DIY脉冲式喷气发动机
- 格式:docx
- 大小:17.61 KB
- 文档页数:6
航模涡轮喷气发动机导言:航模涡轮喷气发动机是现代航模爱好者们追求高速、高能力飞行的技术支持。
它的精密设计和出色的性能让飞行模型更加逼真和激动人心。
本文将详细介绍航模涡轮喷气发动机的原理、构造和工作过程,以及一些注意事项和常见问题解答,以帮助对此感兴趣的读者更好地了解这一领域。
一、原理与构造航模涡轮喷气发动机的基本原理是通过燃烧燃料产生高温高压气体,然后驱动涡轮旋转,最终将机械能转化为推力。
这种推进方式与真实飞机的喷气发动机原理类似,但规模更小,适用于航模飞行器。
1. 燃烧室与涡轮航模涡轮喷气发动机内部由燃烧室和涡轮组成。
燃烧室是燃烧燃料的地方,燃料与空气混合后引燃,产生高温高压气体。
燃料的类型可以是航空煤油、液化石油气等。
涡轮则被高温高压气体推动,旋转起来,将机械能转化为推力。
2. 加速器和压气机航模涡轮喷气发动机中涡轮推动的气流需要经过加速器和压气机的作用以达到最佳推力。
加速器的主要功能是加速气流的速度,增加推力。
压气机则负责压缩气流,提高气体的密度和压力,以增加推力效果。
3. 燃烧室与喷嘴燃烧室中高温高压气体经过压缩后,通过喷嘴喷出,产生的高速气流产生推力。
喷嘴的设计和调整对发动机的性能至关重要。
合理的喷嘴设计可以提供更好的推进效果和稳定性。
二、工作过程航模涡轮喷气发动机的工作过程可以概括为连续的四个阶段:起动、加速、稳定和熄火。
1. 起动起动阶段是让发动机开始转动和燃烧的过程。
通常需要使用电动起动器或气体起动器来帮助发动机启动。
一旦发动机启动,燃烧室内开始产生高温高压气体。
2. 加速在加速阶段,涡轮从静止状态逐渐达到高速旋转。
这个过程通常需要一段时间才能使涡轮达到工作状态的转速。
3. 稳定当涡轮达到工作转速后,燃烧室内的燃烧气体以一定的节奏和能量产生。
这个阶段是发动机提供稳定的推力以进行飞行的关键阶段。
4. 熄火当航模不再需要推力时,发动机将停止燃烧和转动。
这个过程可以使用燃烧室内的余热自然冷却,也可以通过外部提供的气流来加速热量的散发。
脉冲增压的名词解释脉冲增压(Pulse Boosting)是一种机械或电子系统中常用的技术,它可以通过瞬时提高压力或动能来增强系统的性能和效能。
脉冲增压技术广泛应用于许多领域,比如航空航天、工程领域、兵器系统以及核聚变等等。
本文将对脉冲增压的原理、应用和相关技术进行解释和探讨。
一、原理与机制脉冲增压的原理基于能量守恒定律和流体力学原理。
在液体或气体系统中,脉冲增压可以通过以下两种方式实现:1. 机械脉冲增压:机械脉冲增压主要依靠外部的机械力或动能转化为系统内部流体的压力或动能,从而提高系统的性能。
例如,在内燃机中,活塞的上下运动将气体压缩,然后通过喷射点火点火爆发,使燃烧气体产生高压力的脉冲波,从而增加发动机的输出功率。
2. 电子脉冲增压:电子脉冲增压是通过电子元件和电磁场的相互作用来实现的。
电子元件的开关行为能够迅速产生周期性的电磁脉冲,在瞬间提高系统内部气体或液体的压力或动能。
这种技术被广泛应用于激光、核聚变装置等高能物理实验研究中。
二、应用领域脉冲增压技术在众多领域中发挥重要作用,以下是几个典型的应用领域例子:1. 航空航天:脉冲增压技术在航空发动机中广泛应用,通过喷火增加燃烧气体的压力,提高喷气发动机的推力。
同时,脉冲增压也可以用于航空航天器的空气动力学控制系统中,提供特定时刻的推力增益,使航天器具备更高的机动性能。
2. 兵器系统:脉冲增压技术也在军事装备领域得到广泛应用。
例如,导弹发动机采用脉冲喷火技术,通过瞬间喷射高压气体来提高排出速度和射程。
此外,脉冲增压还可用于增强火炮射击的动能,并在爆炸装置中产生更大的冲击力。
3. 工程领域:在工程项目中,脉冲增压技术可以用于推进液体或气体的输送,提高输送效率和输送距离。
这在井下油气开采、水务工程和污水处理等领域尤为重要。
4. 核聚变:脉冲增压技术也在核聚变实验中发挥关键作用。
在核聚变装置中,通过脉冲加热等方式,提高物质的温度和密度,使核聚变反应更容易发生。
第一章概论航空发动机可以分为活塞式发动机(小型发动机、直升飞机)和空气喷气发动机两大类型。
P3空气喷气发动机中又可分为带压气机的燃气涡轮发动机和不带压气机的冲压喷气发动机(构造简单,推力大,适合高速飞行。
不能在静止状态及低速性能不好,适用于靶弹和巡航导弹)。
涡轮发动机包括:涡轮喷气发动机WP,涡轮螺旋桨发动机WJ,涡轮风扇发动机WS,涡轮轴发动机WZ,涡轮桨扇发动机JS。
在航空器上应用还有火箭发动机(燃料消耗率大,早期超声速实验飞机上用过,也曾在某些飞机上用作短时间的加速器)、脉冲喷气发动机(用于低速靶机和航模飞机)和航空电动机(适用于高空长航时的轻型飞机)。
P4燃气涡轮发动机是由进气装置、压气机、燃烧室、涡轮和尾喷管等主要部件组成。
由压气机、燃烧室和驱动压气机的涡轮这三个部件组成的燃气发生器,它不断输出具有一定可用能量的燃气。
涡桨发动机的螺桨、涡扇发动机的风扇和涡轴发动机的旋翼,它们的驱动力都来自燃气发生器。
按燃气发生器出口燃气可用能量的利用方式不同,对燃气涡轮发动机进行分类:将燃气发生器获得的机械能全部自己用就是涡轮喷气发动机;将燃气发生器获得的机械能85%~90%用来带动螺旋桨,就是涡桨发动机;将获得的机械能的90%以上转换为轴功率输出,就是涡轮轴发动机;将小于50%的机械能输出带动风扇,就是小涵道比涡扇发动机(涵道比1:1);将大于80%的机械能输出带动风扇,就是大涵道比涡轮风扇发动机(涵道比大于4:1)。
P5航空燃气涡轮发动机的主要性能参数:1.推力,我国用国际单位制N或dan,1daN=10N,美国和欧洲采用英制磅(Pd),1Pd=0.4536Kg,俄罗斯/苏联采用工程制用Kg,1Kg=9.8N;2.推重比(功重比),推重比是推力重量比的简称,即发动机在海平面静止条件下最大推力与发动机重力之比,是无量纲单位。
对活塞式发动机、涡桨发动机和涡轴发动机则用功重比(功率重量比的简称)表示,即发动机在海平面静止状态下的功率与发动机重力之比,KW/daN;3.耗油率,对于产生推力、的喷气发动机,表示1daN推力每小时所消耗的燃油量单位Kg/(daN·h),对于活塞式发动机、涡桨发动机和涡轴发动机来说,它表示1KW功率每小时所消耗的燃油量单位Kg/(kw·h);4.增压比,压气机出口总压与进口总压之比,飞速较高增压比较低,低耗油率增压比较高;5.涡轮前燃气温度,是第一级涡轮导向器进口截面处燃气的总温,也有发动机用涡轮转子进口截面处总温表示,发动机技术水平高低的重要标志之一;6.涵道比,是涡扇发动机外涵道和内涵道的空气质量流量之比,又称流量比。
发动机科普知识(1):动力是实现机械飞行的基本要素重于空气的东西能不能飞起来呢?回答是肯定的,但前提是必须有机翼和发动机。
机翼用于提供升力,其原理如下:一定速度的空气流到机翼前缘,分成上、下两股,分别沿机翼上、下表面流过,在机翼后缘重新会合向后流去。
从机翼剖面形状可以看出,机翼上表面作成向上突出的曲线,而下翼面作成直线。
显然,空气在上翼面流经的路程要比在下翼面流经的路程长,因此在上翼面的空气被迫以较快的速度流过。
亦即气流流过机翼时,沿上翼面的流速快,沿下翼面的流速慢。
根据物理学中的柏奴利定律,流速快的地方压强低,反之,流速慢的地方压强高。
这样,由于流过机翼上、下翼面的气流流速不一致,使作用在机翼上、下翼面上的压强不一致(下翼面压强大、上翼面压强小)而产生了向上的力—升力。
显然,只要机翼与空气之间有相对运动,空气就能对机翼提供升力。
而要保持机翼与空气的相对运动,就必须有持续的推动力来克服空气阻力,也就是必须要有提供动力的发动机。
早在19世纪初,英国科学家乔治·凯利爵士根据此现象指出:所谓机械飞行就是对一块平板提供动力,使它能在空中支持一定的重量。
1810年乔治·凯利爵士在英国的《自然哲学、化学和技艺》杂志上发表了著名论文“论空中航行”,他奠定了固定翼飞机和旋翼机的现代航空学理论基础,提出了重于空气飞行器的基本飞行原理和飞机的结构布局,被看成是现代航空学诞生的标志。
由于凯利在飞行原理方面的巨大贡献,被后人尊称为“空气动力学之父”。
(2):带动力的浮空器-飞艇飞艇是一种轻于空气的浮空器,与气球类似,都有充满轻于空气气体的气囊并因此产生上升浮力。
它们的不同点在于,气球没有动力装置实现飞行,也没有操纵舵面实施有控飞行,只能听任自然风摆布;飞艇虽然也是靠空气浮力升空,但它配置有发动机、空气螺旋桨(或其他类推进器)、操纵面,能实现有动力推进和可操纵、控制的飞行。
因此,飞艇的诞生是人类在气球基础上作浮空飞行的一个重大进步和突破。
图文并茂6)进气道故事之-超燃冲压发动机,乘波器及脉冲爆震发动机超燃冲压发动机,乘波器及脉冲爆震发动机超燃冲压发动机-scram jet 现在让我们抛开那些千奇百怪的核动力发动机回归到飞机的进气道上面来。
前面讲解的所有飞机,从F-15到黑鸟,女武神,再到冲压发动机导弹,他们都有一个共同点:就是依靠进气道的特殊设计把超音速气流减速到亚音速,送给发动机,然后燃烧膨胀做功从尾部再以超音速喷出。
这样就经历了一个超音速-亚音速-超音速的过程。
这么的一减一加无形中就增加了阻力。
随着飞机飞行速度越来越快,阻力也不断升高,早晚会有一天,飞机的阻力会超过它的推力,这时候无论飞机怎么使劲,怎么多加燃料,速度就是上不去。
另一方面,冲压发动机把空气减速到亚音速后,压缩后的空气温度太高,无论怎么降温,效率都大大的下降,这就又遇到了一道速度门槛。
一般而言这道门槛大概发生在5马赫左右,所以超过5马赫的速度就不再叫超音速了(supersonic),而是叫做高超音速(hypersonic)。
对于高超音速飞行器而言,除了进气道外,他的尾喷管也需要有特殊考虑。
一般的发动机尾喷管有个收缩-扩展段,这么一缩一扩就能把亚音速气流加速成非常高的超音速气流从而推动飞机超音速飞行。
这个收缩扩展喷口也叫拉瓦尔喷管。
它最先由瑞典的发明家古斯塔夫·德拉瓦尔(Gustaf De Laval)在1897年发现的,现在已经成为航空发动机和火箭发动机的重要组成部件了。
发动机喷出的高温高压气流在喷管的收缩段,遵循流体在管中运动时,截面小处流速大,截面大处流速小的原则,就好比你打开水龙头,用手堵住喷口一半,水流就会喷的更快一样,把气流不断加速,到收缩短最窄的地方加速成超音速。
而超音速的流体在收缩段却不再遵循前面的原则,恰恰相反,截面小时流速小,截面大时流速反而大。
要想把超音速气流进一步加速,反而需要有一个扩展段来加速,有时候能加速到音速的好几倍,这样飞机就能进行超音速飞行了。
纳粹的复仇宣传海报史 海 钩 沉白云峰纳粹的复仇—V1导弹德国人在20世纪30年代就开始使用无人驾驶的飞机开展导弹方面的研究、实验工作。
1942年6月,英国皇家空军的炸弹突然在德国城市上空投下,而德国空军轰炸机在对英格兰的报复性轰炸中却损失了更多的飞机和飞行员。
德国空军开始考虑用其他的方法对英格兰进行空中打击。
但是此时正在研发的V-2远程导弹的发展却遭遇困难,裹足不前,并且V-2毕竟是属于陆军的发展项目。
德国空军在经过论证以后,批准了发展一种小型又廉宜的导弹发展计划。
这种导弹计划射程在250千米,可携带一个800千克的弹头,能够打击到特定的某个城市的某个区域。
导弹依靠很高的速度和超低空飞行来避开拦截的飞机和炮火。
为了保密的需要,这个计划被掩饰的称为新型的高射炮或者在文件中称呼其为“防空用靶机设备”。
导弹准备使用脉冲式喷气发动机提供动力。
这种装置由保罗施密特在20世纪20年代研制成功。
脉冲式喷气发动机就像是一个小而旺的“火炉”,德国空军决定使用这种发动机用于导弹的发展研究主要的因素是看上了其简单实用且成本低廉。
其实施密特所发明的脉冲式喷气发动机是一种比较简陋的发动机,在武器局时就险些被扼杀。
当时有3家德国公司参与了导弹的制造工作。
菲仕乐公司负责制造导弹的机身。
阿格斯公司负责制造脉冲式喷气发动机。
Askani 公司负责制造导弹的导航系统。
有人驾驶的导弹1943年5月26日,纳粹党的高层人员在波罗的海城市佩内明德视察了导弹的测试情况,以评估这种导弹的发展状况。
高层的结论是他们全力支持开发完成这种武器,并且希望要加快研究进展。
同时批准建立一个导弹的发射基地,并制造相应的发射架。
随后在法国西北部的加来海峡建立了100部发射装置,拥有每天发射数千枚导弹的能力。
同时加来海峡距伦敦的直线距离只有200千米的导弹研究进入了精密原型制造阶段。
结合了以前各驾试验机优点的原型机被命名为“Kirshkern (硬壳蛤)”。
脉冲爆震发动机现状及发展趋势精编Document number:WTT-LKK-GBB-08921-EIGG-22986喷气推进是伊萨克·牛顿(Isaac Newton)爵士的第三运动定律的实际应用。
该定律表述为:“作用在一物体上的每一个力都有一方向相反大小相等的反作用力。
”就飞机推进而言,“物体” 是通过发动机时受到加速的空气。
产生这一加速度所需的力有一大小相等方向相反的反作用力作用在产生这一加速度的装置上。
喷气发动机用类似于发动机/螺旋桨组合的方式产生推力。
二者均靠将大量气体向后推来推进飞机,一种是以比较低速的大量空气滑流的形式,而另一种是以极高速的燃气喷气流形式。
这一同样的反作用原理出现于所有运动形式之中,通常有许多应用方式。
喷气反作用最早的着名例子是公元前120年作为一种玩具生产的赫罗的发动机。
这种玩具表明从喷嘴中喷出的水蒸气的能量能够把大小相等方向相反的反作用力传给喷嘴本身,从而引起发动机旋转。
类似的旋转式花园喷灌器是这一原理更为实用的一个例子。
这种喷灌器借助于作用于喷水嘴的反作用力旋转。
现代灭火设备的高压喷头是“喷流反作用”的一个例子。
由于水喷流的反作用力,一个消防员经常握不住或控制不了水管。
也许,这一原理的最简单的表演是狂欢节的气球,当它放出空气或气体时,它便沿着与喷气相反的方向急速飞走。
喷气反作用是一种内部现象。
它不像人们想象的那样是由于喷气流作用在大气上的压力所造成的。
实际上,喷气推进发动机,无论火箭发动机、冲压喷气发动机、或者涡轮喷气发动机,都是设计成加速空气流或者燃气流并将其高速排出的一种装置。
当然,这样做有不同的方式。
但是,在所有例子中,作用在发动机上的最终的反作用力即推力是与发动机排出的气流的质量以及气流的速度成比例的。
换言之,给大量空气附加一个小速度或者给少量空气一个大速度能提供同样的推力。
实用中,人们喜欢前者,因为降低喷气速度能得到更高的推进效率。
脉动喷气发动机是喷气发动机的一种,也称脉冲喷气发动机,可用于靶机,导弹或航空模型上。
喷气飞机发动机的原理推力的产生:喷气飞机发动机产生推力是牛顿的第三运动定律的实际应用。
该定律表述为:“作用在一物体上的每一个力都有一方向相反大小相等的反作用力。
”就飞机推进而言,“物体”是通过发动机时受到加速的空气。
产生这一加速度所需的力有一大小相等方向相反的反作用力作用在产生这一加速度的装置上。
喷气发动机产生推力是通过以极高速的燃气喷气流形式。
这一同样的反作用原理出现于所有运动形式之中,通常有许多应用方式。
喷气反作用最早的著名例子是公元前120年作为一种玩具生产的赫罗的发动机。
这种玩具表明从喷嘴中喷出的水蒸气的能量能够把大小相等方向相反的反作用力传给喷嘴本身,从而引起发动机旋转。
类似的旋转式花园喷灌器是这一原理更为实用的一个例子。
这种喷灌器借助于作用于喷水嘴的反作用力旋转。
现代灭火设备的高压喷头是“喷流反作用”的一个例子。
由于水喷流的反作用力,一个消防员经常握不住或控制不了水管。
也许,这一原理的最简单的表演是狂欢节的气球,当它放出空气或气体时,它便沿着与喷气相反的方向急速飞走。
喷气反作用绝对是一种内部现象。
它不像人们经常想象的那样说成是由于喷气流作用在大气上的压力所造成的。
实际上,喷气推进发动机,无论火箭、冲压喷气、或者涡轮喷气,都是设计成加速空气流或者燃气流并将其高速排出的一种装置。
当然,这样做有不同的方式。
但是,在所有例子中,作用在发动机上的最终的反作用力即推力是与发动机排出的气流的质量以及气流的速度成比例的。
换言之,给大量空气附加一个小速度或者给少量空气一个大速度能提供同样的推力。
实用中,人们喜欢前者,因为降低喷气速度能得到更高的推进效率。
喷气推进的几种方式:不同类型的喷气发动机,无论冲压喷气、脉冲喷气、燃气轮机、涡轮/冲压喷气或者涡轮-火箭,其差别仅在于“推力提供者”即发动机供应能量并将能量转换成飞行动力的方式。
1)冲压喷气发动机实际上是一种气动热力涵道。
它没有任何主要旋转零件,只包含一个扩张形进气涵道和一个收敛形或者收敛-扩张形出口。