数学知识点总结整理
- 格式:docx
- 大小:12.55 KB
- 文档页数:7
数学常识知识点总结数学是一门基础学科,广泛应用于各个领域。
掌握数学基础常识对于解决实际问题和提高思维能力具有重要意义。
本文将总结一些数学常识知识点,供读者参考。
一、数的基本概念和运算1. 自然数:自然数是从1开始的整数序列,用N表示。
2. 整数:整数包括正整数、负整数和0,用Z表示。
3. 有理数:有理数是可以表示为两个整数的比,包括整数和分数,用Q表示。
4. 无理数:无理数是不能表示为两个整数的比,例如π和根号2,用R表示。
5. 实数:实数包括有理数和无理数,用R表示。
6. 加法和减法:加法是两个数的和,减法是第一个数减去第二个数。
7. 乘法和除法:乘法是两个数的积,除法是第一个数除以第二个数。
二、代数运算1. 方程和不等式:方程是含有等号的式子,不等式是含有不等号的式子。
2. 一次方程和一次不等式:一次方程和一次不等式指的是最高次数为1的方程和不等式。
3. 二次方程和二次不等式:二次方程是最高次数为2的方程,二次不等式是最高次数为2的不等式。
三、几何知识1. 点、线、面:点是几何的基本要素,线是由无数个点连成的轨迹,面是由无数个点和线围成的平面。
2. 直线和曲线:直线是最短的路径,曲线是弯曲的路径。
3. 角和三角形:角是由两条线段共同端点围成的形状,三角形是由三条线段围成的形状。
4. 圆和圆周率:圆是由一条曲线和其中心围成的形状,圆周率是圆的周长与直径的比值。
5. 面积和体积:面积是平面图形所占的空间,体积是立体图形所占的空间。
四、概率和统计1. 概率:概率是事件发生的可能性,通常用0到1之间的数表示。
2. 统计:统计是对数据进行收集、整理和分析,从而得出结论。
五、数学思维和解题方法1. 推理和证明:推理是从已知事实出发,得出新的结论,证明是利用已知条件和推理方法证明某个结论的正确性。
2. 归纳和演绎:归纳是从具体事实总结出一般规律,演绎是从一般原理推导出具体结论。
3. 抽象和具体:抽象是将具体问题转化为一般性的问题,具体是将一般性的问题转化为具体问题。
数学常识知识点总结一、基本概念1. 数与代数数是数学的基本概念之一,包括自然数、整数、有理数、无理数、实数和复数等。
代数是数学中的一门重要分支,它研究的是代数结构、代数运算和代数方程等内容。
2. 几何几何是研究空间、形状和位置的数学分支,包括点、线、面、体、角、距离、面积、体积和图形等概念。
3. 概率与统计概率研究的是随机事件的发生规律和概率分布等内容,统计则是研究数据的收集、分析和解释等内容。
二、数学运算1. 加法和减法加法是指两个或多个数相加的运算,减法是指一个数减去另一个数的运算。
加法和减法是数学中最基本的运算之一,也是我们日常生活中最常用的运算之一。
2. 乘法和除法乘法是指两个或多个数相乘的运算,除法是指一个数除以另一个数的运算。
乘法和除法是数学中另外两个重要的运算,它们与加法和减法一样,也是我们日常生活中经常使用的运算。
3. 平方和开方平方是指一个数乘以自己,开方是指找出一个数的平方根。
平方和开方是数学中常见的运算,它们在几何、物理和工程等领域中有着重要的应用。
4. 负数和绝对值负数是小于零的数,它们与正数一样,也可以进行加减乘除等运算。
绝对值是指一个数到零的距离,它是一个非负数。
5. 百分数、分数和比例百分数是将一个数表示为百分之几,分数是表示一个数相对于另一个数的除法式,比例是两个数量之间的比较关系。
三、方程与函数1. 一元一次方程一元一次方程是关于一个自变量的一次方程,一般形式为ax+b=0,其中a和b为常数,a不等于0。
解一元一次方程的方法包括移项、合并同类项、去括号、整理得到解,也可以通过绘图法进行解。
2. 一元二次方程一元二次方程是关于一个自变量的二次方程,一般形式为ax^2+bx+c=0,其中a、b和c为常数,a不等于0。
解一元二次方程的一般方法有配方法、公式法和因式分解法等。
3. 函数与图像函数是指一种关系,它将自变量映射到因变量,其中自变量的值确定函数的值。
函数的图像是反映函数关系的几何图形,它可以通过数学方法和计算机绘图软件等手段来绘制。
数学专用知识点总结大全一、基本概念1. 数的概念数是用来度量、计数、表示数量的抽象概念。
数分为自然数、整数、有理数、无理数、实数等几种,它们之间有着特定的性质和关系。
2. 几何图形的概念几何图形是空间中的一些形状的抽象概念,如点、线、面、体等。
几何图形的性质和关系是几何学研究的重要内容。
3. 集合的概念集合是具有某种共同性质的事物的总体,它是数学中的基本概念之一。
集合的运算、性质和应用在数学中有着广泛的应用。
4. 函数的概念函数是数学中最基本的概念之一,它描述了两个数集之间的对应关系。
函数的性质、图像和应用是数学学习的重要内容之一。
5. 代数方程的概念代数方程是数学中常见的问题形式,它描述了一个变量与另一个变量之间的关系。
解方程是数学学习中的基本技能之一。
二、基本原理1. 数列和数列的极限数列是数学中的一个重要概念,它描述了一系列数字的排列规律。
数列的极限是研究数列性质的重要工具。
2. 极限和连续性极限是微积分学中的重要概念,它描述了一个变量趋于一个确定值的过程。
连续性是函数的性质之一,它描述了函数图像的平滑性和连续性。
3. 微分学和积分学微分学是研究函数变化率的学科,积分学是研究函数面积和反函数的学科。
微积分学是数学中的重要分支之一,它在物理学、工程学和经济学等学科中有着广泛的应用。
4. 线性代数和矩阵论线性代数是数学中的一个基本分支,它研究了线性方程组、向量空间、矩阵与行列式等概念。
矩阵论是线性代数的一个重要分支,它在工程学和计算机科学中有着广泛的应用。
5. 概率论和数理统计概率论是研究随机事件的概率分布和规律的学科,它在风险管理和金融领域有着广泛的应用。
数理统计是概率论的一个重要分支,它研究了随机事件的规律和规律性。
三、常见定理和公式1. 皮亚诺定理皮亚诺定理是数学中的一个基本定理,它描述了自然数的性质和规律。
皮亚诺定理是数学中的重要定理之一。
2. 费马定理费马定理是数学中的一个著名的未解之谜,它描述了一个非常简单的方程,但长期以来却无法证明。
数学各类知识点总结归纳一、基本算术运算基本算术运算是数学的基础,包括加法、减法、乘法和除法。
加法是指两个数相加,减法是指一个数减去另一个数,乘法是指两个数相乘,除法是指一个数除以另一个数。
在进行基本算术运算时,需要注意运算的顺序和规则,比如乘除优先于加减,括号内先算等等。
二、代数代数是数学中的一个重要分支,它研究未知数、变量和它们之间的关系。
代数包括整数、有理数、无理数、多项式、方程和不等式等内容。
在代数中,我们需要学习如何解方程和不等式,如何简化和展开多项式,以及如何进行有理数和无理数的运算等等。
三、几何几何是研究空间、形状和位置关系的数学分支,它主要包括平面几何和立体几何。
在几何学中,我们需要学习如何证明几何定理、如何计算图形的面积和周长、如何计算立体图形的体积和表面积等内容。
四、概率与统计概率与统计是数学中的另一个重要分支,它研究随机事件的规律性和规律性的量化。
概率是指事件发生的可能性,统计是指收集、分析和解释数据。
在概率与统计中,我们需要学习如何计算事件发生的概率、如何进行抽样调查和数据分析等内容。
五、微积分微积分是数学中的一门重要学科,它研究函数的变化率和积分。
微积分包括导数、微分和积分等内容。
在微积分中,我们需要学习如何求函数的导数和微分,如何求定积分和不定积分,以及如何应用微积分解决实际问题等内容。
以上是数学各类知识点的总结归纳,数学是一门重要的学科,它不仅能帮助我们理解世界、解决问题,还能培养我们的逻辑思维和分析能力。
因此,我们应该认真学习数学知识,提高自己的数学水平。
必须掌握的数学知识点总结一、基础知识1. 算术算术是数学的基础,包括加法、减法、乘法、除法等基本运算。
在实际生活中,我们经常需要进行数字的计算,因此掌握基本的算术知识对于每个人来说都是至关重要的。
2. 代数代数是数学中的一个重要分支,主要研究未知数和它们之间的关系。
代数知识包括多项式、方程、不等式、函数等内容,是后续学习更高级数学知识的基础。
3. 几何几何是研究空间和图形的形状、大小、位置关系的一门学科。
几何知识包括直线、角、三角形、四边形、圆等内容,对于理解空间和图形的属性有着重要的作用。
4. 概率与统计概率与统计是数学中的一个重要分支,研究的是随机现象的规律性和数量关系。
概率用来描述随机事件发生的可能性,而统计则是对数据进行收集、整理、分析和解释的过程。
二、高级知识1. 微积分微积分是数学的一个重要分支,主要研究函数的变化规律和其在空间中的应用。
微积分知识包括导数、积分、微分方程等内容,是自然科学和工程技术中不可或缺的工具。
2. 线性代数线性代数是数学中的一个重要领域,主要研究向量空间和线性变换。
线性代数知识包括矩阵、行列式、特征值与特征向量等内容,在物理、工程、信息科学等领域有着广泛的应用。
3. 数理逻辑数理逻辑是数学的一个重要分支,研究的是数学推理和证明的方法。
数理逻辑知识包括命题逻辑、谓词逻辑、集合论等内容,是数学基础和理论研究中不可或缺的一部分。
4. 离散数学离散数学是数学中的一个重要分支,主要研究离散结构和离散对象之间的关系。
离散数学知识包括集合、图论、代数结构等内容,在计算机科学和信息技术中有着重要的应用价值。
通过对这些数学知识点的总结,我们可以清晰地看到数学的广泛应用和重要性。
无论在学术研究还是实际应用中,数学都扮演着不可替代的角色。
因此,掌握这些数学知识点对于每个人来说都是非常重要的。
希望通过这篇总结,读者们可以对数学有一个更全面的理解,从而更好地应用和发展数学知识。
数学知识点总结数学知识点总结集合15篇总结就是对一个时期的学习、工作或其完成情况进行一次全面系统的回顾和分析的书面材料,它能够给人努力工作的动力,因此我们需要回头归纳,写一份总结了。
那么如何把总结写出新花样呢?下面是小编收集整理的数学知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。
数学知识点总结1角:(1)角的静态定义:具有公共端点的两条不重合的射线组成的图形叫做角。
这个公共端点叫做角的顶点,这两条射线叫做角的两条边。
(2)角的动态定义:一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。
所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边角的符号:∠角的种类:角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。
在动态定义中,取决于旋转的方向与角度。
角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。
以度、分、秒为单位的角的度量制称为角度制。
此外,还有密位制、弧度制等。
(1)锐角:大于0°,小于90°的角叫做锐角。
(2)直角:等于90°的角叫做直角。
(3)钝角:大于90°而小于180°的角叫做钝角。
乘法:乘法是指一个数或量,增加了多少倍。
例如4乘5,就是4增加了5倍率,也可以说成5个4连加。
乘法算式中各数的名称:“×”是乘号,乘号前面和后面的数叫做因数,“=”是等于号,等于号后面的数叫做积。
例:10(因数)×(乘号)200(因数)=(等于号)20xx(积)平行:在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。
如图直线AB平行于直线CD,记作AB∥CD。
平行线永不相交。
垂直:两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。
数学知识点归纳总结7篇篇1一、引言数学作为自然科学的基础学科,知识点众多且相互关联。
为了帮助我们更好地掌握数学知识,本文将对其核心知识点进行归纳总结。
本文内容严谨、结构清晰,旨在帮助读者系统地理解数学的基本概念和方法。
二、数与代数1. 数的认识(1)自然数、整数、有理数、无理数、实数的概念与性质。
(2)数的分类与数轴表示。
2. 代数式(1)代数式的概念、分类与运算。
(2)代数式的化简、因式分解。
3. 方程与不等式(1)一元一次方程、一元二次方程的解法。
(2)不等式的基本性质与解法。
(3)方程与不等式的应用。
三、几何知识1. 平面几何(1)点、线、面、角的性质。
(2)三角形、四边形、圆的性质与计算。
(3)相似与全等图形的概念与性质。
2. 立体几何(1)三维图形的认识与分类。
(2)表面积、体积的计算。
(3)空间位置关系。
四、函数与图像1. 函数概念与性质(1)函数的概念、分类与性质。
(2)反函数、复合函数的概念与应用。
2. 图像与性质分析(1)函数的图像表示。
(2)函数图像的平移、对称性质。
(3)函数的单调性、周期性分析。
五、数列与极限1. 数列概念与性质(1)数列的分类、通项公式与前n项和公式。
等差数列和等比数列的性质与应用。
无穷数列的概念与性质。
极限概念及计算六、微积分知识初级微积分知识,包括导数概念与应用,微分法则;积分概念,积分运算方法,定积分的应用等。
七、概率与统计概率基础知识,随机事件及其概率计算;统计学的描述性统计和推断性统计基础,包括数据的收集、整理与分析等。
八、数学史与数学文化介绍数学的发展历程,著名数学家的生平与贡献,数学在各个领域的应用等。
九、总结通过上述归纳和总结,我们可以清晰地看到数学知识体系的框架和各个知识点之间的联系。
为了更好地掌握数学知识,我们需要不断地学习与实践,深入理解各个知识点,掌握其应用方法。
同时,我们还需要注重数学与其他学科的交叉融合,拓展数学知识在各个领域的应用。
数学的知识点总结第1篇1.数列的定义按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.2.数列的分类(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.3.数列的通项公式数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的`,这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非.如:数列1,2,3,4。
数学知识点归纳总结(精华版)数学知识点归纳总结(精华版)数学作为一门学科,贯穿于我们的学习生活之中。
它不仅仅是一种学科知识,更是培养我们逻辑思维和解决问题的能力的重要工具。
为了便于学习和理解,下面对一些数学知识点进行归纳总结,希望对大家有所帮助。
1. 整数与有理数:- 整数的概念及性质:整数是包括自然数、零及其负数的集合,具有加、减和乘法运算,但除法运算除非能整除,否则结果为有理数。
- 有理数的概念及性质:有理数是整数和分数的统称,可以用分数形式表示,加、减、乘、除运算的结果仍为有理数。
2. 代数与方程:- 代数表达式:代数表达式由数字、字母和运算符号组成,可进行各种运算。
- 一元一次方程:形如ax + b = 0的方程,其中a和b为常数,x 为未知数,求解x的方法叫做一元一次方程的求解。
3. 几何与图形:- 圆:圆是平面上所有到圆心距离相等的点的集合,圆心及其半径是圆的重要属性。
- 三角形:三角形有不同的分类,如等边三角形、等腰三角形和直角三角形等。
4. 概率与统计:- 概率:概率是描述事件发生可能性的一种数值,介于0和1之间,事件发生概率越大,其数值越接近于1。
- 统计:统计是收集、整理和分析数据,从而得到结论或规律的一种方法。
5. 函数与解析几何:- 函数:函数是一个或多个自变量和一个因变量之间的关系,数学上用f(x)表示。
- 解析几何:解析几何研究点、直线和曲线等几何图形,在坐标系下通过代数方法进行研究。
6. 微积分:- 导数:导数是函数瞬时变化率的表示,可以用于求函数在某一点的切线斜率。
- 积分:积分是导数的逆运算,可以求函数在一定区间上的面积或曲线长度。
7. 线性代数:- 矩阵:矩阵是一个按照矩形排列的数字、符号或函数集合,可以进行加、减、乘等运算。
- 向量:向量是有大小和方向的量,可以用来表示力、速度等物理量。
8. 数论与离散数学:- 质数与素数:质数是只能被1和它自身整除的正整数,不包括1,而素数是大于1且只有1和它本身两个因数的数。
初一数学知识点总结整理一、数与式1. 数的概念:自然数、整数、有理数、无理数、实数。
2. 整数的加减法:同号两数相加、异号两数相减。
3. 分数的概念和加减法:分数的定义和基本性质。
4. 整数和分数的混合运算。
5. 空集的概念和表示法。
6. 等式的概念:等式的性质、等式的移项。
7. 代数式:字母的含义、代数式的性质。
8. 用字母表示数:字母代表数的大小、字母代表数的性质。
9. 代数式的加减法:同类项的加减法、同指数项的加减法。
10. 解一元一次方程:逆运算法解方程、两边乘以同一个数解方程。
11. 解一元一次方程的实际问题。
二、数的计算1. 大数的认识:亿、万亿的认识、大数的读法和写法。
2. 大数的加减法:列竖式计算、进位和退位。
3. 大数的乘法:列竖式计算、进位的规律。
4. 大数的除法:列竖式计算、退位和进位的规律。
5. 规则运算:优先级与结合律。
三、图形与几何1. 图形的分类:几何图形、平面图形、立体图形。
2. 角的概念和性质:角的定义、角的种类和性质。
3. 直线和线段的性质:直线的定义、线段的定义、直线和线段的比较。
4. 直角、钝角和锐角的认识与比较。
5. 两条直线的位置关系:平行线、垂直线、相交线。
6. 平行四边形的性质:对角线的性质、边的性质。
7. 正方形、长方形、菱形、矩形的性质。
8. 三角形的构造与性质:三角形的定义和分类、三角形的性质。
9. 相似三角形的定义和性质:相似三角形的判定、相似三角形的比例关系。
10. 直角三角形的性质和勾股定理。
11. 平行线的判定和性质:与平行线有关的角、平行线与平行线的交线。
12. 圆的概念和性质:圆的定义、圆心和半径、圆周长和面积。
四、数据与概率1. 数据的收集和整理:调查和询问、数据的组织和表示方法。
2. 平均值的概念和计算:平均数、中位数、众数的计算。
3. 统计图表的制作和分析:条形统计图、折线统计图、饼状统计图。
4. 概率的基本概念和计算:概率的定义、实验和事件、概率的计算。
数学知识点总结整理数学知识点总结整理「篇一」一、排列组合篇1. 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
2. 理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
3. 理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
4. 掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
5. 了解随机事件的发生存在着规律性和随机事件概率的意义。
6. 了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
7. 了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。
8. 会计算事件在n次独立重复试验中恰好发生k次的概率。
二、立体几何篇高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。
选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。
随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。
从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。
知识整合1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。
2. 判定两个平面平行的方法:(1)根据定义--证明两平面没有公共点;(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;(3)证明两平面同垂直于一条直线。
3.两个平面平行的主要性质:(1)由定义知:“两平行平面没有公共点”。
(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。
(3)两个平面平行的性质定理:”如果两个平行平面同时和第三个平面相交,那么它们的交线平行“。
(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。
(5)夹在两个平行平面间的平行线段相等。
(6)经过平面外一点只有一个平面和已知平面平行。
以上性质(2)、(3)、(5)、(6)在课文中虽未直接列为”性质定理“,但在解题过程中均可直接作为性质定理引用。
解答题分步骤解答可多得分1. 合理安排,保持清醒。
数学考试在下午,建议中午休息半小时左右,睡不着闭闭眼睛也好,尽量放松。
然后带齐用具,提前半小时到考场。
2. 通览全卷,摸透题情。
刚拿到试卷,一般较紧张,不宜匆忙作答,应从头到尾通览全卷,尽量从卷面上获取更多的信息,摸透题情。
这样能提醒自己先易后难,也可防止漏做题。
3 .解答题规范有序。
一般来说,试题中容易题和中档题占全卷的80%以上,是考生得分的主要来源。
对于解答题中的容易题和中档题,要注意解题的规范化,关键步骤不能丢,如三种语言(文字语言、符号语言、图形语言)的表达要规范,逻辑推理要严谨,计算过程要完整,注意算理算法,应用题建模与还原过程要清晰,合理安排卷面结构对于解答题中的难题,得满分很困难,可以采用“分段得分”的策略,因为高考(微博)阅卷是“分段评分”。
比如可将难题划分为一个个子问题或一系列的步骤,先解决问题的一部分,能解决到什么程度就解决到什么程度,获取一定的分数。
有些题目有好几问,前面的小问你解答不出,但后面的小问如果根据前面的结论你能够解答出来,这时候不妨引用前面的结论先解答后面的,这样跳步解答也可以得分。
三、数列问题篇数列是高中数学的重要内容,又是学习高等数学的基础。
高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。
有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。
本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。
(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。
(3)数列的应用问题,其中主要是以增长率问题为主。
试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
知识整合1. 在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;2. 在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。
3. 培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法。
四、导数应用篇专题综述导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。
在高中阶段对于导数的学习,主要是以下几个方面:1. 导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。
2. 关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3. 导数与解析几何或函数图象的混合问题是一种重要类型,也是高考(微博)中考察综合能力的一个方向,应引起注意。
知识整合1. 导数概念的理解。
2. 利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。
复合函数的求导法则是微积分中的重点与难点内容。
课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。
3. 要能正确求导,必须做到以下两点:(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。
(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。
五、解析几何(圆锥曲线)高考解析几何剖析:1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。
有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:1、几何问题代数化。
2、用代数规则对代数化后的问题进行处理。
数学知识点总结整理「篇二」一、求导数的方法(1)基本求导公式(2)导数的四则运算(3)复合函数的导数设在点x处可导,y=在点处可导,则复合函数在点x处可导,且即二、关于极限1、数列的极限:粗略地说,就是当数列的项n无限增大时,数列的项无限趋向于A,这就是数列极限的描述性定义。
记作:=A。
如:2、函数的极限:当自变量x无限趋近于常数时,如果函数无限趋近于一个常数,就说当x趋近于时,函数的极限是,记作三、导数的概念1、在处的导数。
2、在的导数。
3、函数在点处的导数的几何意义:函数在点处的导数是曲线在处的切线的斜率。
即k=,相应的切线方程是注:函数的导函数在时的函数值,就是在处的导数。
例、若=2,则=()A—1B—2C1D四、导数的综合运用(一)曲线的切线函数y=f(x)在点处的导数,就是曲线y=(x)在点处的切线的斜率。
由此,可以利用导数求曲线的切线方程。
具体求法分两步:(1)求出函数y=f(x)在点处的导数,即曲线y=f(x)在点处的切线的斜率k=(2)在已知切点坐标和切线斜率的条件下,求得切线方程为x。
数学知识点总结整理「篇三」两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,即:如果a,b,c,d∈R,那么a+bi=c+dia=c,b=d。
特殊地,a,b∈R时,a+bi=0a=0,b=0。
复数相等的充要条件,提供了将复数问题化归为实数问题解决的途径。
复数相等特别提醒:一般地,两个复数只能说相等或不相等,而不能比较大小。
如果两个复数都是实数,就可以比较大小,也只有当两个复数全是实数时才能比较大小。
解复数相等问题的方法步骤:(1)把给的复数化成复数的标准形式;(2)根据复数相等的充要条件解之。
数学知识点总结整理「篇四」1、三位数乘两位数的方法:先用一个因数的个位与另一个因数的每一位依次相乘,再用这个因数的十位与另一个因数的每一位依次相乘,乘到哪一位,积的个位就与哪一位对齐,哪一位满十就向前一位进“1”,再把两次相乘的积加起来。
末尾有0时,把两个因数0前面的数对齐,并将它们相乘,再在积的后面添上没有参加运算的几个0。
中间有0时,这个0要参加运算。
2、因数和积的变化规律:一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数。
3、因数是两、三位数的乘法的估算方法:先把两个因数的位后面的尾数省略,求出近似数,再把这两个近似数相乘。
【补充知识点】1、估算方法:用四舍五入法进行估算。
估算是往大估还是往小估?也就是估算的方法问题;2、利用竖式计算三位数乘两位数。
注意,第二步的乘积末尾写在十位上。
3、因数中间或末尾有0的三位数乘两位数。
中间有0也要和因数分别相乘;末尾有0的,要将两个因数0前面数的末位对齐,用0前面的数相乘,乘完之后在落0,有几个0落几个0。
实际生活中的估算:生活中的实际问题(估算是往大估还是往小估?)a、350名同学要外出参观,有7辆车,每辆车有56个座位,估一估要几辆车?b、桥在重量3吨,货物共6箱,每箱重285千克,车重986千克,这辆车能过去吗?【知识点】估算的方法及注意事项:要将因数估成整十、整百或整千的数。
估算时注意,要符合实际,接近精确值。