2019-2020学年高中数学(人教B版 选修2-2)教师用书:第1章 导数及其应用 1.1.1、1.1.2
- 格式:doc
- 大小:666.00 KB
- 文档页数:9
第一章导数及其应用1.11.1.3 导数的几何意义知1^嘗L匚憋®探二导数的几何意义1.割线的斜率己知y=/W图象上两点加°)), B[XQ+\X,/(XO+A X)),过A,Ay心+山)一心)B两点割线的斜率是肛=心,即曲线割线的斜率就是函数的平均变化率2.导数的几何意义曲线y =/W在点Uo,加o))处的导数/Uo)的几何意义为曲线⑴在点仇,血°))处的切线的斜率匚初试身手二1.判断(正确的打“ J”,错误的打“X”)⑴导函数/⑴的定义域与函数幷)的定义域相同.(2)直线与曲线相切,则直线与已知曲线只有-个公共点.(3)函数加)=0没有导函数.[解析](1)错.导函数的定义域和原函数的定义域可能不同,如1 1f(x)=x2,其定义域为[0, +oo),而其导函数/⑴二曲,其定义域为(0, +GO).(2)错.直线与曲线相切时,直线与曲线的交点可能有多个.(3)错.函数加)=0为常数函数,其导数/«=0,并不是没有导数.[答案](1)X (2)X (3)X则几2)等于()A・ 1 B._3 D.[解析]由题意知几2)=3.[答案]D处的切线与直线3x-y-2=0平,行3.己知函数/W在xo处的导数为他o)=l,则函数/■⑴在呵处切线的倾斜角为-[解析]设切线的倾斜角为则tana=f(xo)-h 又肚[0°,180°),•:。
=45°・[笞案]45°F严严护\类型丁/求曲线在某点处切线的方程【例1】己知曲线C: y=F.(1)求曲线C在横坐标为x=l的点处的切线方程;(2)第⑴小题中的切线与曲线C是否还有其他的公共点?[思路探究]⑴先求切点坐标,再求y',最后利用导数\类型丁/求曲线在某点处切线的方程的几何意义写出切线方程.(2)将切线方程与曲线C的方程联立求解.[解]⑴将X=1代入曲线C的方程得y=l,・:切点P(l,l). y=lim 辛J山-0 Ax,• (1+3—1= lim -------- ; --------wo Ax= lim[3+3Ax+(Ax)2]=3.A A—O:・k=3.・••曲线在点P(l,l)处的切线方程为y—1=3(L1),即3x~y~2=0."口兀二1, 亠尸―2, 解得I 或 。
1.2 导数的运算1.2.1 常数函数与幂函数的导数 1.2.2 导数公式表及数学软件的应用1.能根据定义求函数y =c ,y =x ,y =x 2,y =1x ,y =x 的导数.(难点) 2.掌握基本初等函数的导数公式,并能进行简单的应用.(重点、易混点)[基础·初探]教材整理1 几个常用函数的导数 阅读教材P 14~P 15,完成下列问题.【答案】 0 1 2x -1x2判断(正确的打“√”,错误的打“×”) (1)若y =x 3+2,则y ′=3x 2+2.( ) (2)若y =1x ,则y ′=1x2.( ) (3)若y =e ,则y ′=0.( )【解析】(1)由y=x3+2,∴y′=3x2.(2)由y=1x,∴y′=-1x2.(3)由y=e,∴y′=0.【答案】(1)×(2)×(3)√教材整理2基本初等函数的导数公式阅读教材P17,完成下列问题.【答案】0 nx n-1μxμ-1a x ln a e x1xln a1xcos x-sin x1.给出下列命题:①y=ln 2,则y′=1 2;②y=1x2,则y′=-2x3;③y=2x,则y′=2x ln 2;④y=log2x,则y′=1 xln 2.其中正确命题的个数为( )A.1 B.2C.3 D.4【解析】对于①,y′=0,故①错;显然②③④正确,故选C.【答案】 C2.若函数f (x )=10x ,则f ′(1)等于( ) A.110 B .10 C .10ln 10D.110ln 10【解析】 ∵f ′(x )=10x ln 10,∴f ′(1)=10ln 10. 【答案】 C[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑:[小组合作型](1)y =x 12;(2)y =1x4;(3)y =5x3;(4)y =3x ;(5)y =log 5x .【精彩点拨】 首先观察函数解析式是否符合求导形式,若不符合可先将函数解析式化为基本初等函数的求导形式.【自主解答】 (1)y ′=(x 12)′=12x 11. (2)y ′=⎝ ⎛⎭⎪⎫1x4′=(x -4)′=-4x -5=-4x5.(3)y ′=(5x3)′=(x 35)′=35x -25. (4)y ′=(3x )′=3x ln 3. (5)y ′=(log 5x )′=1xln 5.1.若所求函数符合导数公式,则直接利用公式求解.2.对于不能直接利用公式的类型,一般遵循“先化简,再求导”的基本原则,避免不必要的运算失误.3.要特别注意“1x 与ln x ”,“a x 与log a x ”,“sin x 与cos x ”的导数区别.[再练一题]1.若f (x )=x 3,g (x )=log 3x, 则f ′(x )-g ′(x )=__________.【导学号:05410008】【解析】 ∵f ′(x )=3x 2,g ′(x )=1xln 3, ∴f ′(x )-g ′(x )=3x 2-1xln 3. 【答案】 3x 2-1xln 3(1)求质点在t =π3时的速度; (2)求质点运动的加速度.【精彩点拨】 (1)先求s ′(t ),再求s ′⎝ ⎛⎭⎪⎫π3.(2)加速度是速度v (t )对t 的导数,故先求v (t ),再求导. 【自主解答】 (1)v (t )=s ′(t )=cos t ,∴v ⎝ ⎛⎭⎪⎫π3=cos π3=12.即质点在t =π3时的速度为12. (2)∵v (t )=cos t ,∴加速度a (t )=v ′(t )=(cos t )′=-sin t .1.速度是路程对时间的导数,加速度是速度对时间的导数.2.求函数在某定点(点在函数曲线上)的导数的方法步骤是:(1)先求函数的导函数;(2)把对应点的横坐标代入导函数求相应的导数值.[再练一题]2.(1)求函数f (x )=13x在(1,1)处的导数;(2)求函数f (x )=cos x 在⎝ ⎛⎭⎪⎫π4,22处的导数.【解】 (1)∵f ′(x )=⎝ ⎛⎭⎪⎪⎫13x ′=(x -13)′=-13x -43=-133x4, ∴f ′(1)=-1331=-13.(2)∵f ′(x )=-sin x , ∴f ′⎝ ⎛⎭⎪⎫π4=-sin π4=-22.[探究共研型]探究1 f (x )=x ,f (x ) 【提示】 ∵(x )′=1·x 1-1,(x 2)′=2·x 2-1,(x)′=⎝ ⎛⎭⎪⎫x 12′=12x 12-1,∴(x α)′=α·x α-1.探究2 点P 是曲线y =e x 上的任意一点,求点P 到直线y =x 的最小距离.【提示】 如图,当曲线y =e x 在点P (x 0,y 0)处的切线与直线y =x 平行时,点P 到直线y =x 的距离最近,则曲线y =e x 在点P (x 0,y 0)处的切线斜率为1,又y ′=(e x )′=e x , ∴e x 0=1,得x 0=0,代入y =e x ,得y 0=1,即P (0,1). 利用点到直线的距离公式得最小距离为22.求过曲线f (x )=cos x 上一点P ⎝ ⎛⎭⎪⎫π3,12且与曲线在这点的切线垂直的直线方程.【精彩点拨】 错误!→错误!→所求直线斜率k =-1f′⎝ ⎛⎭⎪⎫π3→利用点斜式写出直线方程【自主解答】 因为f (x )=cos x ,所以f ′(x )=-sin x ,则曲线f (x )=cos x 在点P ⎝ ⎛⎭⎪⎫π3,12的切线斜率为f ′⎝ ⎛⎭⎪⎫π3=-sin π3=-32, 所以所求直线的斜率为23 3, 所求直线方程为y -12=233⎝ ⎛⎭⎪⎫x -π3, 即y =23 3x -239π+12.求曲线方程或切线方程时应注意:(1)切点是曲线与切线的公共点,切点坐标既满足曲线方程也满足切线方程; (2)曲线在切点处的导数就是切线的斜率;(3)必须明确已知点是不是切点,如果不是,应先设出切点.[再练一题]3.若将上例中点P 的坐标改为(π,-1),求相应的直线方程. 【解】 ∵f (x )=cos x ,∴f ′(x )=-sin x ,则曲线f (x )=cos x 在点P (π,-1)处的切线斜率为f ′(π)=-sin π=0, 所以所求直线的斜率不存在, 所以所求直线方程为x =π.[构建·体系]1.已知f (x )=x α(α∈Q +),若f ′(1)=14,则α等于( ) 【导学号:05410009】 A.13 B.12 C.18D.14【解析】∵f(x)=xα,∴f′(x)=αxα-1,∴f′(1)=α=1 4.【答案】 D 2.给出下列结论:①若y=1x3,则y′=-3x4;②若y=3x,则y′=133x;③若f(x)=3x,则f′(1)=3.其中正确的个数是( )A.1 B.2C.3 D.0【解析】对于①,y′=错误!=错误!=错误!,正确;对于②,y′=13x13-1=13x-23,不正确;对于③,f′(x)=3,故f′(1)=3,正确.【答案】 B3.已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a=________. 【解析】∵f′(x)=3ax2+1,∴f′(1)=3a+1.又f(1)=a+2,∴切线方程为y-(a+2)=(3a+1)(x-1).∵切线过点(2,7),∴7-(a+2)=3a+1,解得a=1.【答案】 14.已知函数y=kx是曲线y=ln x的一条切线,则k=__________.【解析】设切点为(x0,y0),∵y′=1x,∴k=1x0,∴y=1x0·x,又点(x0,y0)在曲线y=ln x上,∴y0=ln x0,∴ln x0=x0x0,∴x0=e,∴k=1e.【答案】1 e5.已知直线y=kx是曲线y=3x的切线,则k的值为________. 【解析】设切点为(x0,y0).因为y′=3x ln 3,①所以k=3x0ln 3,所以y=3x0ln 3·x,又因为(x0,y0)在曲线y=3x上,所以3x0ln 3·x0=3x0,②所以x0=1 ln 3=log3 e.所以k=eln 3.【答案】eln 3我还有这些不足:(1)(2)我的课下提升方案:(1)(2)。
1.3.3 导数的实际应用1.了解导数在解决利润最大、效率最高、用料最省等实际问题中的作用.(重点) 2.能利用导数求出某些实际问题的最大值(最小值).(难点、易混点)[基础·初探]教材整理 导数在实际生活中的应用阅读教材P 30~P 33“练习”以上部分,完成下列问题. 1.最优化问题生活中经常遇到求__________、__________、________等问题,这些问题通常称为最优化问题.2.用导数解决最优化问题的基本思路【答案】 1.利润最大 用料最省 效率最高 2.函数 导数1.做一个容积为256 m 3的方底无盖水箱,所用材料最省时,它的高为( ) A .6 m B .8 m C .4 mD .2 m【解析】 设底面边长为x m ,高为h m ,则有x 2h =256,所以h =256x2.所用材料的面积设为S m 2,则有S =4x ·h +x 2=4x ·256x2+x 2=256×4x +x 2.S ′=2x -256×4x2,令S ′=0,得x =8, 因此h =25664=4(m).【答案】 C2.某一件商品的成本为30元,在某段时间内,若以每件x元出售,可卖出(200-x)件,当每件商品的定价为______元时,利润最大.【解析】利润为S(x)=(x-30)(200-x)=-x2+230x-6 000,S′(x)=-2x+230,由S′(x)=0,得x=115,这时利润达到最大.【答案】115[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型]3-9,ABCD是边长为60 cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E,F在AB上,是被切去的一个等腰直角三角形斜边的两个端点,设AE=FB=x(cm).图1-3-9(1)某广告商要求包装盒的侧面积S(cm2)最大,试问x应取何值?(2)某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.【精彩点拨】弄清题意,根据“侧面积=4×底面边长×高”和“体积=底面边长的平方×高”这两个等量关系,用x将等量关系中的相关量表示出来,建立函数关系式,然后求最值.【自主解答】设包装盒的高为h cm,底面边长为a cm.由已知得a=2x,h=60-2x2=2(30-x),0<x<30.(1)S=4ah=8x(30-x)=-8(x-15)2+1 800,所以当x=15时,S取得最大值.(2)V=a2h=22(-x3+30x2),V′=62x(20-x).由V′=0,得x=0(舍去)或x=20.当x∈(0,20)时,V′>0;当x∈(20,30)时,V′<0. 所以当x=20时,V取得极大值,也是最大值.此时ha=12,即包装盒的高与底面边长的比值为12.1.解决面积、体积最值问题的思路要正确引入变量,将面积或体积表示为变量的函数,结合实际问题的定义域,利用导数求解函数的最值.2.解决优化问题时应注意的问题(1)列函数关系式时,注意实际问题中变量的取值范围,即函数的定义域;(2)一般地,通过函数的极值来求得函数的最值.如果函数f(x)在给定区间内只有一个极值点或函数f(x)在开区间上只有一个点使f′(x)=0,则只要根据实际意义判断该值是最大值还是最小值即可,不必再与端点处的函数值进行比较.[再练一题]1.将一张2×6 m 的矩形钢板按如图1-3-10所示划线,要求①至⑦全为矩形,且左右对称、上下对称,沿线裁去阴影部分,把剩余部分焊接成一个以⑦为底,⑤⑥为盖的水箱,设水箱的高为x m,容积为y m3.图1-3-10(1)写出y关于x的函数关系式;(2)x取何值时,水箱的容积最大.【解】(1)由水箱的高为x m,得水箱底面的宽为(2-2x ) m ,长为6-2x2=(3-x ) m.故水箱的容积为y =2x 3-8x 2+6x (0<x <1). (2)由y ′=6x 2-16x +6=0, 解得x =4+73(舍去)或x =4-73.因为y =2x 3-8x 2+6x (0<x <1)在⎝ ⎛⎭⎪⎫0,4-73内单调递增,在⎝ ⎛⎭⎪⎫4-73,1内单调递减, 所以当x 的值为4-73时,水箱的容积最大.位于A ,B 两点处的甲、乙两村合用一个变压器,如图1-3-11所示,若两村用同型号线架设输电线路,问变压器设在输电干线何处时,所需电线总长最短.图1-3-11【精彩点拨】 可设CD =x km ,则CE =(3-x )km ,利用勾股定理得出AC ,BC 的长,从而构造出所需电线总长度的函数.【自主解答】 设CD =x km ,则CE =(3-x )km. 则所需电线总长l =AC +BC =1+x2+错误!(0≤x ≤3), 从而l ′=x1+x2-错误!. 令l ′=0,即x1+x2-错误!=0, 解得x =1.2或x =-6(舍去).因为在[0,3]上使l ′=0的点只有x =1.2,所以根据实际意义,知x =1.2就是我们所求的最小值点,即变压器设在DE 之间离点D 的距离为1.2 km 处时,所需电线总长最短.1.用料最省、成本(费用)最低问题是日常生活中常见的问题之一,解决这类问题要明确自变量的意义以及最值问题所研究的对象.正确书写函数表达式,准确求导,结合实际作答.2.利用导数的方法解决实际问题,当在定义区间内只有一个点使f ′(x )=0时,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道在这个点取得最大(小)值.[再练一题]2.甲、乙两地相距400千米,汽车从甲地匀速行驶到乙地,速度不得超过100千米/时,已知该汽车每小时的运输成本P (元)关于速度v (千米/时)的函数关系是P =119 200v 4-1160v 3+15v ,(1)求全程运输成本Q (元)关于速度v 的函数关系式;(2)为使全程运输成本最少,汽车应以多大速度行驶?并求此时运输成本的最小值. 【解】 (1)Q =P ·400v=⎝ ⎛⎭⎪⎫119 200v4-1160v3+15v ·400v =⎝ ⎛⎭⎪⎫119 200v3-1160v2+15·400 =v348-52v 2+6 000(0<v ≤100). (2)Q ′=v216-5v ,令Q ′=0,则v =0(舍去)或v =80, 当0<v <80时,Q ′<0; 当80<v ≤100时,Q ′>0,∴v =80千米/时时,全程运输成本取得极小值,即最小值,且Q 最小值=Q (80)=2 0003(元).[探究共研型]探究 【提示】 根据函数的极值与单调性的关系可以判断,函数在该点处取最值,并且极小值点对应最小值,极大值点对应最大值.某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =a x -3+10(x -6)2,其中3<x <6,a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.【精彩点拨】(1)根据x=5时,y=11求a的值.(2)把每日的利润表示为销售价格x的函数,用导数求最大值.【自主解答】(1)因为x=5时,y=11,所以a2+10=11,故a=2.(2)由(1)知,该商品每日的销售量y=2x-3+10(x-6)2,所以商场每日销售该商品所获得的利润f(x)=(x-3)错误!=2+10(x-3)(x-6)2,3<x<6,从而,f′(x)=10[(x-6)2+2(x-3)(x-6)]=30(x-4)·(x-6),于是,当x变化时,f′(x),f(x)的变化情况如下表:单调递增单调递减由上表可得,x=所以,当x=4时,函数f(x)取得最大值,且最大值等于42.故当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.1.经济生活中优化问题的解法经济生活中要分析生产的成本与利润及利润增减的快慢,以产量或单价为自变量很容易建立函数关系,从而可以利用导数来分析、研究、指导生产活动.2.关于利润问题常用的两个等量关系(1)利润=收入-成本.(2)利润=每件产品的利润×销售件数.[再练一题]3.某工厂生产某种产品,已知该产品的月生产量x(吨)与每吨产品的价格p(元/吨)之间的关系式为:p=24 200-15x2,且生产x吨的成本为R=50000+200x(元).问该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?【解】 每月生产x 吨时的利润为 f (x )=⎝ ⎛⎭⎪⎫24 200-15x2x -(50 000+200x )=-15x 3+24 000x -50 000(x ≥0),由f ′(x )=-35x 2+24 000=0,解得x =200或x =-200(舍去).因为f (x )在[0,+∞)内只有一个点x =200使f ′(x )=0,故它就是最大值点,且最大值为f (200)=-15×2003+24 000×200-50 000=3 150 000(元),故每月生产200吨产品时利润达到最大,最大利润为315万元.[构建·体系]1.某箱子的体积与底面边长x 的关系为V (x )=x 2⎝ ⎛⎭⎪⎫60-x 2(0<x <60),则当箱子的体积最大时,箱子底面边长为( )【导学号:05410025】A .30B .40C .50D .60【解析】 V ′(x )=-32x 2+60x =-32x (x -40), 因为0<x <60,所以当0<x <40时,V ′(x )>0, 此时V (x )单调递增;当40<x <60时,V ′(x )<0,此时V (x )单调递减,所以x =40是V (x )的极大值,即当箱子的体积最大时,箱子底面边长为40.【答案】 B2.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获取最大年利润的年产量为( )A .13万件B .11万件C .9万件D .7万件【解析】 因为y ′=-x 2+81,所以当x >9时,y ′<0;当0<x <9时,y ′>0,所以函数y =-13x 3+81x -234在(9,+∞)上单调递减,在(0,9)上单调递增,所以x =9时函数取最大值.【答案】 C3.做一个无盖的圆柱形水桶,若要使水桶的体积是27π,且用料最省,则水桶的底面半径为________.【解析】 设圆柱形水桶的表面积为S ,底面半径为r (r >0),则水桶的高为27r2,所以S =πr 2+2πr ×27r2=πr 2+54πr (r >0),求导数,得S ′=2πr -54πr2,令S ′=0,解得r =3.当0<r <3时,S ′<0;当r >3时,S ′>0,所以当r =3时,圆柱形水桶的表面积最小,即用料最省.【答案】 34.某产品的销售收入y 1(万元)是产量x (千台)的函数:y 1=17x 2(x >0),生产成本y 2(万元)是产量x (千台)的函数:y 2=2x 3-x 2(x >0),为使利润最大,应生产________千台.【解析】 设利润为y ,则y =y 1-y 2=17x 2-(2x 3-x 2)=-2x 3+18x 2(x >0), ∴y ′=-6x 2+36x =-6x (x -6).令y ′=0,解得x =0或x =6,经检验知x =6既是函数的极大值点又是函数的最大值点. 【答案】 65.某商品每件成本9元,售价30元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值x (单位:元,0≤x ≤30)的平方成正比,已知商品单价降低2元时,一星期多卖出24件.(1)将一个星期的商品销售利润表示成x 的函数; (2)如何定价才能使一个星期的商品销售利润最大? 【解】 (1)若商品降价x 元,则多卖的商品数为kx 2件, 由题意知24=k ·22,得k =6.若记商品在一个星期的获利为f (x ),则依题意有 f (x )=(30-x -9)·(432+6x 2)=(21-x )(432+6x 2), 所以f (x )=-6x 3+126x 2-432x +9 072,x ∈[0,30].(2)根据(1)有f ′(x )=-18x 2+252x -432 =-18(x -2)(x -12).当x变化时,f′(x),f(x)的变化情况如下表:单调递减单调递增单调递减故x=30-12=18(元)能使一个星期的商品销售利润最大.我还有这些不足:(1)(2)我的课下提升方案:(1)(2)。
.导数的几何意义.理解导数的几何意义.(重点).能应用导数的几何意义解决相关问题.(难点).正确理解曲线“过某点”和“在某点”处的切线,并会求其方程.(易混点)[基础·初探]教材整理导数的几何意义阅读教材“例”以上部分,完成下列问题..割线的斜率已知=()图象上两点(,()),(+Δ,(+Δ)),过,两点割线的斜率是,即曲线割线的斜率就是..导数的几何意义曲线=()在点(,())处的导数′()的几何意义为.【答案】=函数的平均变化率.曲线=()在点(,())处的切线的斜率.判断(正确的打“√”,错误的打“×”)()导函数′()的定义域与函数()的定义域相同.( )()直线与曲线相切,则直线与已知曲线只有一个公共点.( )()函数()=没有导函数.( )【解析】()错.导函数的定义域和原函数的定义域可能不同,如()=,其定义域为[,+∞),而其导函数′()=,其定义域为(,+∞).()错.直线与曲线相切时,直线与曲线的交点可能有多个.()错.函数()=为常数函数,其导数′()=,并不是没有导数.【答案】()×()×()×.已知函数=()在点()处的切线与直线--=平行,则′()等于( )【导学号:】..-.-.【解析】由题意知′()=.【答案】.已知函数()在处的导数为′()=,则函数()在处切线的倾斜角为. 【导学号:】【解析】设切线的倾斜角为α,则α=′()=,又α∈[°,°),∴α=°.【答案】°[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问:解惑:疑问:解惑:疑问:解惑:[小组合作型]()求曲线在横坐标为=的点处的切线方程;()第()小题中的切线与曲线是否还有其他的公共点?【精彩点拨】()先求切点坐标,再求′,最后利用导数的几何意义写出切线方程.()将切线方程与曲线的方程联立求解.。
1.3导数的应用1.3.1利用导数判断函数的单调性1.理解导数与函数的单调性的关系.(易混点)2.掌握利用导数判断函数单调性的方法.(重点)3.会用导数求函数的单调区间.(重点、难点)[基础·初探]教材整理函数的单调性与导数之间的关系阅读教材P24,完成下列问题.用函数的导数判定函数单调性的法则(1)如果在(a,b)内,________,则f(x)在此区间是增函数,(a,b)为f(x)的单调增区间;(2)如果在(a,b)内,________,则f(x)在此区间是减函数,(a,b)为f(x)的单调减区间.【答案】f′(x)>0 f′(x)<0判断(正确的打“√”,错误的打“×”)(1)函数f(x)在定义域上都有f′(x)>0,则函数f(x)在定义域上单调递增.( )(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”.( )(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.( )【答案】(1)×(2)×(3)√[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型](1)函数y=f(图1-3-1①函数y=f(x)的定义域是[-1,5];②函数y=f(x)的值域是(-∞,0]∪[2,4];③函数y=f(x)在定义域内是增函数;④函数y=f(x)在定义域内的导数f′(x)>0.其中正确的序号是( )A.①②B.①③C.②③D.②④(2)设函数f(x)在定义域内可导,y=f(x)的图象如图1-3-2所示,则导函数y=f′(x)的图象可能为( )图1-3-2【精彩点拨】研究一个函数的图象与其导函数图象之间的关系时,注意抓住各自的关键要素,对于原函数,要注意其图象在哪个区间内单调递增,在哪个区间内单调递减;而对于导函数,则应注意其函数值在哪个区间内大于零,在哪个区间内小于零,并分析这些区间与原函数的单调区间是否一致.【自主解答】(1)由图象可知,函数的定义域为[-1,5],值域为(-∞,0]∪[2,4],故①②正确,选A.(2)由函数的图象可知:当x<0时,函数单调递增,导数始终为正;当x>0时,函数先增后减再增,即导数先正后负再正,对照选项,应选D.【答案】(1)A (2)D1.利用导数判断函数的单调性比利用函数单调性的定义简单的多,只需判断导数在该区间内的正负即可.2.通过图象研究函数单调性的方法(1)观察原函数的图象重在找出“上升”“下降”产生变化的点,分析函数值的变化趋势;(2)观察导函数的图象重在找出导函数图象与x轴的交点,分析导数的正负.[再练一题]1.(1)设f′(x)是函数f(x)的导函数,将y=f(x)和y=f′(x)的图象画在同一个直角坐标系中,不正确的是( )A B C D(2)若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在区间[a,b]上的图象可能是( )A B C D【解析】(1)A,B,C均有可能;对于D,若C1为导函数,则y=f(x)应为增函数,不符合;若C2为导函数,则y=f(x)应为减函数,也不符合.(2)因为y=f(x)的导函数在区间[a,b]上是增函数,则从左到右函数f(x)图象上的点的切线斜率是递增的.【答案】(1)D (2)A求函数f(x)=x+ax(a≠0)的单调区间.【精彩点拨】求出导数f′(x),分a>0和a<0两种情况.由f′(x)>0求得单调增区间,由f′(x)<0求得单调减区间.【自主解答】f(x)=x+ax的定义域是(-∞,0)∪(0,+∞),f′(x)=1-a x2.当a>0时,令f′(x)=1-ax2>0,解得x>a或x<-a;令f′(x)=1-ax2<0,解得-a<x<0或0<x<a;当a<0时,f′(x)=1-ax2>0恒成立,所以当a>0时,f(x)的单调递增区间为(-∞,-a)和(a,+∞);单调递减区间为(-a,0)和(0,a).当a<0时,f(x)的单调递增区间为(-∞,0)和(0,+∞).利用导数求函数单调区间的步骤1.确定函数f(x)的定义域.2.求导数f′(x).3.由f′(x)>0(或f′(x)<0),解出相应的x的范围.当f′(x)>0时,f(x)在相应的区间上是增函数;当f′(x)<0时,f(x)在相应区间上是减函数.4.结合定义域写出单调区间.[再练一题]2.(1)函数f(x)=e x-e x,x∈R的单调递增区间为( ) 【导学号:05410017】A.(0,+∞) B.(-∞,0)C.(-∞,1) D.(1,+∞)(2)函数f(x)=ln x-x的单调递增区间是( )A.(-∞,1) B.(0,1)C .(0,+∞)D .(1,+∞)【解析】 (1)∵f ′(x )=(e x -e x )′=e x -e , 由f ′(x )=e x -e>0,可得x >1.即函数f (x )=e x -e x ,x ∈R 的单调增区间为 (1,+∞),故选D.(2)函数的定义域为(0,+∞),又f ′(x )=1x -1, 由f ′(x )=1x -1>0,得0<x <1,所以函数f (x )=ln x -x 的单调递增区间是(0,1),故选B. 【答案】 (1)D (2)B[探究共研型]探究1 【提示】 由已知得f ′(x )=3x 2-a , 因为f (x )在(-∞,+∞)上是单调增函数, 所以f ′(x )=3x 2-a ≥0在(-∞,+∞)上恒成立, 即a ≤3x 2对x ∈R 恒成立,因为3x 2≥0,所以只需a ≤0. 又因为a =0时,f ′(x )=3x 2≥0, f (x )=x 3-1在R 上是增函数,所以a ≤0.探究2 若函数f (x )=x 3-ax -1的单减区间为(-1,1),如何求a 的取值范围. 【提示】 由f ′(x )=3x 2-a , ①当a ≤0时,f ′(x )≥0, ∴f (x )在(-∞,+∞)上为增函数. ②当a >0时,令3x 2-a =0,得x =±3a3, 当-3a 3<x <3a3时,f ′(x )<0. ∴f (x )在⎝ ⎛⎭⎪⎫-3a 3,3a 3上为减函数, ∴f (x )的单调递减区间为⎝⎛⎭⎪⎫-3a 3,3a 3,∴3a3=1,即a=3.已知关于x的函数y=x3-ax+b.(1)若函数y在(1,+∞)内是增函数,求a的取值范围;(2)若函数y的一个单调递增区间为(1,+∞),求a的值.【精彩点拨】(1)函数在区间(1,+∞)内是增函数,则必有y′≥0在(1,+∞)上恒成立,由此即可求出a的取值范围.(2)函数y的一个单调递增区间为(1,+∞),即函数单调区间的端点值为1,由此可解得a 的值.【自主解答】y′=3x2-a.(1)若函数y=x3-ax+b在(1,+∞)内是增函数.则y′=3x2-a≥0在x∈(1,+∞)时恒成立,即a≤3x2在x∈(1,+∞)时恒成立,则a≤(3x2)最小值.因为x>1,所以3x2>3.所以a≤3,即a的取值范围是(-∞,3].(2)令y′>0,得x2>a3.若a≤0,则x2>a3恒成立,即y′>0恒成立,此时,函数y=x3-ax+b在R上是增函数,与题意不符.若a>0,令y′>0,得x>a3或x<-a3.因为(1,+∞)是函数的一个单调递增区间,所以a3=1,即a=3.1.解答本题注意:可导函数f(x)在(a,b)上单调递增(或单调递减)的充要条件是f′(x)≥0(或f′(x)≤0)在(a,b)上恒成立,且f′(x)在(a,b)的任何子区间内都不恒等于0.2.已知f(x)在区间(a,b)上的单调性,求参数范围的方法(1)利用集合的包含关系处理f(x)在(a,b)上单调递增(减)的问题,则区间(a,b)是相应单调区间的子集;(2)利用不等式的恒成立处理f(x)在(a,b)上单调递增(减)的问题,则f′(x)≥0(f′(x)≤0)在(a,b)内恒成立,注意验证等号是否成立.[再练一题]3.将上例(1)改为“若函数y在(1,+∞)上不单调”,则a的取值范围又如何?【解】y′=3x2-a,当a<0时,y′=3x2-a>0,函数在(1,+∞)上单调递增,不符合题意.当a>0时,函数y在(1,+∞)上不单调,即y′=3x2-a=0在区间(1,+∞)上有根.由3x2-a=0可得x=a3或x=-a3(舍去).依题意,有a3>1,∴a>3,所以a的取值范围是(3,+∞).[构建·体系]1.函数y=f(x)的图象如图1-3-3所示,则导函数y=f′(x)的图象可能是( )图1-3-3【解析】∵函数f(x)在(0,+∞),(-∞,0)上都是减函数,∴当x>0时,f′(x)<0,当x<0时,f′(x)<0.【答案】 D2.已知函数f (x )=x +ln x ,则有( ) A .f (2)<f (e)<f (3) B .f (e)<f (2)<f (3) C .f (3)<f (e)<f (2)D .f (e)<f (3)<f (2)【解析】 因为在定义域(0,+∞)上,f ′(x )=12x+1x >0,所以f (x )在(0,+∞)上是增函数,所以有f (2)<f (e)<f (3).故选A.【答案】 A3.函数f (x )=2x 3-9x 2+12x +1的单调减区间是________.【解析】 f ′(x )=6x 2-18x +12,令f ′(x )<0,即6x 2-18x +12<0,解得1<x <2. 【答案】 (1,2)4.已知函数f (x )=ax +1x +2在(-2,+∞)内单调递减,则实数a 的取值范围为________. 【解析】 f ′(x )=错误!,由题意得f ′(x )≤0在(-2,+∞)内恒成立,∴解不等式得a ≤12,但当a =12时,f ′(x )=0恒成立,不合题意,应舍去,所以a 的取值范围是⎝ ⎛⎭⎪⎫-∞,12. 【答案】 ⎝ ⎛⎭⎪⎫-∞,125.已知函数f (x )=ln x ,g (x )=12ax 2+2x ,a ≠0.若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围. 【解】 h (x )=ln x -12ax 2-2x ,x ∈(0,+∞), 所以h ′(x )=1x -ax -2. 因为h (x )在[1,4]上单调递减, 所以x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立, 即a ≥1x2-2x 恒成立,所以a ≥G (x )最大值,而G (x )=⎝ ⎛⎭⎪⎫1x -12-1.因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )最大值=-716(此时x =4),所以a ≥-716. 当a =-716时,h ′(x )=1x +716x -2=16+7x2-32x 16x=错误!. 因为x ∈[1,4], 所以h ′(x )=错误!≤0, 即h (x )在[1,4]上为减函数. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.我还有这些不足:(1) (2) 我的课下提升方案:(1) (2)。
1.1导数1.1.1函数的平均变化率1.1.2瞬时速度与导数1.理解函数平均变化率的概念,会求函数的平均变化率.(重点)2.理解瞬时变化率、导数的概念.(难点、易混点)3.会用导数的定义求函数的导数.[基础·初探]教材整理1函数的平均变化率阅读教材P3~P4“例1”以上部分,完成下列问题.函数的平均变化率的定义一般地,已知函数y=f(x),x0,x1是其定义域内不同的两点,记Δx=x1-x0,Δy=y1-y0=f (x1)-f(x0)=f(x0+Δx)-f(x0),则当Δx≠0时,商________=Δy Δx称作函数y=f(x)在区间[x0,x0+Δx](或[x0+Δx,x0])的平均变化率.【答案】错误!判断(正确的打“√”,错误的打“×”)(1)Δx表示x2-x1,是相对于x1的一个增量,Δx可以为零.( )(2)Δy表示f(x2)-f(x1),Δy的值可正可负也可以为零.( )(3)ΔyΔx表示曲线y=f(x)上两点(x1,f(x1)),(x2,f(x2))连线的斜率.( )【答案】(1)×(2)√(3)√教材整理2瞬时速度与导数阅读教材P6~P8,完成下列问题.1.物体运动的瞬时速度设物体运动路程与时间的关系是s=f(t),当______________时,函数f(t)在t0到t0+Δt之间的平均变化率________________趋近于常数,我们把这个常数称为t0时刻的瞬时速度.2.函数的瞬时变化率设函数y=f(x)在x0及其附近有定义,当自变量在x=x0附近改变量为Δx时,函数值相应地改变Δy=f(x0+Δx)-f(x0),如果当Δx趋近于0时,平均变化率______________________________趋近于一个常数l,那么常数l称为函数f(x)在点x0的瞬时变化率.记作:当Δx→0时,错误!→l.还可以说:当Δx→0时,函数平均变化率的极限等于函数在x0的瞬时变化率l,记作limΔx→0错误!=l.3.函数f(x)在x=x0处的导数函数y=f(x)在点x0的__________,通常称为f(x)在点x0处的导数,并记作________,即f′(x 0)=____________.4.函数的导数如果f(x)在开区间(a,b)内每一点x__________的,则称f(x)在区间(a,b)可导.这样,对开区间(a,b)内每个值x,都对应一个________________.于是,在区间(a,b)内,f′(x)构成一个新的函数,把这个函数称为函数y=f(x)的导函数.记为________________.【答案】 1.Δt趋近于0 错误!2.ΔyΔx=错误!3.瞬时变化率f′(x0) limΔx→0错误!4.都是可导确定的导数f′(x) f′(x)或y′(或y′x)1.判断(正确的打“√”,错误的打“×”)(1)函数y=f(x)在x=x0处的导数值与Δx值的正、负无关.( )(2)瞬时变化率是刻画某函数值在区间[x1,x2]上变化快慢的物理量.( )(3)在导数的定义中,Δx,Δy都不可能为零.( )【解析】(1)由导数的定义知,函数在x=x0处的导数只与x0有关,故正确.(2)瞬时变化率是刻画某一时刻变化快慢的物理量,故错误.(3)在导数的定义中,Δy可以为零,故错误.【答案】(1)√(2)×(3)×2.函数f(x)=x2在x=1处的瞬时变化率是_________________________.【导学号:05410000】【解析】∵f(x)=x2,∴函数f(x)在x=1处的瞬时变化率是lim Δx→0ΔyΔx=limΔx→0错误!=limΔx→0错误!=limΔx→0(2+Δx)=2.【答案】 2[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型](1)( ) A.0.40 B.0.41C.0.43 D.0.44(2)已知函数f(x)=x+1x,分别计算f(x)在自变量x从1变到2和从3变到5时的平均变化率,并判断在哪个区间上函数值变化得较快.【精彩点拨】(1)由Δy=f(x+Δx)-f(x)=f(2+0.1)-f(2)可得.(2)求Δx=x2-x1→错误!→错误!【自主解答】(1)Δy=f(2+Δx)-f(2)=f(2.1)-f(2)=2.12-22=0.41. 【答案】 B(2)自变量x从1变到2时,函数f(x)的平均变化率为错误!=错误!=错误!;自变量x从3变到5时,函数f(x)的平均变化率为错误!=错误!=错误!.因为12<1415,所以函数f(x)=x+1x在自变量x从3变到5时函数值变化得较快.1.求函数平均变化率的三个步骤第一步,求自变量的增量Δx=x2-x1;第二步,求函数值的增量Δy=f(x2)-f(x1);第三步,求平均变化率ΔyΔx=错误!.2.求平均变化率的一个关注点求点x0附近的平均变化率,可用错误!的形式.[再练一题]1.函数y=x2+1在[1,1+Δx]上的平均变化率是( ) A.2 B.2xC.2+Δx D.2+(Δx)2【解析】∵Δy=(1+Δx)2+1-(12+1)=2Δx+Δx2,∴ΔyΔx=2Δx+Δx2Δx=2+Δx,故选C.【答案】 C(1)以初速度v0(v0>0)垂直上抛的物体,t秒时的高度为s(t)=v0t-1 2gt2,则物体在t0时刻的瞬时速度为__________.(2)某物体的运动方程为s=2t3,则物体在第t=1时的瞬时速度是__________.【导学号:05410001】【精彩点拨】 先求出Δs Δt ,再求lim Δt→0ΔsΔt .【自主解答】 (1)∵Δs =v 0(t 0+Δt )-12g (t 0+Δt )2-⎝ ⎛⎭⎪⎫v0t0-12gt20=v 0Δt -gt 0Δt -12g Δt 2, ∴Δs Δt =v 0-gt 0-12g Δt ,∴lim Δt→0 ΔsΔt =v 0-gt 0,即t 0时刻的瞬时速度为v 0-gt 0. (2)∵当t =1时,Δs =2(1+Δt )3-2×13 =2[1+(Δt )3+3Δt +3(Δt )2]-2 =2+2(Δt )3+6Δt +6(Δt )2-2 =2(Δt )3+6(Δt )2+6Δt , ∴ΔsΔt =错误!=2(Δt )2+6Δt +6,∴lim Δt→0 ΔsΔt =6,则物体在第t =1时的瞬时速度是6. 【答案】 (1)v 0-gt 0 (2)61.求运动物体瞬时速度的三个步骤(1)求时间改变量Δt 和位移改变量Δs =s (t 0+Δt )-s (t 0); (2)求平均速度v =ΔsΔt ;(3)求瞬时速度,当Δt 无限趋近于0时,ΔsΔt 无限趋近于常数v ,即为瞬时速度. 2.求ΔyΔx (当Δx 无限趋近于0时)的极限的方法 (1)在极限表达式中,可把Δx 作为一个数来参与运算.(2)求出ΔyΔx 的表达式后,Δx 无限趋近于0就是令Δx =0,求出结果即可.[再练一题]2.一做直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2(位移单位:m ,时间单位:s).(1)求此物体的初速度;(2)求此物体在t =2时的瞬时速度; (3)求t =0到t =2时的平均速度.【解】(1)初速度v0=limΔt→0错误!=limΔt→0错误!=错误!(3-Δt)=3,即物体的初速度为3 m/s.(2)v瞬=limΔt→0错误!=limΔt→0错误!=limΔt→0错误!=limΔt→0(-Δt-1)=-1,即物体在t=2时的瞬时速度为1 m/s,方向与初速度方向相反.(3)v=错误!=错误!=1,即t=0到t=2时的平均速度为1 m/s.[探究共研型]探究1 试求质点在[1,1+Δt]这段时间内的平均速度.【提示】ΔsΔt=错误!=-6-3Δt.探究2 当Δt趋近于0时,探究1中的平均速度趋近于何值?如何理解这一速度?【提示】当Δt趋近于0时,ΔsΔt趋近于-6.这时的平均速度即为t=1时的瞬时速度.(1)求函数f(x)=-x2+x在x=-1附近的平均变化率,并求出在该点处的导数;(2)求函数y=3x2在x=1处的导数.【精彩点拨】求函数f(x)在任意点处的导数都应先求平均变化率,再求f′(x0).【自主解答】(1)∵Δy=f(-1+Δx)-f(-1)=-(-1+Δx)2+(-1+Δx)+2=3Δx-(Δx)2,∴ΔyΔx=错误!=3-Δx,∴f′(-1)=limΔx→0ΔyΔx=limΔx→0(3-Δx)=3.(2)∵Δy=f(1+Δx)-f(1)=3(1+Δx)2-3=6Δx+3(Δx)2,∴ΔyΔx=6+3Δx,∴f′(1)=limΔx→0Δy Δx=limΔx→0(6+3Δx)=6.1.通过本例(1)进一步感受平均变化率与瞬时变化率的关系,对于Δy与Δx的比值,感受和认识在Δx逐渐变小的过程中趋近于一个固定的常数A这一现象.2.用定义求函数在x=x0处的导数的步骤(1)求函数的增量Δy=f(x0+Δx)-f(x0);(2)求平均变化率Δy Δx;(3)求极限,得导数为f′(x0)=limΔx→0Δy Δx.简记为:一差、二比、三趋近.[再练一题]3.求函数f(x)=x-1x在x=1处的导数.【解】∵Δy=(1+Δx)-11+Δx-⎝⎛⎭⎪⎫1-11=Δx+1-11+Δx=Δx+Δx1+Δx,∴ΔyΔx=Δx+Δx1+ΔxΔx=1+11+Δx,∴f′(1)=limΔx→0ΔyΔx=limΔx→0⎝⎛⎭⎪⎫1+11+Δx=2.[构建·体系]1.已知函数y=f(x)=2x2的图象上点P(1,2)及邻近点Q(1+Δx,2+Δy),则ΔyΔx的值为( )A.4 B.4x C.4+2Δx2D.4+2Δx【解析】ΔyΔx=错误!=4+2Δx.【答案】 D2.一个物体的运动方程为s=1-t+t2,其中s的单位是:m,t的单位是:s,那么物体在3 s末的瞬时速度是( )A.7 m/s B.6 m/sC.5 m/s D.8 m/s【解析】∵ΔsΔt=错误!=5+Δt,∴lim Δt→0ΔsΔt=limΔt→0(5+Δt)=5(m/s).【答案】 C3.质点运动规律s=12gt2,则在时间区间(3,3+Δt)内的平均速度等于________.(g=10m/s2)【解析】Δs=12g×(3+Δt)2-12g×32=12×10×[6Δt+(Δt)2]=30Δt+5(Δt)2,v=ΔsΔt=30+5Δt.【答案】30+5Δt4.一质点M按运动方程s(t)=at2+1做直线运动(位移单位:m,时间单位:s).若质点M在t=2 s时的瞬时速度为8 m/s,则常数a=________.【导学号:05410002】【解析】因为Δs=s(2+Δt)-s(2)=a(2+Δt)2+1-a·22-1=4aΔt+a(Δt)2,所以ΔsΔt=4a+aΔt,故当t=2时,瞬时速度为limΔt→0ΔsΔt=4a,所以4a=8,所以a=2.【答案】 25.在曲线y=f(x)=x2+3上取一点P(1,4)及附近一点(1+Δx,4+Δy),求:(1)Δy Δx;(2)f′(1).【解】(1)ΔyΔx=错误!=错误!=2+Δx.(2)f′(1)=limΔx→0错误!=错误!(2+Δx)=2.我还有这些不足:(1)(2)我的课下提升方案:(1)(2)。