小时,说明结构过刚,宜适当减小墙、柱截面,降低刚度以取得合适的经济技术指标。
3)当地震剪力偏小而层间侧移角又恰当时,可在SATWE的“调整信息”中的“全楼地震作用放大系数”中输入大于1的系数增大地震作用,以满足剪重比要求。
三、刚度比:主要为限制结构竖向布置的不规则性,避免结构刚度沿竖向突变,形成薄弱层,见抗规3.4.2,高规4.4.2及相应的条文说明;对于形成的薄弱层则按高规5.1.14予以加强。
PKPM参数设置规范详解PKPM是一种常用的结构分析和设计软件,具有参数设置功能,可以根据不同的需求进行定制。
本文将详细介绍PKPM参数设置的规范,帮助用户更好地使用该软件。
首先需要明确的是,参数设置是PKPM软件中非常重要的一项功能,它直接影响到分析结果的准确性和可靠性。
因此,在进行参数设置时,需要遵循一定的规范,以确保分析结果的准确性。
一、参数设置的原则:1.合理性原则:设置的参数应符合实际情况,反映结构的真实状态,不能过于乐观或过于保守。
2.一致性原则:参数设置应与其他设计参数相一致,确保整个设计的协调性。
3.严谨性原则:遵循规范和标准,确保参数设置的合理性和准确性。
二、常见参数设置:1.材料参数:PKPM软件中提供了各类结构材料的参数设置,包括弹性模量、泊松比、抗拉强度等。
在设置材料参数时,应根据实际材料的性质和试验数据进行选择。
2.几何参数:几何参数包括构件的尺寸、形状等。
在设置几何参数时,应确保准确、一致,并考虑对结构响应的影响。
3.工况参数:工况参数包括荷载、边界条件等。
在设置工况参数时,应根据结构的使用状况和设计要求进行选择,并保持与其他设计参数的一致性。
4.计算参数:计算参数包括求解方法、计算精度等。
在设置计算参数时,应根据结构类型和分析要求进行选择,并保持计算结果的稳定性和可靠性。
三、参数设置的步骤:1.分析问题的定义:首先需要明确分析的目的和要求,确定分析的类型和范围。
2.数据的获取和处理:收集和整理分析所需的相关数据,包括结构的几何形状、材料性质、荷载情况等。
3.参数的选择和设置:根据实际情况,选择合适的参数,并进行设置。
需要注意的是,参数的设置应符合规范和标准,反映结构的真实状态。
4.分析的执行和结果的评定:按照设置的参数进行分析,并对结果进行评定。
如果结果不符合要求,可以进行参数的调整和分析的迭代,直到满足要求为止。
四、参数设置的注意事项:1.结构的复杂性:对于复杂结构的分析,参数设置更为关键。
pkpm调整系数剖析
大家在使用pkpm时会出现好多设计参数的输入,这些参数好多与结构内力的调整有关,不知你想过没有,这些系数本质上有啥区别和联系呢,让我代大家说说吧。
一、那么多的调整不外乎两种,一是地震作用内力的调整,其目的是加强构件的整体抗力水平。
一种是设计组合内力的调整,目的是达到强柱弱梁,强剪弱弯,强墙肢弱连梁。
二者有着本质的区别,前者是整体能力的提高,后者是控制塑性铰的出现顺序。
二、软件中地震内力的调整与哪些参数有关
薄弱层、0.2q0、梁跨中系数、转换层定义(包括转换构件,框肢柱定义)、结构体系选择(如短肢墙结构)、顶部塔楼放大系数。
三、设计内力组合值的调整梁柱墙的抗震等级、加强区、短肢墙定义、角柱
四、举一例子说明:如果你在参数中填有转换层,又定义了框肢柱,那就是按你所定的抗震等级先以转换结构对框肢柱进行地震内力放大,然后再以强柱弱梁对框肢柱进行设计组合内力调整,可以说一共有两次调整。
如果你没定义转换层只定义了框肢柱,那就只做框肢柱设计合内力的调整,但与不定义框肢柱(一般柱)又有不同,总的来说比前者少了一种。
说这些的意思就是让大家明白每填一个参数要知道它会引起哪些调整,反过来哪些参数可以控制地震力的调整,哪些参数可以控制设计组合内力的调整,彻底掌握各个参数的作用,做到心中有数。
1、抗震等级的确定:钢筋混凝土房屋应根烈度、结构类型和房屋高度的不同分别按〈抗规〉6.1.2条或〈高规〉4.8条确定本工程的抗震等级。
但需注意以下几点:(1)上述抗震等级是“丙”类建筑,如果是“甲”、“乙”、“丁”类建筑则需按规范要求对抗震等级进行调整。
(2)接近或等于分界高度时,应结合房屋不规则程度及场地、地基条件慎重确定抗震等级。
(3)当转换层〉=3及以上时,其框支柱、剪力墙底部加强部的抗震墙等级宜按〈抗规〉6.1.2条或〈高规〉4.8条查的抗震等级提高一级采用,已为特一级时可不调整。
(4)短肢剪力墙结构的抗震等级也应按〈抗规〉6.1.2条或〈高规〉4.8条查的抗震等级提高一级采用。
但注意对多层短肢剪力墙结构可不提高。
(5)注意:钢结构、砌体结没有抗震等级。
计算时可选“5”,不考虑抗震构造措施。
2、振型组合数的选取:在计算地震力时,振型个数的选取应是振型参与质量要达到总质量90%以上所需要振型数。
但要注意以下几点:(1)振型个数不能超过结构固有的振型总数,因一个楼层最多只有三个有效动力自由度,所以一个楼层也就最多可选3个振型。
如果所选振型个数多于结构固有的振型总数,则会造成地震力计算异常。
(2)对于进行耦联计算的结构,所选振型数应大于9个,多塔结构应更多些,但要注意应是3的倍数。
(3)对于一个结构所选振型的多少,还必需满足有效质量系列化大于90%。
在WDISP.OUT文件里查看。
3、主振型的判断;(1)对于刚度均匀的结构,在考虑扭转耦联计算时,一般来说前两个或前几个振型为其主振型。
(2)对于刚度不均匀的付杂结构,上述规律不一定存在,此时应注意查看SATWE 文本文件“周期、振型、地震力”WZQ.OUT。
程序输出结果中,给出了输出各振型的基底剪力总值,据此信息可以判断出那个振型是X向或Y向的主振型,同时可以了解没个振型对基底剪力的贡献大小。
4、地震力、风力的作用方向:结构的参考坐标系建立以后,所求的地震力、风力总是沿着坐标系的方向作用。
最新PKPM设计参数分析详解P K P M设计参数分析详解第7章 SATWE应用详解在PKPM系列设计软件中,用于结构分析计算的主要有SATWE、TAT、PK、PMSAP,目前结构设计人员最常用的是有限元分析软件SATWE。
本章主要详细叙述SATWE 的使用方法,包括计算参数的取值设置,特殊荷载的设定,计算分析方法的选择,计算结果分析,控制参数的调整,以及结构设计优化等。
之所以突出介绍SATWE,其原因如下:1.SATWE软件使用普遍,用户广泛。
2.SATWE软件功能强大,采用墙元模型,可以完成复杂多高层结构的计算分析工作,而且操作简单,适应性强。
3.SATWE软件参数较多,可以设置的项目也很多,计算输出的内容十分丰富,一旦学会了SATWE软件的使用,再去学PK、TAT、PMSAP 等就是一件非茶馆容易的事了。
第7.1节设计参数设置详解PM建模完成后就进入结构计算分析阶段,SATWE软件可以直接读取建模数据,但是在计算之前还需要做一些前期处理工作,例如补充设置计算分析参数,定义特殊构件和特殊荷载等。
点击选择SATWE 软件的第一项进入“接PM生成SATWE数据”屏幕弹出图示对话框,如图所示。
软件的参数设置是否正确直接关系到软件分析结果的准确性,这也是学好用好软件的关键一步。
本节主要介绍SATWE软件设计参数的取值设置。
详细叙述分别如下:7.1.1总信息结构总信息共有17个参数,其含义及取值原则如下:7.1.1.1水平力与整体坐标的夹角(度)这一参数主要是为了考虑水平力(地震最不利作用与最大风力作用)方向与模型坐标主轴存在较大夹角的影响。
一般设计人员实现很难预估算出结构的最不利地震作用方向,因此可以先取初始值00,SATWE计算后会在计算书中输出结构最不利方向角,如果这个角度与主轴夹角大于±15°,就应将该角度输入重新计算,以考虑最不利地震作用个方向的影响。
7.1.1.2混凝土容重(KN/m3)程序钢筋混凝土容重初始值为25.0 KN/m3,以用于一般工程,考虑抹灰装修荷载可以取到26~28 KN/m3。
关于PKPM中的调整信息梁端负弯矩调幅系数:此项调整只针对竖向荷载,对地震力和风荷载不起作用。
梁端负弯矩调幅系数对于:装配整体式框架取0.7~0.8;现浇框架取0.8~0.9;对悬臂梁的负弯矩不应调幅。
一般取默认值0.85。
转角凸窗处的转角梁的负弯矩调幅及扭矩折减系数均应取1.0。
梁活荷载载内力放大系数:一般工程取1.1~1.2;如果已经考虑了【梁活荷载不利布置】后,则应取1.0。
梁扭矩折减系数:对于现浇楼板结构,当采用刚性楼板假定时,可以考虑楼板对梁的抗扭作用而对梁扭矩进行折减。
折减系数可在0.4~1.0 范围内取值,一般取默认值0.4,但对结构转换层的边框架梁扭矩折减系数不宜小于0.6。
SATWE程序中考虑了梁与楼板间的连接关系,对于不与楼板相连的梁该扭矩折减系数不起作用;目前SATWE程序“梁扭矩折减系数”对弧形梁、不与楼板相连的独立梁均不起作用。
SATWE 前处理“特殊构件补充定义”中的右侧菜单“特殊梁”下,用户可以交互指定楼层中各梁的扭矩折减系数。
在此处程序默认显示的折减系数,是没有搜索独立梁的结果,即所有梁的扭矩折减系数均按同一折减系数显示。
但在后面计算时,SATWE软件自动判断梁与楼板的连接关系,对于楼板相连(单侧或两侧)的梁,直接取交互指定的值来计算;对于两侧都未与楼板相连的独立梁,梁扭矩折减系数不做折减,不管交互指定的值为多少,均按1.0 计算。
注:1. 若考虑楼板的弹性变形,梁的扭矩应不折减或少折减。
2. 梁两侧有弹性板时,【梁刚度放大系数】及【扭矩折减系数】仍然有效。
剪力墙加强区起算层:SATWE程序总是默认地下室作为剪力墙底部加强区(即起算层号为1),因此可通过人工指定该参数而使部分地下室为非加强部位。
例如说结构有两层地下室,该参数取2时,表示仅地下一层按照底部加强区进行设计。
多层带剪力墙的结构或底框剪力墙结构,根据《建筑抗震设计规范》6.4.6条1款,当剪力墙的轴压比小于表6.4.6中限值时,可只设构造边缘构件。
pkpm基础参数(原创版)目录1.PKPM 基础参数的概念和作用2.PKPM 基础参数的分类3.PKPM 基础参数的设置方法和技巧4.PKPM 基础参数的应用案例5.PKPM 基础参数对建筑设计的重要性正文一、PKPM 基础参数的概念和作用PKPM 是一款广泛应用于建筑设计领域的软件,它能够帮助建筑设计师快速、准确地完成各种设计任务。
而在 PKPM 中,基础参数是一个至关重要的概念,它是指导建筑设计的基本依据,关系到整个设计过程的顺利进行。
二、PKPM 基础参数的分类PKPM 基础参数主要包括以下几个方面:1.工程参数:包括工程名称、工程地点、建设单位等基本信息。
2.建筑参数:包括建筑的高度、层数、结构形式等建筑基本属性。
3.结构参数:包括结构类型、结构形式、材料种类等结构设计相关参数。
4.设备参数:包括建筑的给排水、电气、暖通等设备系统的相关参数。
5.其他参数:包括建筑的经济性、实用性、美观性等设计目标。
三、PKPM 基础参数的设置方法和技巧设置 PKPM 基础参数需要遵循以下原则:1.准确性:确保参数设置的准确性,避免因参数设置错误而导致的设计失误。
2.完整性:确保参数设置的完整性,不要遗漏任何重要的参数。
3.灵活性:根据实际情况,灵活调整参数设置,以满足不同的设计需求。
4.优化性:通过调整参数设置,达到优化设计的目的,提高建筑的经济性、实用性、美观性等。
四、PKPM 基础参数的应用案例在建筑设计过程中,PKPM 基础参数的应用案例无处不在,比如:1.在设计高层建筑时,需要根据工程参数、建筑参数、结构参数等,选择合适的结构形式和材料种类。
2.在设计住宅小区时,需要根据工程参数、建筑参数等,确定小区的规划布局和建筑风格。
3.在设计商业建筑时,需要根据工程参数、建筑参数、设备参数等,确定建筑的交通组织和功能布局。
五、PKPM 基础参数对建筑设计的重要性PKPM 基础参数对建筑设计具有重要意义,它能够为建筑设计师提供基本的设计依据,帮助他们快速、准确地完成设计任务。
pkpm 盈建科前处理参数一、PKPM简介PKPM是一款广泛应用于建筑结构领域的软件系统,它是由中国建筑科学研究院设计开发的。
盈建科则是一款常用的建筑结构建模软件,它可以与PKPM等其他软件进行参数交换。
二、PKPM前处理参数设置在PKPM的前处理参数设置中,需要重点关注以下几点:模型简化、材料属性设置、荷载施加方式等。
首先,对于模型简化,应根据实际情况,尽可能准确地反映建筑结构的实际受力情况。
其次,材料属性设置应包括混凝土、钢筋、木材等材料的力学性能参数,这些参数将直接影响计算结果。
最后,荷载施加方式应根据实际情况进行选择,包括楼面活荷载、风荷载、地震作用等。
三、盈建科前处理参数设置盈建科在建模前需要进行参数设置,主要包括模型建立方式、材料属性设置、荷载施加方式等。
在模型建立方式上,可以选择不同的单元类型,如梁、墙、板等。
材料属性设置同样包括混凝土、钢筋等材料的力学性能参数。
在荷载施加方式上,盈建科提供了多种方法,如直接输入数值、自动计算等。
四、参数调整与优化前处理参数设置完成后,需要根据实际情况进行调整与优化。
这包括模型简化是否合理、材料属性设置是否符合实际情况、荷载施加方式是否符合规范要求等。
在调整过程中,应注重对比分析,通过调整前后的计算结果进行对比分析,找出最佳的参数设置方案。
五、结论总的来说,建筑结构的前处理参数设置是至关重要的。
通过合理的前处理参数设置,可以保证计算结果的准确性,为结构设计提供有力的依据。
在PKPM和盈建科等软件的使用过程中,应注重前处理参数的设置与调整,以达到最佳的计算效果。
同时,也需要不断学习和掌握新的技术和方法,以适应不断变化的设计需求。
最新pkpm相关参数p k p m相关参数A)水平力与整体坐标角:1.一般情况下取0度,平面复杂(如L型、三角型)或抗侧力结构非正交时,理应分别按各抗侧力构件方向角算一次,但实际上按0、45度各算一次即可;当程序给出最大地震力作用方向时,可按该方向角输入计算,配筋取三者的大值。
2.根据抗震规范5.1.1-2规定,当结构存在相交角大于15度的抗侧力构件时,应分别计算各抗侧力构件方向的水平地震作用,若程序提供多方向地震作用功能时,应选用此功能。
B)砼容重:钢筋砼计算重度,考虑饰面的影响应大于25,不同结构构件的表面积与体积比不同饰面的影响不同,一般按结构类型取值:结构类型框架结构框剪结构剪力墙结构重度 26 27 28C)钢材容重:一般取78,如果考虑饰面设计者可以适量增加。
D)裙房层数:1:高规第4。
8。
6条规定:与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级,主楼结构在裙房顶部上下各一层应适当加强抗震措施;因此该数必须给定。
2:层数是计算层数,等同于裙房屋面层层号。
E)转换层所地层号:1:该指定只为程序决定底部加强部位及转换层上下刚度比的计算和内力调整提供信息,同时,当转换层号大于等于三层时,程序自动对落地剪力墙、框支柱抗震等级增加一级,对转换层梁、柱及该层的弹性板定义仍要人工指定。
(层号为计算层号)F)地下室层数:1:程序据此信息决定底部加强区范围和内力调整。
2:当地下室局部层数不同时,以主楼地下室层数输入。
3:地下室一般与上部共同作用分析;4:地下室刚度大于上部层刚度的2倍,可不采用共同分析;5:地下室与上部共同分析时,程序中相对刚度一般为3,模拟约束作用。
当相对刚度为0,地下室考虑水平地震作用,不考虑风作用。
当相对刚度为负值,地下室完全嵌固6:根据程序编制专家的解释,填3大概为70%~80%的嵌固,填5就是完全嵌固,填在楼层数前加“-”,表示在所填楼层完全嵌固。
到底怎样的土填3或填5,完全取决于工程师的经验。
pkpm参数意义与调整 精品好文档,推荐学习交流 仅供学习与交流,如有侵权请联系网站删除 谢谢15 高层结构设计中六个“比”的控制与调整 -----SATWE电算结果与规范条文的对照理解 1. 位移比(层间位移比): 1.1 名词释义: (1) 位移比:即楼层竖向构件的最大水平位移与平均水平位移的比值。 (2) 层间位移比:即楼层竖向构件的最大层间位移角与平均层间位移角的比值。
其中: 最大水平位移:墙顶、柱顶节点的最大水平位移。 平均水平位移:墙顶、柱顶节点的最大水平位移与最小水平位移之和除2。 层间位移角:墙、柱层间位移与层高的比值。 最大层间位移角:墙、柱层间位移角的最大值。 平均层间位移角:墙、柱层间位移角的最大值与最小值之和除2。 1.3 控制目的: 高层建筑层数多,高度大,为了保证高层建筑结构具有必要的刚度,应对其最大位移和层间位移加以控制,主要目的有以下几点: 1 保证主体结构基本处于弹性受力状态,避免混凝土墙柱出现裂缝,控制楼面梁板的裂缝数量,宽度。 精品好文档,推荐学习交流 仅供学习与交流,如有侵权请联系网站删除 谢谢15 2 保证填充墙,隔墙,幕墙等非结构构件的完好,避免产生明显的损坏。 3. 控制结构平面规则性,以免形成扭转,对结构产生不利影响。 1.2 相关规范条文的控制: [抗规]3.4.2条规定,建筑及其抗侧力结构的平面布置宜规则,对称,并应具有良好的整体性,当存在结构平面扭转不规则时,楼层的最大弹性水平位移(或层间位移),不宜大于该楼层两端弹性水平位移(或层间位移)平均值的1.2倍。 [高规]4.3.5条规定,楼层竖向构件的最大水平位移和层间位移,A、B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且***高度高层建筑不应大于该楼层平均值的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层平均值的1.4倍。 [高规]4.6.3条规定,高度不大于150m的高层建筑,其楼层层间最大位移与层间之比(即最大层间位移角)Δu/h应满足以下要求: 结构休系 Δu/h限值 框架 1/550 框架-剪力墙,框架-核心筒 1/800 筒中筒,剪力墙 1/1000 框支层 1/1000 1.4 电算结果的判别与调整要点: 精品好文档,推荐学习交流
仅供学习与交流,如有侵权请联系网站删除 谢谢15 PKPM软件中的SATWE程序对每一楼层计算并输出最大水平位移、最大层间位移角、平均水平位移、平均层间位移角及相应的比值,详位移输出文件WDISP.OUT。但对于计算结果的判读,应注意以下几点:
(1)若位移比(层间位移比)超过1.2,则需要在总信息参数设置中考虑双向地震作用;
(2)验算位移比需要考虑偶然偏心作用,验算层间位移角则不需要考虑偶然偏心
(3)验算位移比应选择强制刚性楼板假定,但当凸凹不规则或楼板局部不连续时,应采用符合楼板平面内实际刚度变化的计算模型,当平面不对称时尚应计及扭转影响
(4)最大层间位移、位移比是在刚性楼板假设下的控制参数。构件设计与位移信息不是在同一条件下的结果(即构件设计可以采用弹性楼板计算,而位移计算必须在刚性楼板假设下获得),故可先采用刚性楼板算出位移,而后采用弹性楼板进行构件分析。(5)因为高层建筑在水平力作用下,几乎都会产生扭转,故楼层最大位移一般都发生在结构单元的边角部位 2.周期比: 2.1 名词释义: 周期比即结构扭转为主的第一自振周期(也称第一扭振周期)Tt与平动为主的第一自振周期(也称第一侧振周期)T1的比值。周期比主要控制结构扭转效精品好文档,推荐学习交流 仅供学习与交流,如有侵权请联系网站删除 谢谢15 应,减小扭转对结构产生的不利影响,使结构的抗扭刚度不能太弱。因为当两者接近时,由于振动藕连的影响,结构的扭转效应将明显增大。 2.2 相关规范条文的控制: [高规]4.3.5条规定,结构扭转为主的第一自振周期Tt与平动为主的第一自振周期T1之比(即周期比),***高度高层建筑不应大于0.9;B级高度高层建筑、混合结构高层建筑及复杂高层建筑不应大于0.85。 [高规]5.1.13条规定,高层建筑结构计算振型数不应小于9,抗震计算时,宜考虑平扭藕连计算结构的扭转效应,振型数不小于15,对于多塔楼结构的振型数不应小于塔楼数的9倍,且计算振型数应使振型参与质量不小于总质量的90%。 2.3 电算结果的判别与调整要点: (1).计算结果详周期、地震力与振型输出文件。因SATWE电算结果中并未直接给出周期比,故对于通常的规则单塔楼结构,需人工按如下步骤验算周期比: a)根据各振型的两个平动系数和一个扭转系数(三者之和等于1)判别各振型分别是扭转为主的振型(也称扭振振型)还是平动为主的振型(也称侧振振型)。一般情况下,当扭转系数大于0.5时,可认为该振型是扭振振型,反之应为侧振振型。当然,对某些极为复杂的结构还应结合主振型信息来进行判断; b)周期最长的扭振振型对应的就是第一扭振周期Tt,周期最长的侧振振型对应的就是第一侧振周期T1; c)计算Tt / T1,看是否超过0.9(0.85)。 精品好文档,推荐学习交流 仅供学习与交流,如有侵权请联系网站删除 谢谢15 对于多塔结构周期比,不能直接按上面的方法验算,这时应该将多塔结构分成多个单塔,按多个结构分别计算、分别验算(注意不是在同一结构中定义多塔,而是按塔分成多个结构)。 (2).对于刚度均匀的结构,在考虑扭转耦连计算时,一般来说前两个或几个振型为其主振型,但对于刚度不均匀的复杂结构,上述规律不一定存在。总之在高层结构设计中,使得扭转振型不应靠前,以减小震害。SATWE程序中给出了各振型对基底剪力贡献比例的计算功能,通过参数Ratio(振型的基底剪力占总基底剪力的百分比)可以判断出那个振型是X方向或Y方向的主振型,并可查看以及每个振型对基底剪力的贡献大小。 (3).振型分解反应谱法分析计算周期,地震力时,还应注意两个问题,即计算模型的选择与振型数的确定。一般来说,当全楼作刚性楼板假定后,计算时宜选择“侧刚模型”进行计算。而当结构定义有弹性楼板时则应选择“总刚模型”进行计算较为合理。至于振型数的确定,应按上述[高规]5.1.13条执行,振型数是否足够,应以计算振型数使振型参与质量不小于总质量的90%作为唯一的条件进行判别。 (4).如同位移比的控制一样,周期比侧重控制的是侧向刚度与扭转刚度之间的一种相对关系,而非其绝对大小,它的目的是使抗侧力构件的平面布置更有效、更合理,使结构不致于出现过大(相对于侧移)的扭转效应。即周期比控制不是在要求结构足够结实,而是在要求结构承载布局的合理性。考虑周期比限制以后,以前看来规整的结构平面,从新规范的角度来看,可能成为“平面不规则结构”。一旦出现周期比不满足要求的情况,一般只能通过调整平面布置来精品好文档,推荐学习交流 仅供学习与交流,如有侵权请联系网站删除 谢谢15 改善这一状况,这种改变一般是整体性的,局部的小调整往往收效甚微。周期比不满足要求,说明结构的扭转刚度相对于侧移刚度较小,总的调整原则是要加强结构外圈,或者削弱内筒。 (5).扭转周期控制及调整难度较大,要查出问题关键所在,采取相应措施,才能有效解决问题。 a)扭转周期大小与刚心和形心的偏心距大小无关,只与楼层抗扭刚度有关; b)剪力墙全部按照同一主轴两向正交布置时,较易满足;周边墙与核心筒墙成斜交布置时要注意检查是否满足; c)当不满足周期限制时,若层位移角控制潜力较大,宜减小结构竖向构件刚度,增大平动周期; d)当不满足周期限制时,且层位移角控制潜力不大,应检查是否存在扭转刚度特别小的层,若存在应加强该层的抗扭刚度; e)当不满足扭转周期限制,且层位移角控制潜力不大,各层抗扭刚度无突变,说明核心筒平面尺度与结构总高度之比偏小,应加大核心筒平面尺寸或加大核心筒外墙厚,增大核心筒的抗扭刚度。 f)当计算中发现扭转为第一振型,应设法在建筑物周围布置剪力墙,不应采取只通过加大中部剪力墙的刚度措施来调整结构的抗扭刚度。 3 刚度比 3.1 名词释义: 精品好文档,推荐学习交流 仅供学习与交流,如有侵权请联系网站删除 谢谢15 刚度比指结构竖向不同楼层的侧向刚度的比值(也称层刚度比),该值主要为了控制高层结构的竖向规则性,以免竖向刚度突变,形成薄弱层。对于地下室结构顶板能否作为嵌固端,转换层上、下结构刚度能否满足要求,及薄弱层的判断,均以层刚度比作为依据。[抗规]与[高规]提供有三种方法计算层刚度,即剪切刚度(Ki=GiAi/hi)、剪弯刚度(Ki=Vi/Δi)、地震剪力与地震层间位移的比值(Ki=Qi/Δui)。 3.2 相关规范条文的控制:[抗规]附录E2.1规定,筒体结构转换层上下层的侧向刚度比不宜大于2; [高规]4.4.2条规定,抗震设计的高层建筑结构,其楼层侧向刚度不宜小于相临上部楼层侧向刚度的70%或其上相临三层侧向刚度平均值的80%; [高规]5.3.7条规定,高层建筑结构计算中,当地下室的顶板作为上部结构嵌固端时,地下室结构的楼层侧向刚度不应小于相邻上部结构楼层侧向刚度的2倍; [高规]10.2.3条规定,底部大空间剪力墙结构,转换层上部结构与下部结构的侧向刚度,应符合高规附录E的规定: E.01)底部大空间为一层的部分框支剪力墙结构,可近似采用转换层上、下层结构等效刚度比γ表示转换层上、下层结构刚度的变化,非抗震设计时γ不应大于3,抗震设计时不应大于2。 E.02)底部大空间层数大于一层时,其转换层上部框架-剪力墙结构的与底部大空间层相同或相近高度的部分的等效侧向刚度与转换层下部的框架-剪力墙结构