线性时不变系统的因果和稳定性
- 格式:ppt
- 大小:862.50 KB
- 文档页数:41
一、判断题(正确的在题后括号内打“√”,错的打“╳”)信号都可以用一个确定的时间函数来描述。
( )信号的时移只会对相位谱有影响,不影响幅度谱。
( ) 是周期序列。
( )周期分别为N1,N2的两离散序列,在进行周期卷积后,其结果也是周期序列。
( )设y(n)=k x (n)+b, k>0,b>0为常数,则该系统是线性系统。
( )y(n)=x2(n)+3所代表的系统是时不变系统。
()已知某离散时间系统为,则该系统为线性时不变系统。
()是线性时不变系统。
( )是因果稳定系统。
()一个因果的线性时不变系统的逆系统也是因果的。
()一个稳定的线性时不变系统的逆系统也是稳定的。
()一个线性时不变离散时间系统的单位抽样响应为,则该系统为稳定的非因果系统。
()如果是实因果序列,则可由求出和。
( )离散傅立叶变换是Z变换在单位圆周上取值的特例。
( ) x(n) ,y(n)的线性卷积的长度是x(n) ,y(n)的各自长度之和。
()同一个Z变换,由于收敛域的不同,可能代表了不同序列的Z变换函数。
( )相同的Z变换表达式一定对应相同的时间序列。
()一个线性时不变的离散系统,它是因果系统的充分必要条件是:系统函数H(Z)的极点在单位圆内。
()因果稳定的离散时间系统的系统函数的极点必然在单位圆内。
( )如果一个系统函数的收敛域包括单位圆,则系统稳定。
( ) 只要找到一个有界的输入,产生有界输出,则表明系统稳定。
( ) 一个线性时不变离散系统是因果系统的充要条件是系统函数H(Z)的极点在圆内。
()一个线性时不变离散系统的因果性和稳定性都可以由系统的单位取样响应h(n)来决定。
( )n<0时,h(n)=0是系统是因果系统的充分条件。
( ) 一个系统的系统函数为:,可以通过选择适当的收敛域使该系统因果稳定。
()IIR滤波器必是稳定的。
( ) FIR滤波器必是稳定的。
( ) 在Z平面上的单位圆上计算出的系统函数就是系统的频率响应。
一、填空、选择、判断:1. 一线性时不变系统,输入为 x (n )时,输出为y (n ) ;则输入为2x (n )时,输出为 2y(n) ;输入为x (n-3)时,输出为 y(n-3) 。
2. 线性时不变系统离散时间因果系统的系统函数为252)1(8)(22++--=z z z z z H ,则系统的极点为 2,2121-=-=z z ;系统的稳定性为 不稳定 。
3.4. 对模拟信号(一维信号,是时间的函数)进行采样后,就是 时域离散信 信号,再进行幅度量化后就是 数字 信号。
5. 单位脉冲响应不变法缺点 频谱混迭 ,适合____低通带通 滤波器设计,但不适合高通带阻 滤波器设计。
6. 请写出三种常用低通原型模拟滤波器特沃什滤波器、切比雪夫滤波器 、 椭圆滤波器。
7. FIR 数字滤波器的单位取样响应为 h(n), 0≤n≤N -1, 则其系统函数 H(z)的极点在 z=0 是 N-1 阶的。
8. 对于N 点(N =2L )的按时间抽取的基2FFT 算法,共需要作 2/NlbN 次复数乘和 _NlbN 次复数加。
9. 从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fs 与信号最高频率f max 关系为:fs>=2f max 。
10. 已知一个长度为N 的序列x(n),它的离散时间傅立叶变换为X (e jw ),它的N 点离散傅立叶变换X (K )是关于X(e jw )的 N 点等间隔 采样 。
11. 有限长序列x(n)的8点DFT 为X (K ),则X (K )=()70()nk N n X k x n W ==∑。
12. 用脉冲响应不变法进行IIR 数字滤波器的设计,它的主要缺点是频谱的 交叠 所产生的现象。
13. 若数字滤波器的单位脉冲响应h (n )是奇对称的,长度为N ,则它的对称中心是 (N-1)/2 。
14. 用窗函数法设计FIR 数字滤波器时,加矩形窗比加三角窗时,所设计出的滤波器的过渡带比较 窄 ,阻带衰减比较 小 。
数字信号处理_东南大学中国大学mooc课后章节答案期末考试题库2023年1.对x(n)(【图片】)和【图片】分别作20点的DFT,得X(k)和Y(k),F(k)=X(k)Y(k)【图片】,f(n)=IDFT[F(k)],n在范围内时,f(n)是x(n)和y(n)的线性卷积。
答案:2.计算两个N点序列的线性卷积,至少要做多少点得到DFT?答案:2N-13.在脉冲响应不变法设计IIR数字滤波器时,数字角频率【图片】与模拟角频率【图片】的关系为,其中T为采样周期。
答案:4.系统【图片】,其中【图片】,【图片】表示输出,【图片】表示输入。
试确定系统的因果性和稳定性。
答案:非因果稳定系统5.系统【图片】其中【图片】表示输出,【图片】表示输入,试确定系统是否是线性系统?是否是时不变系统?答案:线性时不变系统6.小信号极限环振荡是由运算的舍入引起的。
答案:正确7.频率采样法设计FIR滤波器只能用频率采样型结构实现。
答案:错误8.大信号极限环振荡是由舍入运算引起的。
答案:错误9.设模拟滤波器的系统函数为【图片】,若利用脉冲响应不变法设计IIR数字滤波器,采样周期为T,则IIR数字滤波器的系统函数为。
答案:10.巴特沃斯滤波器阶数越高,则。
答案:阻带衰减越大11.滤波器是带内带外等波纹的。
答案:椭圆12.在IIR数字滤波器设计中,用方法只适于分段常数频响特性滤波器的设计。
答案:双线性变换法13.请确定以下序列的周期长度:【图片】答案:5614.已知信号x(t)为带限信号,最高截止频率300Hz,当采样频率为500Hz时,采样信号频谱不会产生混叠。
答案:错误15.一带通模拟信号如图所示,现用以下采样频率对其采样。
(1)10Hz (2)25Hz(3)50Hz (4) 100Hz求采样后哪几种采样频率存在混叠?【图片】答案:(1)_(2)16.按照阻带衰减顺序将窗口排序为。
答案:布莱克曼窗,汉明窗,矩形窗17.已知FIR数字滤波器的单位脉冲响应为【图片】,则该滤波器为的线性相位FIR数字滤波器。
数字信号处理讲义--第5章线性时不变系统的变换分析第5章线性时不变系统的变换分析[教学⽬的]1.了解LTI 系统频率响应的概念;2.掌握线性常系数差分⽅程所表征系数的系统函数的⽅法; 3.掌握有理系统频率响应分析⽅法4.理解线性相位系统、⼴义线性相位系统与因果⼴义线性相位系统的概念,⼏类线性相位系统。
[教学重点与难点] 重点:1.线性常系数差分⽅程所表征系数的系统函数的⽅法; 2.有理系统频率响应分析⽅法; 3.⼏类线性相位系统。
难点:1.有理系统频率响应分析⽅法⼏类线性相位系统5.1 LTI 系统的频率响应前⾯已经讨论过,在时域中,⼀个线性时不变系统完全可以由它的单位脉冲响应h (n )来表⽰。
对于⼀个给定的输⼊x (n ),其输出y (n )为对等式两端取Z 变换,得则 (5-1)两边做离散傅⽴叶变换有: |Y (e j ω)|=|H (e j ω)|·|X (e j ω)| (5-2)|Y (e j ω)|=|H (e j ω)|·|X (e j ω)|arg [Y (e j ω)]=arg [H (e j ω)]+arg [X (e j ω)]|H (e j ω)| 幅度响应 : 增益/幅频特性调整输⼊信号各频率分量的相对强度(幅度)关系Arg[H (e j ω)] 频率响应的相位响应 : 相移/相频特性调整输⼊信号各频率分量的相对位置(相位)关系H (e j ω) 调整输⼊信号各频率分量的相对⼤⼩(幅度)及位置(相∑∞-∞=-=*=m m n h m x n h n x n y )()()()()()()()(z X z H z Y =)()()(z X z Y z H =位)关系5.1.1 理想低通滤波器的选择性5.1.2相位失真与延时线性相位 : 不会改变信号的相对位置,时延相同线性相位的效应 : 时延⾮线性相位:改变信号的相对位置时延不相同≤<≤=πωωωωω||,0||,1)(c c j H n n n h c F πωsin ][=?→←()()|()|j H j H j H j e ωωω= 0 : ()near Phase H j t ωω=- 0()H j tωω≠-5.2 ⽤线性常系数差分⽅程所表征系统的系统函数⼀个线性时不变系统也可以⽤常系数线性差分⽅程来表⽰,其N 阶常系数线性差分⽅程的⼀般形式为若系统起始状态为零,这样就可以直接对上式两端取Z 变换,利⽤Z 变换的线性特性和移位特性可得这样就得到系统函数为(5-3)由此看出系统函数分⼦、分母多项式的系数分别就是差分⽅程的系数。
第5章线性时不变系统的变换分析[教学目的]1.了解LTI 系统频率响应的概念;2.掌握线性常系数差分方程所表征系数的系统函数的方法;3.掌握有理系统频率响应分析方法4.理解线性相位系统、广义线性相位系统与因果广义线性相位系统的概念,几类线性相位系统。
[教学重点与难点]重点:1.线性常系数差分方程所表征系数的系统函数的方法;2.有理系统频率响应分析方法;3.几类线性相位系统。
难点:1. 有理系统频率响应分析方法几类线性相位系统5.1 LTI 系统的频率响应前面已经讨论过,在时域中,一个线性时不变系统完全可以由它的单位脉冲响应h (n )来表示。
对于一个给定的输入x (n ),其输出y (n )为对等式两端取Z 变换,得则 (5-1)两边做离散傅立叶变换有:|Y (e j ω)|=|H (e j ω)|·|X (e j ω)| (5-2)|Y (e j ω)|=|H (e j ω)|·|X (e j ω)|arg [Y (e j ω)]=arg [H (e j ω)]+arg [X (e j ω)]|H (e j ω)| 幅度响应 : 增益/幅频特性调整输入信号各频率分量的相对强度(幅度)关系Arg[H (e j ω)] 频率响应的相位响应 : 相移/相频特性调整输入信号各频率分量的相对位置(相位)关系H (e j ω) 调整输入信号各频率分量的相对大小(幅度)及位置(相∑∞-∞=-=*=m m n h m x n h n x n y )()()()()()()()(z X z H z Y =)()()(z X z Y z H =位)关系5.1.1理想低通滤波器的选择性5.1.2相位失真与延时线性相位 : 不会改变信号的相对位置,时延相同线性相位的效应 : 时延 非线性相位:改变信号的相对位置时延不相同⎩⎨⎧≤<≤=πωωωωω||,0||,1)(c c j H n n n h c F πωsin ][=−→←()()|()|j H j H j H j eωωω=0 : ()near Phase H j t ωω=-0()H j t ωω≠-5.2 用线性常系数差分方程所表征系统的系统函数一个线性时不变系统也可以用常系数线性差分方程来表示,其N 阶常系数线性差分方程的一般形式为若系统起始状态为零,这样就可以直接对上式两端取Z 变换,利用Z 变换的线性特性和移位特性可得这样就得到系统函数为(5-3)由此看出系统函数分子、分母多项式的系数分别就是差分方程的系数。
1.判断下列系统的线性、时不变性、因果性和记忆性。
(解析P7) ①()10()()dy t y t f t dt += ②()()(10)dy t y t f t dt+=+ ③2()()()dy t t y t f t dt+= ④2()(10)()y t f t f t =++2.判断下列系统的线性、时不变性和因果性。
(解析P7) ①20()()sin ()y t y t t at f t =+ ②()()()y t f t f t b =⋅-3.某系统,当输入为()tδτ-时,输出为()()(3)h t u t u t ττ=---,问该系统是否为因果系统?是否为时不变系统?说明理由。
4.下列信号属于功率信号的是(解析P6) ①cos ()tu t ②()teu t - ③()t te u t - ④te-5. 画出函数波形图:2()(1)f t u t =-(指导P12)6.已知()()2(1)(2)(2),f t tu t u t t u t =--+--画出()f t 波形。
(指导P13) 7.根据1.10图中(32)f t -+的波形,画出()f t 波形。
(指导P18) 8.已知()f t 波形波形如例1.11图所示,试画出1(2)2f t --的波形。
(指导P19) 9.已知(52)f t -的波形如图例1.12图所示,求()f t 波形。
(指导P20) 10.求下列函数值 ①432'(652)(1)t t t t dt δ∞+++-⎰②3'()te d τδττ--∞⎰ ③'2(9)t dt δ+∞-∞-⎰ (指导P24)11.求信号0.20.3()j n j n x n ee ππ-=+的周期。
(指导P36) 12.设()x t 是复指数信号:0()j tx t eΩ=,其角频率为0Ω,基本周期为02T π=Ω。
如果离散时间序列是通过对()x t 以取样间隔s T 进行均匀取样的结果,即00()()s j nT j n s x n x nT e e ωΩ===。
系统的稳定性以及稳定性的几种定义一、系统研究系统的稳定性之前,我们首先要对系统的概念有初步的认识。
在数字信号处理的理论中,人们把能加工、变换数字信号的实体称作系统。
由于处理数字信号的系统是在指定的时刻或时序对信号进行加工运算,所以这种系统被看作是离散时间的,也可以用基于时间的语言、表格、公式、波形等四种方法来描述。
从抽象的意义来说,系统和信号都可以看作是序列。
但是,系统是加工信号的机构,这点与信号是不同的。
人们研究系统还要设计系统,利用系统加工信号、服务人类,系统还需要其它方法进一步描述。
描述系统的方法还有符号、单位脉冲响应、差分方程和图形。
中国学者钱学森认为:系统是由相互作用相互依赖的若干组成部分结合而成的,具有特定功能的有机整体,而且这个有机整体又是它从属的更大系统的组成部分。
二、系统的稳定性一个系统,若对任意的有界输入,其零状态响应也是有界的,则称该系统是有界输入有界输出(Bound Input Bound Output------ BIBO)稳定的系统,简称为稳定系统。
即,若系统对所有的激励|f(·)|≤Mf ,其零状态响应|yzs(·)|≤My(M为有限常数),则称该系统稳定。
三、连续(时间)系统与离散(时间)系统连续系统:时间和各个组成部分的变量都具有连续变化形式的系统。
系统的激励和响应均为连续信号。
离散系统:当系统各个物理量随时间变化的规律不能用连续函数描述时,而只在离散的瞬间给出数值,这种系统称为离散系统。
系统的激励和响应均为离散信号。
四、因果系统因果系统 (causal system) 是指当且仅当输入信号激励系统时,才会出现输出(响应)的系统。
也就是说,因果系统的(响应)不会出现在输入信号激励系统的以前时刻。
即输入的响应不可能在此输入到达的时刻之前出现的系统;也就是说系统的输出仅与当前与过去的输入有关,而与将来的输入无关的系统。
判定方法对于连续时间系统:t=t1的输出y(t1)只取决于t≤t1的输入x(t≤t1)时,则此系统为因果系统。