2017-2018学年河北衡水中学高二下学期期中考试数学(理)试题(解析版)
- 格式:doc
- 大小:2.57 MB
- 文档页数:15
2018-2018学年河北省衡水中学高二(下)二调数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f(x)=e x lnx在点(1,f(1))处的切线方程是()A.y=2e(x﹣1) B.y=ex﹣1 C.y=e(x﹣1)D.y=x﹣e2.已知,,,…,若(a,b∈R),则()A.a=5,b=24 B.a=6,b=24 C.a=6,b=35 D.a=5,b=353.(x2+)6展开式的常数项是15,如图阴影部分是由曲线y=x2和圆x2+y2=a及x轴围成的封闭图形,则封闭图形的面积为()A.﹣B. +C.D.4.设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≥k2成立时,总可推出f (k+1)≥(k+1)2成立”,那么,下列命题总成立的是()A.若f(1)<1成立,则f(10)<100成立B.若f(3)≥9成立,则当k≥1时,均有f(k)≥k2成立C.若f(2)<4成立,则f(1)≥1成立D.若f(4)≥16成立,则当k≥4时,均有f(k)≥k2成立5.某人进行了如下的“三段论”推理:如果f′(x0)=0,则x=x0是函数f(x)的极值点,因为函数f(x)=x3在x=0处的导数值f′(0)=0,所以x=0是函数f(x)=x3的极值点.你认为以上推理的()A.小前提错误B.大前提错误C.推理形式错误 D.结论正确6.给出以下数阵,按各数排列规律,则n的值为()A.66 B.256 C.257 D.3267.已知点列如下:P1(1,1),P2(1,2),P3(2,1),P4(1,3),P5(2,2),P6(3,1),P7(1,4),P8(2,3),P9(3,2),P10(4,1),P11(1,5),P12(2,4),…,则P60的坐标为()A.(3,8)B.(4,7)C.(4,8)D.(5,7)8.如图,第n个图形是由正n+2边形“扩展”而来,(n=1、2、3、…)则在第n个图形中共有()个顶点.A.(n+1)(n+2) B.(n+2)(n+3) C.n2D.n9.已知定义在R上的可导函数f(x)满足:f′(x)+f(x)<0,则与f(1)(e是自然对数的底数)的大小关系是()A.>f(1)B.<f(1)C.≥f(1)D.不确定10.已知a、b、c是△ABC的三边长,A=,B=,则()A.A>B B.A<B C.A≥B D.A≤B11.已知结论:“在正三角形ABC中,若D是边BC的中点,G是三角形ABC的重心,则”,若把该结论推广到空间,则有结论:“在棱长都相等的四面体ABCD中,若△BCD的中心为M,四面体内部一点O到四面体各面的距离都相等,则=()A.1 B.2 C.3 D.412.已知函数f(x)(x∈R)是偶函数,且f(2+x)=f(2﹣x),当x∈[0,2]时,f(x)=1﹣x,则方程f(x)=在区间[﹣10,10]上的解的个数是()A.8 B.9 C.10 D.11二、填空题(本大题共4小题,每题5分,共20分)13.已知x为实数,复数z=(x2+x﹣2)+(x2+3x+2)i为纯虚数,则x=.14.=.15.对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:f′(x)是函数f(x)的导函数,f″(x)是f′(x)的导函数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f (x)的“拐点”.某同学经研究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若f(x)=x3﹣x2+3x﹣,根据这一发现,可求得f()+f()+…+f()=.16.已知,g(x)=f(x)﹣x﹣b有且仅有一个零点时,则b的取值范围是.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤)17.已知函数(e是自然对数的底数,e≈2.71).(1)当a=﹣15时,求函数f(x)的单调区间;(2)若f(x)在区间上是增函数,求实数的取值范围.18.已知函数f(x)是定义在R上的不恒为零的函数,且对于任意的a、b∈R,都满足f(a•b)=af(b)+bf(a),若f()=1,a n=.(1)求f()、f()、f()的值;(2)猜测数列{a n}通项公式,并用数学归纳法证明.19.我校70校庆,各届校友纷至沓来,高73级1班共来了n位校友(n>8且n∈N*),其中女校友6位,组委会对这n位校友登记制作了一份校友名单,现随机从中选出2位校友代表,若选出的2位校友是一男一女,则称为“最佳组合”(Ⅰ)若随机选出的2位校友代表为“最佳组合”的概率不小于,求n的最大值;(Ⅱ)当n=12时,设选出的2位校友中女校友人数为ξ,求ξ的分布列和Eξ.20.一家公司计划生产某种小型产品的月固定成本为1万元,每生产1万件需要再投入2万元,设该公司一个月内生产该小型产品x万件并全部销售完,每万件的销售收入为4﹣x万元,且每万件国家给予补助2e﹣﹣万元.(e为自然对数的底数,e是一个常数)(Ⅰ)写出月利润f(x)(万元)关于月产量x(万件)的函数解析式(Ⅱ)当月产量在[1,2e]万件时,求该公司在生产这种小型产品中所获得的月利润最大值(万元)及此时的月生成量值(万件).(注:月利润=月销售收入+月国家补助﹣月总成本)21.已知椭圆+=1(a>b>0)的右焦点为F2(1,0),点H(2,)在椭圆上.(1)求椭圆的方程;(2)点M在圆x2+y2=b2上,且M在第一象限,过M作圆x2+y2=b2的切线交椭圆于P,Q两点,问:△PF2Q的周长是否为定值?如果是,求出定值;如果不是,说明理由.22.已知函数f(x)=(x>0).(1)试判断函数f(x)在(0,+∞)上单调性并证明你的结论;(2)若f(x)>恒成立,求整数k的最大值;(3)求证:(1+1×2)(1+2×3)…[1+n(n+1)]>e2n﹣3.2018-2018学年河北省衡水中学高二(下)二调数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f(x)=e x lnx在点(1,f(1))处的切线方程是()A.y=2e(x﹣1) B.y=ex﹣1 C.y=e(x﹣1)D.y=x﹣e【考点】利用导数研究曲线上某点切线方程.【分析】先求出函数f(x)=e x lnx的导数,再利用导数求出切线的斜率,再求出切点坐标,最后用点斜式方程即可得出答案.【解答】解:函数f(x)=e x lnx的导数为f′(x)=e x lnx+e x,∴切线的斜率k=f′(1)=e,令f(x)=e x lnx中x=1,得f(1)=0,∴切点坐标为(1,0),∴切线方程为y﹣0=e(x﹣1),即y=e(x﹣1).故选:C.2.已知,,,…,若(a,b∈R),则()A.a=5,b=24 B.a=6,b=24 C.a=6,b=35 D.a=5,b=35【考点】归纳推理.【分析】由题意可以找出相应的规律,问题得以解决.【解答】解:∵,,,…∴,,…,∵,∴a=6,b=a2﹣1=35,故选:C.3.(x2+)6展开式的常数项是15,如图阴影部分是由曲线y=x2和圆x2+y2=a及x轴围成的封闭图形,则封闭图形的面积为()A.﹣B. +C.D.【考点】定积分在求面积中的应用;二项式系数的性质.【分析】用二项式定理得到中间项系数,解得a,然后利用定积分求阴影部分的面积.【解答】解:因为(x2+)6展开式的常数项是15,所以=15,解得a=2,所以曲线y=x2和圆x2+y2=2的在第一象限的交点为(1,1)所以阴影部分的面积为==﹣.故选:A.4.设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≥k2成立时,总可推出f (k+1)≥(k+1)2成立”,那么,下列命题总成立的是()A.若f(1)<1成立,则f(10)<100成立B.若f(3)≥9成立,则当k≥1时,均有f(k)≥k2成立C.若f(2)<4成立,则f(1)≥1成立D.若f(4)≥16成立,则当k≥4时,均有f(k)≥k2成立【考点】命题的真假判断与应用.【分析】A,根据条件,不等式的性质只对大于等于号成立,所以A错误.B当f(3)≥9成立,无法推导出f(1),f(2)错误.C.若f(1)≥1成立,则得到f(2)≥4,D由条件可知D正确.【解答】解:A.由条件可知不等式的性质只对大于等于号成立,所以A错误.B.当f(3)≥9成立,无法推导出f(1),f(2),所以B错误.C.若f(1)≥1成立,则得到f(2)≥4,与f(2)<4矛盾,所以错误.D.若f(4)≥16成立,则当k≥4时,均有f(k)≥k2成立,正确.故选D.5.某人进行了如下的“三段论”推理:如果f′(x0)=0,则x=x0是函数f(x)的极值点,因为函数f(x)=x3在x=0处的导数值f′(0)=0,所以x=0是函数f(x)=x3的极值点.你认为以上推理的()A.小前提错误B.大前提错误C.推理形式错误 D.结论正确【考点】演绎推理的意义.【分析】在使用三段论推理证明中,如果命题是错误的,则可能是“大前提”错误,也可能是“小前提”错误,也可能是推理形式错误,我们分析的其大前提的形式:“对于可导函数f(x),如果f'(x0)=0,那么x=x0是函数f(x)的极值点”,不难得到结论.【解答】解:对于可导函数f(x),如果f'(x0)=0,且满足当x>x0时和当x<x0时的导函数值异号时,那么x=x0是函数f(x)的极值点,而大前提是:“对于可导函数f(x),如果f'(x0)=0,那么x=x0是函数f(x)的极值点”,不是真命题,∴大前提错误,故选B.6.给出以下数阵,按各数排列规律,则n的值为()A.66 B.256 C.257 D.326【考点】归纳推理.【分析】由表中的数字关系可知,5=2×2+1,16=3×5+1,65=4×16+1,得到n=16×16+1=257.【解答】解:因为5=2×2+1,16=3×5+1,65=4×16+1,所以n=16×16+1=257,故选:C.7.已知点列如下:P1(1,1),P2(1,2),P3(2,1),P4(1,3),P5(2,2),P6(3,1),P7(1,4),P8(2,3),P9(3,2),P10(4,1),P11(1,5),P12(2,4),…,则P60的坐标为()A.(3,8)B.(4,7)C.(4,8)D.(5,7)【考点】数列的应用.【分析】设P(x,y),分别讨论当x+y=2,3,4时各有几个点,便可知当x+y=n+1时,第n 行有n个点,便可得出当x+y=11时,已经有55个点,便可求得P60的坐标.【解答】解:设P(x,y)P1(1,1),﹣﹣x+y=2,第1行,1个点;P2(1,2),P3(2,1),﹣﹣x+y=3,第2行,2个点;P4(1,3),P5(2,2),P6(3,1),﹣﹣x+y=4,第3行,3个点;…∵1个点+2个点+3个点+…+10个点=55个点∴P55为第55个点,x+y=11,第10行,第10个点,P55(10,1),∴P56(1,11),P57(2,10),P58(3,9),P59(4,8),P60(5,7).∴P60的坐标为(5,7),故选D.8.如图,第n个图形是由正n+2边形“扩展”而来,(n=1、2、3、…)则在第n个图形中共有()个顶点.A.(n+1)(n+2) B.(n+2)(n+3) C.n2D.n【考点】归纳推理.【分析】本题考查的知识点是归纳推理,由已知图形中,我们可以列出顶点个数与多边形边数n,然后分析其中的变化规律,然后用归纳推理可以推断出一个一般性的结论.【解答】解:由已知中的图形我们可以得到:当n=1时,顶点共有12=3×4(个),n=2时,顶点共有20=4×5(个),n=3时,顶点共有30=5×6(个),n=4时,顶点共有42=6×7(个),…由此我们可以推断:第n个图形共有顶点(n+2)(n+3)个,故选B9.已知定义在R上的可导函数f(x)满足:f′(x)+f(x)<0,则与f(1)(e 是自然对数的底数)的大小关系是()A.>f(1)B.<f(1)C.≥f(1)D.不确定【考点】导数的运算.【分析】构造函数g(x)=e x f(x),利用导数研究其单调性,注意到已知f′(x)+f(x)<0,可得g(x)为单调减函数,最后由,代入函数解析式即可得答案.【解答】解:设g(x)=e x f(x),∵f′(x)+f(x)<0,∴g′(x)=e x(f′(x)+f(x))<0∴函数g(x)为R上的减函数;∵,∴g(m﹣m2)>g(1)即,∴>f(1)故选:A.10.已知a、b、c是△ABC的三边长,A=,B=,则()A.A>B B.A<B C.A≥B D.A≤B【考点】反证法与放缩法.【分析】由题意得c<a+b,故B==<,变形后再放大,可证小于A.【解答】解:∵a、b、c是△ABC的三边长,∴c<a+b,∴B==<==+<+=A,∴B<A,故选A.11.已知结论:“在正三角形ABC中,若D是边BC的中点,G是三角形ABC的重心,则”,若把该结论推广到空间,则有结论:“在棱长都相等的四面体ABCD中,若△BCD的中心为M,四面体内部一点O到四面体各面的距离都相等,则=()A.1 B.2 C.3 D.4【考点】类比推理.【分析】类比平面几何结论,推广到空间,则有结论:“=3”.设正四面体ABCD边长为1,易求得AM=,又O到四面体各面的距离都相等,所以O为四面体的内切球的球心,设内切球半径为r,则有r=,可求得r即OM,从而可验证结果的正确性.【解答】解:推广到空间,则有结论:“=3”.设正四面体ABCD边长为1,易求得AM=,又O到四面体各面的距离都相等,所以O为四面体的内切球的球心,设内切球半径为r,则有r=,可求得r即OM=,所以AO=AM﹣OM=,所以=3故答案为:312.已知函数f(x)(x∈R)是偶函数,且f(2+x)=f(2﹣x),当x∈[0,2]时,f(x)=1﹣x,则方程f(x)=在区间[﹣10,10]上的解的个数是()A.8 B.9 C.10 D.11【考点】根的存在性及根的个数判断;函数奇偶性的性质;函数的周期性.【分析】由题意可求得函数是一个周期函数,且周期为4,故可以研究出一个周期上的函数图象,再研究所给的区间包含了几个周期即可知道在这个区间中的零点的个数.【解答】解:函数f(x)是R上的偶函数,可得f(﹣x)=f(x),又f(2﹣x)=f(2+x),可得f(4﹣x)=f(x),故可得f(﹣x)=f(4﹣x),即f(x)=f(x+4),即函数的周期是4,又x∈[0,2]时,f(x)=1﹣x,要研究方程在区间[﹣10,10]上解的个数,可将问题转化为y=f(x)与y=在区间[﹣10,10]有几个交点.如图:由图知,有9个交点.故选B.二、填空题(本大题共4小题,每题5分,共20分)13.已知x为实数,复数z=(x2+x﹣2)+(x2+3x+2)i为纯虚数,则x=1.【考点】复数的基本概念.【分析】根据复数的概念进行求解即可.【解答】解:∵z=(x2+x﹣2)+(x2+3x+2)i为纯虚数,∴x2+x﹣2=0①且x2+3x+2≠0,②由①得x=1或x=﹣2,由②得x≠﹣1且x≠﹣2,综上x=1,故答案为:114.=.【考点】定积分.【分析】利用定积分的定义,结合表达式的几何意义化简求解即可.【解答】解:=﹣.=﹣.的几何意义是以(3,0)为圆心,以1为半径的圆的的面积,=.==.=给答案为:.15.对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:f′(x)是函数f(x)的导函数,f″(x)是f′(x)的导函数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f (x)的“拐点”.某同学经研究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若f(x)=x3﹣x2+3x﹣,根据这一发现,可求得f()+f()+…+f()=2018.【考点】导数的运算.【分析】根据函数f(x)的解析式求出f′(x)和f″(x),令f″(x)=0,求得x的值,由此求得函数f(x)的对称中心,得到f(1﹣x)+f(x)=2,即可得出.【解答】解:依题意,得:f′(x)=x2﹣x+3,∴f″(x)=2x﹣1.由f″(x)=0,即2x﹣1=0.∴x=,∴f()=1,∴f(x)=x3﹣x2+3x﹣的对称中心为(,1)∴f(1﹣x)+f(x)=2,∴f()+f()+…+f()=2018,故答案为:2018.16.已知,g(x)=f(x)﹣x﹣b有且仅有一个零点时,则b的取值范围是b≥1或b=或b≤0.【考点】根的存在性及根的个数判断.【分析】由题意可得,函数f(x)的图象和直线y=x+b只有一个交点,分类讨论、数形结合求得b的范围.【解答】解:由题意可得,函数f(x)的图象和直线y=x+b只有一个交点,如图所示:当直线经过点A(0,1)时,b=1;当直线和y=(x>0)相切时,设切点B(x0,),由==,求得x0=1,b=.当直线过原点(0,0)时,b=0.综上可得,b≥1或b=或b≤0,故答案为:b≥1或b=或b≤0.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤)17.已知函数(e是自然对数的底数,e≈2.71).(1)当a=﹣15时,求函数f(x)的单调区间;(2)若f(x)在区间上是增函数,求实数的取值范围.【考点】利用导数研究函数的单调性.【分析】(1)求导函数,由f′(x)>0,可得函数的单调增区间;由f′(x)<0,可得函数的单调减区间;(2)求导函数,根据f(x)在区间[,e]上是增函数,转化为(x﹣1)2≤1﹣a在区间[,e]上恒成立,求出x∈[,e]时,(x﹣1)2的最大值,即可求得实数a的取值范围.【解答】解:(1)当a=﹣15时,f(x)=(x2﹣15)e﹣x,求导函数,可得f′(x)=﹣(x﹣5)(x+3)e﹣x,令f′(x)=0得x=﹣3或x=5,由f′(x)>0,可得﹣3<x<5;由f′(x)<0,可得x<﹣3或x>5,∴函数的单调增区间为(﹣3,5),减区间为(﹣∞,﹣3),(5,+∞);(2)f′(x)=﹣(x2﹣2x+a)e﹣x,∵f(x)在区间[,e]上是增函数,∴f′(x)=﹣(x2﹣2x+a)e﹣x≥0在区间[,e]上恒成立,∴(x﹣1)2≤1﹣a在区间[,e]上恒成立,当x∈[,e]时,(x﹣1)2的最大值为(e﹣1)2,∴(e﹣1)2≤1﹣a,∴a≤2e﹣e2,∴实数a的取值范围为(﹣∞,2e﹣e2].18.已知函数f(x)是定义在R上的不恒为零的函数,且对于任意的a、b∈R,都满足f(a•b)=af(b)+bf(a),若f()=1,a n=.(1)求f()、f()、f()的值;(2)猜测数列{a n}通项公式,并用数学归纳法证明.【考点】数学归纳法.【分析】(1)利用赋值法,即可求出f()、f()、f()的值;(2)由(1)可猜测:f(2﹣n)=f()=n×()n﹣1,下用数学归纳法证明即可,即可得到a n===()n﹣1【解答】解:(1)f()=f()=f()+f()=f()=1,f()=f(×)=f()+f()=,f()=f(×)=f()+f()=,(2)由(1)可猜测:f(2﹣n)=f()=n×()n﹣1,下用数学归纳法证明:当n=1时,左边=f(2﹣1)=f()=1,右式=1×()0=1,∴n=1时,命题成立.假设n=k时,命题成立,即:f(2﹣k)=f()=k×()k﹣1,则n=k+1时,左边=f(×)=f()+f()=×k×()k﹣1+×1=k×()k+=(k+1)×()(k+1)﹣1∴n=k+1时,命题成立.综上可知:对任意n∈N*都有f(2﹣n)=f()=n×()n﹣1,所以:a n===()n﹣119.我校70校庆,各届校友纷至沓来,高73级1班共来了n位校友(n>8且n∈N*),其中女校友6位,组委会对这n位校友登记制作了一份校友名单,现随机从中选出2位校友代表,若选出的2位校友是一男一女,则称为“最佳组合”(Ⅰ)若随机选出的2位校友代表为“最佳组合”的概率不小于,求n的最大值;(Ⅱ)当n=12时,设选出的2位校友中女校友人数为ξ,求ξ的分布列和Eξ.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(Ⅰ)所选两人为“最佳组合”的概率p==,由此能求出n的最大值.(Ⅱ)ξ的可能取值为0,1,2,分别求出相应的概率,由此能求出ξ的分布列和Eξ.【解答】(本小题满分13分)解:(Ⅰ)由题可知,所选两人为“最佳组合”的概率:p==,…则.…化简得n2﹣25n+144≤0,解得9≤n≤16,∴n的最大值为16.…(Ⅱ)由题意得,ξ的可能取值为0,1,2,…则P (ξ=0)==,P (ξ=1)==,P (ξ=2)=,0 1 2∴E ξ=0×+1×+2×=1.…20.一家公司计划生产某种小型产品的月固定成本为1万元,每生产1万件需要再投入2万元,设该公司一个月内生产该小型产品x 万件并全部销售完,每万件的销售收入为4﹣x 万元,且每万件国家给予补助2e ﹣﹣万元.(e 为自然对数的底数,e 是一个常数)(Ⅰ)写出月利润f (x )(万元)关于月产量x (万件)的函数解析式(Ⅱ)当月产量在[1,2e ]万件时,求该公司在生产这种小型产品中所获得的月利润最大值(万元)及此时的月生成量值(万件).(注:月利润=月销售收入+月国家补助﹣月总成本) 【考点】导数在最大值、最小值问题中的应用. 【分析】(Ⅰ)由月利润=月销售收入+月国家补助﹣月总成本,即可列出函数关系式; (2)利用导数判断函数的单调性,进而求出函数的最大值. 【解答】解:(Ⅰ)由于:月利润=月销售收入+月国家补助﹣月总成本,可得(Ⅱ)f (x )=﹣x 2+2(e +1)x ﹣2elnx ﹣2的定义域为[1,2e ],且由上表得:()﹣+(+)﹣﹣在定义域[1,2e ]上的最大值为f (e ).且f (e )=e 2﹣2.即:月生产量在[1,2e ]万件时,该公司在生产这种小型产品中所获得的月利润最大值为f (e )=e 2﹣2,此时的月生产量值为e (万件).21.已知椭圆+=1(a >b >0)的右焦点为F 2(1,0),点H (2,)在椭圆上.(1)求椭圆的方程;(2)点M 在圆x 2+y 2=b 2上,且M 在第一象限,过M 作圆x 2+y 2=b 2的切线交椭圆于P ,Q 两点,问:△PF 2Q 的周长是否为定值?如果是,求出定值;如果不是,说明理由.【考点】直线与圆锥曲线的综合问题.【分析】(1)由椭圆+=1(a>b>0)的右焦点为F2(1,0),点H(2,)在椭圆上,建立方程组,可得a值,进而求出b值后,可得椭圆方程;(2)设P(x1,y1),Q(x2,y2),分别求出|F2P|,|F2Q|,结合相切的条件可得|PM|2=|OP|2﹣|OM|2求出|PQ|,可得结论.【解答】解:(1)∵椭圆+=1(a>b>0)的右焦点为F2(1,0),点H(2,)在椭圆上,∴由题意,得,…解得a=3,b=2…∴椭圆方程为.…(2)设P(x1,y1),Q(x2,y2),(|x1|≤3)∴|PF2|2=(x1﹣1)2+y12=(x1﹣9)2,∴|PF2|=3﹣x1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣连接OM,OP,由相切条件知:|PM|2=|OP|2﹣|OM|2=x12+y12﹣8=x12,∴|PM|=x1,∴|PF2|+|PM|=3﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣同理可求|QF2|+|QM|=3∴|F2P|+|F2Q|+|PQ|=6为定值.…22.已知函数f(x)=(x>0).(1)试判断函数f(x)在(0,+∞)上单调性并证明你的结论;(2)若f(x)>恒成立,求整数k的最大值;(3)求证:(1+1×2)(1+2×3)…[1+n(n+1)]>e2n﹣3.【考点】利用导数研究函数的单调性;函数恒成立问题;数列的求和.【分析】(1)对函数f(x)求导数,可判f′(x)<0,进而可得单调性;(2)问题转化为h(x)=>k恒成立,通过构造函数可得h(x)min∈(3,4),进而可得k值;(3)由(Ⅱ)知(x>0),可得ln(x+1)>2﹣,令x=n(n+1)(n∈N*),一系列式子相加,由裂项相消法可得ln(1+1×2)+ln(1+2×3)+…+ln[1+n(n+1)]>2n﹣3,进而可得答案.【解答】解:(1)∵f(x)=(x>0),∴f′(x)= []= []…∵x>0,∴x2>0,,ln(x+1)>0,∴f′(x)<0,∴函数f(x)在(0,+∞)上是减函数.…(2)f(x)>恒成立,即h(x)=>k恒成立,即h(x)的最小值大于k.…而h′(x)=,令g(x)=x﹣1﹣ln(x+1)(x>0),则g′(x)=,∴g(x)在(0,+∞)上单调递增,又g(2)=1﹣ln3<0,g(3)=2﹣2ln2>0,∴g(x)=0存在唯一实根a,且满足a∈(2,3),a=1+ln(a+1)当x>a时,g(x)>0,h′(x)>0,当0<x<a时,g(x)<0,h′(x)<0,∴h(x)min=h(a)==a+1∈(3,4)故正整数k的最大值是3 …(3)由(Ⅱ)知(x>0)∴ln(x+1)>﹣1=2﹣>2﹣…令x=n(n+1)(n∈N*),则ln[1+n(n+1)]>2﹣,∴ln(1+1×2)+ln(1+2×3)+…+ln[1+n(n+1)]>(2﹣)+(2﹣)+…+[2﹣]=2n﹣3[]=2n﹣3(1﹣)=2n﹣3+>2n﹣3∴(1+1×2)(1+2×3)…[1+n(n+1)]>e2n﹣3…2018年10月19日。
滁州分校2017-2018学年下学期第二次月考试卷高二理科数学注意事项:1.你现在拿到的这份试卷是满分150分,作答时间为120分钟 2.答题前请在答题卷上填写好自己的姓名、班级、考号等信息 3.请将答案正确填写在答题卡上第I 卷(选择题 60分)一、选择题(本大题共12个小题,共60分。
) 1.已知,复数,若 ,则( )A. B. C. D.2.设是可导函数,且,则( )A. B.C.D. 03.设,,a b c 都为正数,那么用反证法证明“三个数111,,a b c b c a+++至少有一个不小于2“时,正确的反设是这三个数( )A. 都不大于2B. 都不小于2C. 至少有一个不大于2D. 都小于2 4.已知函数f (x )=,则y=f (x )的图象大致为( )A. B. C. D.5.如图,阴影部分的面积是( ).A. 23B. 23-C.353 D. 3236.将某师范大学 名大学四年级学生分成 人一组,安排到 城市的甲、乙两所中学进行教学实习,并推选甲校张老师、乙校李老师作为指导教师,则不同的实习安排方案共有( ) A. 种 B.种 C. 种 D.种7.展开式中的常数项为( )A.﹣1320B.1320C.﹣220D.220 8.已知,x y 的取值如下表:( )x0 1, 2 3 4 y11.33.25.68.9若依据表中数据所画的散点图中,所有样本点()(),1,2,3,4,5i i x y i =都在曲线212y x a =+附近波动,则a =( ) A. 1 B.12 C. 13 D. 12- 9.已知函数()ln f x x ax b =--,若()0f x ≤对任意0x >恒成立,则a b +的最小值为( ) A. 1e - B. 0 C. 1 D.2e10.已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在(3,6)内的概率为( ) 附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ﹣σ<ξ<μ+σ)=0.6826,P (μ﹣2σ<ξ<μ+2σ)=0.9544. A.0.2718 B.0.0456 C.0.3174 D.0.1359 11.若多项式()210011x x a a x +=++ ()()91091011a x a x +++++,则9a =( )A. 9B. 10C. -9D. -1012.若函数图像上存在两个点 , 关于原点对称,则对称点为函数的“孪生点对”,且点对 与可看作同一个“孪生点对”.若函数恰好有两个“孪生点对”,则实数 的值为( )A.0B.2C.4D.6第II 卷(非选择题 90分)二、填空题(本大题共4个小题,共20分。
2017-2018学年河北省衡水市安平中学高二(上)期中数学试卷(理科)一、选择题:(每题只有一个正确选项.共12个小题,每题5分,共60分.)1.(5分)双曲线的虚轴长是()A.2 B.C.D.82.(5分)以下四组向量中,互相平行的有()组.(1),(2),(3),(4),.A.一B.二C.三D.四3.(5分)已知椭圆C:的长轴长、短轴长、焦距成等差数列,则该椭圆的方程是()A.B.C.D.4.(5分)已知向量=(2,3,1),=(1,2,0),则|﹣|等于()A.1 B.C.3 D.95.(5分)已知斜率为3的直线l与双曲线C:=1(a>0,b>0)交于A,B两点,若点P(6,2)是AB的中点,则双曲线C的离心率等于()A.B.C.2 D.6.(5分)已知=(2,﹣1,3),=(﹣1,4,﹣2),=(7,5,λ),若、、三向量共面,则实数λ等于()A.B.C.D.7.(5分)已知椭圆的左、右焦点分别为F1、F2,过F2的直线交椭圆C于P、Q两点,若|F 1P|+|F1Q|=10,则|PQ|等于()A.8 B.6 C.4 D.28.(5分)若=(2,﹣3,1),=(2,0,3),=(0,2,2),则•(+)=()A.4 B.15 C.7 D.39.(5分)已知F1、F2是双曲线(a>0,b>0)的左、右焦点,点F1关于渐近线的对称点恰好落在以F2为圆心,|OF2|为半径的圆上,则该双曲线的离心率为()A.B.C.2 D.310.(5分)若向量=(1,λ,2),=(2,﹣1,2),且与的夹角余弦值为,则λ等于()A.2 B.﹣2 C.﹣2或D.2或﹣11.(5分)过抛物线y2=2px(p>0)的焦点F,且倾斜角为的直线与抛物线交于A,B两点,若弦AB的垂直平分线经过点(0,2),则p等于()A.B.C.D.12.(5分)如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于点A、B,交其准线于点C,若|BC|=3|BF|,且|AF|=4,则p为()A.B.2 C.D.二.填空题(共4个小题,每题5分,共20分.)13.(5分)若向量,(其中i、j、k是两两互相垂直的单位向量)则这两个向量的位置关系是.14.(5分)若平面α的一个法向量为=(4,1,1),直线l的一个方向向量为=(﹣2,﹣3,3),则l与α所成角的正弦值为.15.(5分)给出下列命题:①直线l的方向向量为=(1,﹣1,2),直线m的方向向量=(2,1,﹣),则l与m垂直;②直线l的方向向量=(0,1,﹣1),平面α的法向量=(1,﹣1,﹣1),则l ⊥α;③平面α、β的法向量分别为=(0,1,3),=(1,0,2),则α∥β;④平面α经过三点A(1,0,﹣1),B(0,1,0),C(﹣1,2,0),向量=(1,u,t)是平面α的法向量,则u+t=1.其中真命题的是.(把你认为正确命题的序号都填上)16.(5分)给出下列结论:动点M(x,y)分别到两定点(﹣3,0)、(3,0)连线的斜率之乘积为,设M(x,y)的轨迹为曲线C,F1、F2分别为曲线C的左、右焦点,则下列命题中:(1)曲线C的焦点坐标为F1(﹣5,0)、F2(5,0);(2)若∠F 1MF2=90°,则S=32;(3)当x<0时,△F1MF2的内切圆圆心在直线x=﹣3上;(4)设A(6,1),则|MA|+|MF2|的最小值为;其中正确命题的序号是:.三、解答题:(解答题应写出必要的文字说明和演算步骤)17.(10分)已知椭圆C的焦点,长轴长6.(1)求椭圆C的标准方程;(2)设直线y=x+2交椭圆C于A、B两点,求线段AB的中点坐标.18.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,抛物线上横坐标为的点到抛物线顶点的距离与该点到抛物线准线的距离相等.(1)求抛物线C的方程;(2)设直线x﹣my﹣6=0与抛物线C交于A、B两点,若∠AFB=90°,求实数m 的值.19.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=,BC=1,PA=2,E为PD的中点.(Ⅰ)求直线AC与PB所成角的余弦值;(Ⅱ)在侧面PAB内找一点N,使NE⊥面PAC,并求出N点到AB和AP的距离.20.(12分)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l 的方程.21.(12分)如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.(1)证明:D1E⊥A1D;(2)当E为AB的中点时,求点E到面ACD1的距离;(3)AE等于何值时,二面角D1﹣EC﹣D的大小为.22.(12分)已知A(2,0),O为坐标原点,动点P满足|+|+|﹣|=4(Ⅰ)求动点P的轨迹C的方程;(Ⅱ)过点A且不垂直于坐标轴的直线l交轨迹C于不同的两点M,N,线段MN的垂直平分线与x轴交于点D,线段MN的中点为H,求的取值范围.2017-2018学年河北省衡水市安平中学高二(上)期中数学试卷(理科)参考答案与试题解析一、选择题:(每题只有一个正确选项.共12个小题,每题5分,共60分.)1.(5分)双曲线的虚轴长是()A.2 B.C.D.8【解答】解:根据题意,双曲线的标准方程为,则其中b==2,则虚轴的长2b=4;故选:B.2.(5分)以下四组向量中,互相平行的有()组.(1),(2),(3),(4),.A.一B.二C.三D.四【解答】解:对于(1)(4),不存在实数λ,使得=,或=λ.对于(2)中满足向量共线定理:,因此.对于(3)中满足向量共线定理:,因此.因此互相平行的有两组.故选:B.3.(5分)已知椭圆C:的长轴长、短轴长、焦距成等差数列,则该椭圆的方程是()A.B.C.D.【解答】解:设焦距为2c,则有,解得b2=16,∴椭圆.故选:C.4.(5分)已知向量=(2,3,1),=(1,2,0),则|﹣|等于()A.1 B.C.3 D.9【解答】解:∵=(2,3,1),=(1,2,0),∴﹣=(1,1,1)∴|﹣|==5.(5分)已知斜率为3的直线l与双曲线C:=1(a>0,b>0)交于A,B两点,若点P(6,2)是AB的中点,则双曲线C的离心率等于()A.B.C.2 D.【解答】解:设A(x1,y1),B(x2,y2),则代入双曲线方程,相减可得﹣,∵点P(6,2)是AB的中点,∴x1+x2=12,y1+y2=4,∵直线l的斜率为3,∴=3,∴a2=b2,c2=2a2,∴e=.故选:A.6.(5分)已知=(2,﹣1,3),=(﹣1,4,﹣2),=(7,5,λ),若、、三向量共面,则实数λ等于()A.B.C.D.【解答】解:∵=(2,﹣1,3),=(﹣1,4,﹣2)∴与不平行,又∵、、三向量共面,则存在实数X,Y使=X+Y即解得λ=故选:D.7.(5分)已知椭圆的左、右焦点分别为F1、F2,过F2的直线交椭圆C于P、Q两点,若|F1P|+|F1Q|=10,则|PQ|等于()A.8 B.6 C.4 D.2【解答】解:∵直线PQ过椭圆的右焦点F2,由椭圆的定义,在△F1PQ中,有|F1P|+|F1Q|+|PQ|=4a=16.又|F1P|+|F1Q|=10,∴|PQ|=6.故选:B.8.(5分)若=(2,﹣3,1),=(2,0,3),=(0,2,2),则•(+)=()A.4 B.15 C.7 D.3【解答】解:∵=(2,0,3),=(0,2,2),∴+=(2,2,5),∴•(+)=2×2+(﹣3)×2+1×5=3,故选:D.9.(5分)已知F1、F2是双曲线(a>0,b>0)的左、右焦点,点F1关于渐近线的对称点恰好落在以F2为圆心,|OF2|为半径的圆上,则该双曲线的离心率为()A.B.C.2 D.3【解答】解:由题意,F1(﹣c,0),F2(c,0),设一条渐近线方程为y=﹣x,则F1到渐近线的距离为=b.设F1关于渐近线的对称点为M,F1M与渐近线交于A,∴|MF1|=2b,A为F1M 的中点,又0是F1F2的中点,∴OA∥F2M,∴∠F1MF2为直角,∴△MF1F2为直角三角形,∴由勾股定理得4c2=c2+4b2∴3c2=4(c2﹣a2),∴c2=4a2,∴c=2a,∴e=2.故选:C.10.(5分)若向量=(1,λ,2),=(2,﹣1,2),且与的夹角余弦值为,则λ等于()A.2 B.﹣2 C.﹣2或D.2或﹣【解答】解:由题意向量=(1,λ,2),=(2,﹣1,2),且与的夹角余弦值为,故有cos<,>===,解得:λ=﹣2或.故选:C.11.(5分)过抛物线y2=2px(p>0)的焦点F,且倾斜角为的直线与抛物线交于A,B两点,若弦AB的垂直平分线经过点(0,2),则p等于()A.B.C.D.【解答】解:,过焦点F且倾斜角为的直线方程为:,设A (x1,y1),B(x2,y2);由得,y2﹣2py﹣p2=0;∴y1+y2=2p,x1+x2=3p;∴弦AB的中点坐标为;弦AB的垂直平分线方程为y﹣2=﹣x,弦AB的中点在该直线上;∴;解得.故选:C.12.(5分)如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于点A、B,交其准线于点C,若|BC|=3|BF|,且|AF|=4,则p为()A.B.2 C.D.【解答】解:解:设A,B在准线上的射影分别为M,N,则由于|BC|=3|BF|=3|BN|,则直线l的斜率为2,∵|AF|=4,∴AM=4,故|AC|=3|AM|=12,从而|CF|=8,|CB|=6.故,即p=,故选:C.二.填空题(共4个小题,每题5分,共20分.)13.(5分)若向量,(其中i、j、k是两两互相垂直的单位向量)则这两个向量的位置关系是垂直.【解答】解:∵向量,(其中i、j、k是两两互相垂直的单位向量),∴=(2)•()=+4+18﹣9+9+2﹣+=8﹣9+1=0,∴这两个向量的位置关系是垂直.故答案为:垂直.14.(5分)若平面α的一个法向量为=(4,1,1),直线l的一个方向向量为=(﹣2,﹣3,3),则l与α所成角的正弦值为.【解答】解:∵平面α的一个法向量为=(4,1,1),直线l的一个方向向量为=(﹣2,﹣3,3),设l与α所成角为θ,则sinθ=|cos<>|===.∴l与α所成角的正弦值为.故答案为:.15.(5分)给出下列命题:①直线l的方向向量为=(1,﹣1,2),直线m的方向向量=(2,1,﹣),则l与m垂直;②直线l的方向向量=(0,1,﹣1),平面α的法向量=(1,﹣1,﹣1),则l ⊥α;③平面α、β的法向量分别为=(0,1,3),=(1,0,2),则α∥β;④平面α经过三点A(1,0,﹣1),B(0,1,0),C(﹣1,2,0),向量=(1,u,t)是平面α的法向量,则u+t=1.其中真命题的是①④.(把你认为正确命题的序号都填上)【解答】解:对于①,∵=(1,﹣1,2),=(2,1,﹣),∴•=1×2﹣1×1+2×(﹣)=0,∴⊥,∴直线l与m垂直,①正确;对于②,=(0,1,﹣1),=(1,﹣1,﹣1),∴•=0×1+1×(﹣1)+(﹣1)×(﹣1)=0,∴⊥,∴l∥α或l⊂α,②错误;对于③,∵=(0,1,3),=(1,0,2),∴与不共线,∴α∥β不成立,③错误;对于④,∵点A(1,0,﹣1),B(0,1,0),C(﹣1,2,0),∴=(﹣1,1,1),=(﹣1,1,0),向量=(1,u,t)是平面α的法向量,∴,即;则u+t=1,④正确.综上,以上真命题的序号是①④.故答案为:①④.16.(5分)给出下列结论:动点M(x,y)分别到两定点(﹣3,0)、(3,0)连线的斜率之乘积为,设M(x,y)的轨迹为曲线C,F1、F2分别为曲线C的左、右焦点,则下列命题中:(1)曲线C的焦点坐标为F1(﹣5,0)、F2(5,0);(2)若∠F 1MF2=90°,则S=32;(3)当x<0时,△F1MF2的内切圆圆心在直线x=﹣3上;(4)设A(6,1),则|MA|+|MF2|的最小值为;其中正确命题的序号是:(1)(3).【解答】解:由题意可得:,化为(x≠±3).(1)由曲线C的标准方程可得=5,∴曲线C的焦点坐标为F1(﹣5,0)、F2(5,0),正确;(2)设|F1M|=m,|F1M|=n,m>n,∵∠F1MF2=90°,∴,∴S=mn=16;(3)设A为内切圆与x轴的切点,∵|F2M|﹣|F1M|=|F2A|﹣|F1A|=2a=6,|F2A|+|F1A|=2c=10,∴|F2A|=8,|F1A|=2,∴5﹣x A=8,解得x A=﹣3.设圆心P,则PO⊥x轴,从而可得圆心在直线x=﹣3上,因此正确;(4)不妨设点M在双曲线的右支上,∵|MF1|﹣|MF2|=2a=6,∴|MA|+|MF2|=|MA|+|MF1|﹣6,当A、M、F1三点共线时,|MA|+|MF2|的最小值为|AF1|﹣6=﹣6.因此不正确.综上可得:正确命题的序号是(1)(3).故答案为:(1)(3).三、解答题:(解答题应写出必要的文字说明和演算步骤)17.(10分)已知椭圆C的焦点,长轴长6.(1)求椭圆C的标准方程;(2)设直线y=x+2交椭圆C于A、B两点,求线段AB的中点坐标.【解答】解:(1)由F1(﹣,0)和F2(,0),长轴长为6得:c=2,a=3,….(2分)所以b=1.…(4分)所以椭圆方程为.…(5分)(2)设A(x1,y1)B(x2,y2),由(1)可知椭圆方程为,与直线AB的方程y=x+2联立…(7分)化简并整理得10x2+36x+27=0,…(9分)∴x1+x2=,∴,.…(11分)所以AB的中点的坐标为…(12分)18.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,抛物线上横坐标为的点到抛物线顶点的距离与该点到抛物线准线的距离相等.(1)求抛物线C的方程;(2)设直线x﹣my﹣6=0与抛物线C交于A、B两点,若∠AFB=90°,求实数m 的值.【解答】解:(1)抛物线上横坐标为的点的坐标为(,±),到抛物线顶点的距离的平方为+p,∵抛物线上横坐标为的点到抛物线顶点的距离与其到准线的距离相等,∴+p=(+)2,∴p=2抛物线的方程为:y2=4x.…(2)由题意,直线l:x=my+6,代入y2=4x得,y2﹣4my﹣24=0,设A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=﹣24,∵∠AFB=90°,∴FA⊥FB,即•=0可得:(x1﹣1)(x2﹣1)+y1y2=0∴(1+m2)y1y2+5m(y1+y2)+25=0∴﹣24(1+m2)+20m2+25=0,解得:m=±.19.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=,BC=1,PA=2,E为PD的中点.(Ⅰ)求直线AC与PB所成角的余弦值;(Ⅱ)在侧面PAB内找一点N,使NE⊥面PAC,并求出N点到AB和AP的距离.【解答】解:(Ⅰ)设AC∩BD=O,连OE,则OE∥PB,∴∠EOA即为AC与PB所成的角或其补角.在△AOE中,AO=1,OE=PB=,AE=PD=,∴cosEOA==.即AC与PB所成角的余弦值为.(Ⅱ)在面ABCD内过D作AC的垂线交AB于F,则∠ADF=.连PF,则在Rt△ADF中DF==,AF=ADtan∠ADF=.设N为PF的中点,连NE,则NE∥DF,∵DF⊥AC,DF⊥PA,∴DF⊥面PAC.从而NE⊥面PAC.∴N点到AB的距离=AP=1,N点到AP的距离=AF=.20.(12分)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l 的方程.【解答】解:(Ⅰ)设F(c,0),由条件知,得又,所以,b2=a2﹣c2=1,故E的方程.….(5分)(Ⅱ)依题意当l⊥x轴不合题意,故设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,得(1+4k2)x2﹣16kx+12=0,当△=16(4k2﹣3)>0,即时,从而又点O到直线PQ的距离,所以△OPQ的面积=,设,则t>0,,当且仅当t=2,k=±等号成立,且满足△>0,所以当△OPQ的面积最大时,l的方程为:y=x﹣2或y=﹣x﹣2.…(12分)21.(12分)如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.(1)证明:D1E⊥A1D;(2)当E为AB的中点时,求点E到面ACD1的距离;(3)AE等于何值时,二面角D1﹣EC﹣D的大小为.【解答】解法(一):(1)证明:∵AE⊥平面AA1DD1,A1D⊥AD1,∴A1D⊥D1E(2)设点E到面ACD1的距离为h,在△ACD1中,AC=CD1=,AD1=,故,而.∴,∴,∴.(3)过D作DH⊥CE于H,连D 1H、DE,则D1H⊥CE,∴∠DHD1为二面角D1﹣EC﹣D的平面角.设AE=x,则BE=2﹣x在Rt△D1DH中,∵,∴DH=1.∵在Rt△ADE中,DE=,∴在Rt△DHE中,EH=x,在Rt△DHC中CH=,在Rt△CBE中CE=.∴.∴时,二面角D1﹣EC﹣D的大小为.解法(二):以D为坐标原点,直线DA,DC,DD1分别为x,y,z轴,建立空间直角坐标系,设AE=x,则A1(1,0,1),D1(0,0,1),E(1,x,0),A(1,0,0)C(0,2,0)(1)因为=(1,0,1)•(1,x,﹣1)=0,所以.(2)因为E为AB的中点,则E(1,1,0),从而,,设平面ACD 1的法向量为,则也即,得,从而,所以点E到平面AD 1C 的距离为.(3)设平面D 1EC的法向量,∴,由令b=1,∴c=2,a=2﹣x,∴.依题意.∴(不合,舍去),.∴AE=时,二面角D1﹣EC﹣D的大小为.22.(12分)已知A(2,0),O为坐标原点,动点P满足|+|+|﹣|=4(Ⅰ)求动点P的轨迹C的方程;(Ⅱ)过点A且不垂直于坐标轴的直线l交轨迹C于不同的两点M,N,线段MN的垂直平分线与x轴交于点D,线段MN的中点为H,求的取值范围.【解答】解:(Ⅰ)设P(x,y),由已知得+=>4,根据椭圆定义知P点轨迹为以(2,0)和(﹣2,0)为焦点,长轴长为的椭圆,即有a=2,c=2,b=2,则动点P的轨迹C的方程为+=1;(Ⅱ)设直线l的斜率为k(k≠0),M(x1,y1),N(x2,y2),则l的方程为y=k(x﹣2),将其代入+=1,整理得(1+2k2)x2﹣8k2x+8k2﹣8=0,由于A在椭圆内,当然对任意实数k都有△>0,根据韦达定理得x1+x2=,x1x2=,那么|MN|==•=,y1+y2=k(x1﹣2)+k(x2﹣2)=k(x1+x2)﹣4k=,线段MN中点H的坐标为(,),那么线段MN的垂直平分线方程为y+=﹣(x﹣),令y=0,得D(,0),|DH|==,则=•=•,由k≠0,可得1+∈(1,+∞),于是∈(0,).赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。
2017-2018学年河北省衡水中学高二下期末考试复习卷数学(文)试题(解析版)一、单选题1.已知集合2{|230}A x x x =--≤,(){|ln 2}B x y x ==-,则A B ⋂=( ) A. ()13, B. (]13, C. [)12-, D. ()12-, 【答案】C【解析】由题意可得:{}|13A x x =-≤≤,{}|2B x x =<,结合交集的定义可得:{}|12A B x x ⋂=-≤<,表示为区间的形式即:[)1,2-. 本题选择C 选项.2.如图,已知AB a = ,AC b = ,4BC BD = ,3CA CE = ,则DE =( )A. 3143b a -B.53124a b - C. 3143a b - D. 53124b a -【答案】D【解析】由题意可得:()3344DC BC b a ==- ,1133CE CA b ==-,则:()315343124DE DC CE b a b b a =+=--=- .本题选择D 选项.3.已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则Sn a n=( )A. 4n −1B. 4n −1C. 2n −1D. 2n −1 【答案】D【解析】试题分析:设等比数列{a n }的公比为q ,则a 1(1+q 2)=52a 1q (1+q 2)=54,解得 a 1=2q =12,∴S n a n =a 1(1−q n )1−q a 1q n −1=2×(1−12n )1−122×(12)n −1=2n −1.故选D .【考点】1、等比数列的通项公式;2、等比数列的前n 项和公式.4.某校有高级教师90人,一级教师120人,二级教师75人,现按职称用分层抽样的方法抽取38人参加一项调查,则抽取的一级教师人数为( ) A. 10 B. 12 C. 16 D. 18 【答案】C【解析】根据分层抽样性质,设抽取的一级教师人数为m ,则120901207538m=++,解得16m =,故选择C.5.已知不等式2201x m x ++>-对一切()1x ∈+∞,恒成立,则实数m 的取值范围是( )A. 6m >-B. 6m <-C. 8m >-D. 8m <- 【答案】A【解析】不等式即:21221111m x x x x ⎛⎫>--=--++ ⎪--⎝⎭恒成立, 则max 221m x x ⎛⎫>-- ⎪-⎝⎭结合1x >可得:10x ->,由均值不等式的结论有:12112161x x ⎛⎫⎛⎫--++≤-=- ⎪ ⎪ ⎪-⎝⎭⎝⎭, 当且仅当2x =时等号成立,据此可得实数m 的取值范围是6m >-. 本题选择A 选项.点睛:对于恒成立问题,常用到以下两个结论: (1)a ≥f (x )恒成立⇔a ≥f (x )max ; (2)a ≤f (x )恒成立⇔a ≤f (x )min .6.已知函数()cos2f x x x =-的图象在区间0,3a ⎡⎤⎢⎥⎣⎦和42,3a π⎡⎤⎢⎥⎣⎦上均单调递增,则正数a 的取值范围是( )A. 5,612ππ⎡⎤⎢⎥⎣⎦B.5,12ππ⎡⎤⎢⎥⎣⎦ C. ,4ππ⎡⎤⎢⎥⎣⎦ D. 2,43ππ⎡⎤⎢⎥⎣⎦【答案】B【解析】()cos22sin 26f x x x x π⎛⎫=-=- ⎪⎝⎭,由222262k x k πππππ-≤-≤+,得63k x k ππππ-≤≤+,因为在区间0,3a ⎡⎤⎢⎥⎣⎦和42,3a π⎡⎤⎢⎥⎣⎦上均单调递增, 533{51226a a a ππππ≤⇒≤≤≥7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A. 12B. 18C. 24D. 30【答案】C【解析】如图还原几何体,A C=3,A B=4,A A′=5,红色线表示削下去的部分,剩下的蓝色的线为三视图的几何体,∠C A B=900,所以几何体的体积是V=12×3×4×5−13×12×3×4×3=24,故选C.8.执行如图所示的程序框图,若输入的16,4a b==,则输出的n=()A. 4B. 5C. 6D. 7 【答案】B【解析】 执行该程序框图,可知第1次循环:1161624,248,22a b n =+⨯==⨯==;第2次循环:1242436,2816,32a b n =+⨯==⨯==;第3次循环:1363654,21632,42a b n =+⨯==⨯==;第4次循环:1545481,23264,52a b n =+⨯==⨯==;第5次循环:12438181,26412822a b =+⨯==⨯=, 此时a b ≤成立,输出结果5n =,故选B.9.已知函数()2x xe ef x --=,1x 、2x 、3x R ∈,且120x x +>,230x x +>,310x x +>,则()()()123f x f x f x ++的值(______)A.一定等于零.B.一定大于零.C.一定小于零.D.正负都有可能.【答案】B【解析】由已知可得()f x 为奇函数,且()f x 在R 上是增函数,由12120x x x x +>⇒>-⇒()()()122f x f x f x >-=-,同理可得()()23f x f x >-,()()()()3112f x f x f x f x >-⇒+()()()()()()()()32311230f x f x f x f x f x f x f x +>-++⇒++>.【点睛】本题考查函数的奇偶性和单调性,涉及函数与不等式思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性强,属于较难题型.由已知可得()f x 为奇函数,且是增函数,由12120x x x x +>⇒>-()()()122f x f x f x ⇒>-=-,同理可得()()23f x f x >-,()()31f x f x >-,三式相加化简即可得正解.10.已知点()M a b ,与点()01N -,在直线3450x y -+=的两侧,给出以下结论:①3450a b -+>;②当0a >时,a b +有最小值,无最大值;③221a b +>;④当0a >且1a ≠时,11b a +-的取值范围是9344⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,, 正确的个数是( )A. 1B. 2C. 3D. 4 【答案】B【解析】将N 点坐标代入直线方程有:04590++=>, 据此由M 点的坐标可得:3450a b -+<,说法①错误;当a>0时,结合3450a b -+<可得354a b +>,则35544a ab a ++>+>,a+b 既无最小值,也无最大值,故②错误; 很明显点N 与坐标原点位于直线的同侧,设原点到直线3x−4y+5=0的距离为d,则1d ==,而点M 与坐标原点位于直线的异侧,故221a b +>,说法③正确;当a>0且a≠1时,11b a +-表示点M(a,b)与P(1,−1)连线的斜率,如图所示: 当a=0,54b =时,1914b a +=--,又直线3x−4y+5=0的斜率为34, 故11b a +-的取值范围是9344⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,,,故④正确。
安平中学2017-2018学年第二学期期中考试高二数学(理科)试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.1.若随机变量ξ的分布列如下表所示,则p1=( )A. 0B.C.D. 1【答案】B【解析】【分析】由分布列的性质:所有随机变量对应概率的和为列方程求解即可.【详解】因为所有随机变量对应概率的和为,所以,,解得,故选B.【点睛】本题主要考查分布列的性质,意在考查对基本性质的掌握情况,属于简单题.2. 若随机变量X~B(n,0.6),且E(X)=3,则P(X=1)的值是()A. 2×0.44B. 2×0.45C. 3×0.44D. 3×0.64【答案】C【解析】试题分析:根据随机变量符合二项分布,根据期望值求出n的值,写出对应的自变量的概率的计算公式,代入自变量等于1时的值.解:∵随机变量X服从,∵E(X)=3,∴0.6n=3,∴n=5∴P(X=1)=C51(0.6)1(0.4)4=3×0.44故选C.考点:二项分布与n次独立重复试验的模型.3.3.下列说法正确的是( )A. 相关关系是一种不确定的关系,回归分析是对相关关系的分析,因此没有实际意义B. 独立性检验对分类变量关系的研究没有100%的把握,所以独立性检验研究的结果在实际中也没有多大的实际意义C. 相关关系可以对变量的发展趋势进行预报,这种预报可能是错误的D. 独立性检验如果得出的结论有99%的可信度就意味着这个结论一定是正确的【答案】C【解析】相关关系虽然是一种不确定关系,但是回归分析可以在某种程度上对变量的发展趋势进行预报,这种预报在尽量减小误差的条件下可以对生产与生活起到一定的指导作用;独立性检验对分类变量的检验也是不确定的,但是其结果也有一定的实际意义,故正确答案为C.4.4.已知回归直线方程,其中且样本点中心为,则回归直线方程为()A. B. C. D.【答案】C【解析】【分析】根据回归直线方程,将样本点的中心坐标代入,即可求得回归直线方程.【详解】回归直线方程为,样本点的中心为,,,回归直线方程,故选C.【点睛】本题主要考查回归方程的性质以及求回归方程的方法,属于简单题. 回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.5.5.已知随机变量X服从正态分布N(μ,σ2),且P(μ-2σ<X<μ+2σ)=0.954 4,P(μ-σ<X<μ+σ)=0.6826.若μ=4,σ=1,则P(5<X<6)=( )A. 0.135 9B. 0.135 8C. 0.271 8D. 0.271 6【答案】A【解析】【分析】根据变量符合正态分布和所给的和的值,结合原则,得到,两个式子相减,根据对称性得到结果.【详解】随机变量符合正态分布,,,,,,故选A.【点睛】本题主要考查正态分布的性质,属于中档题.有关正态分布应用的题考查知识点较为清晰,只要熟练掌握正态分布的性质,特别是状态曲线的对称性以及各个区间概率之间的关系,问题就能迎刃而解.6.6.如图所示,表示3种开关,若在某段时间内它们正常工作的概率分别为0.9,0.8,0.7,那么此系统的可靠性为()A. 0.504B. 0.994C. 0.496D. 0.06【答案】B【解析】试题分析:系统正常工作的概率为,即可靠性为0.994.故选B.考点:相互独立事件同时发生的概率.【名师点睛】1.对于事件A,B,若A的发生与B的发生互不影响,则称A,B相互独立;2.若A与B相互独立,则P(B|A)=P(B),P(AB)=P(B|A)×P(A)=P(A)×P(B)3.若A与B相互独立,则A与,与B,与也都相互独立.4.若P(AB)=P(A)P(B),则称A,B相互独立.7.7.如图所示的5个数据,去掉后,下列说法错误的是()A. 相关系数变大B. 残差平和变大C. 变大D. 解释变量与预报变量的相关性变强【答案】B【解析】分析:由散点图知,去掉后,与的线性相关加强,由相关系数,相关指数及残差平方和与相关性的关系得出选项.详解:由散点图知,去掉后,与的线性相关加强,且为正相关,所以r变大,变大,残差平方和变小.故选B.点睛:本题考查刻画两个变量相关性强弱的量:相关系数r,相关指数R2及残差平方和,属基础题.8. 已知随机变量X~B(6,0.4),则当η=-2X+1时,D(η)=( )A. -1.88B. -2.88C. 5. 76D. 6.76【答案】C【解析】试题分析:因为随机变量X~B(6,0.4),所以,.故选C.考点:1、离散型随机变量的分布列(二项分布);2、离散型随机变量函数的方差.9.9.一名篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c(a,b,c∈(0,1)),已知他投篮一次得分的均值为2(不计其他得分情况),则ab的最大值为( ) A. B. C. D.【答案】D【解析】试题分析:由题意,投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c(a、b、c∈(0,1)),∴3a+2b=2,∴2≥2,∴ab≤(当且仅当a=,b=时取等号)∴ab 的最大值为.故答案:D.考点:离散型随机变量的期望与方差.10.10.下列说法:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适;②用相关指数可以刻画回归的效果,值越小说明模型的拟合效果越好;③比较两个模型的拟合效果,可以比较残差平方和大小,残差平方和越小的模型拟合效果越好.其中说法正确的是( )A. ①②B. ②③C. ①③D. ①②③【答案】C【解析】①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适,正确.②相关指数来刻画回归的效果,值越大,说明模型的拟合效果越好,因此②不正确.③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好,正确.综上可知:其中正确命题的是①③.故答案为C11.11.将三颗骰子各掷一次,设事件“三个点数都不相同”,“至少出现一个6点”,则概率等于()A. B. C. D.【答案】A【解析】试题分析:∵P(A|B)=P(AB)÷P(B),P(AB)=P(B)=1-P(.B)=1-∴P(A/B)=P(AB)÷P(B)=考点:条件概率与独立事件12.12.同时抛掷5枚质地均匀的硬币80次,设5枚硬币正好出现2枚正面向上,3枚反面向上的次数为X,则X的均值是( )A. 20B. 25C. 30D. 40【答案】B【解析】抛掷一次正好出现3枚反面向上,2枚正面向上的概率为,所以X~B.故E(X)=80×=25.二、填空题(本大题共4小题,每小题5分,共20分).13.13.打靶时,甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射一个目标,则他们都中靶的概率是 .【答案】【解析】试题分析:依题意可知甲中靶与乙中靶是相互独立事件,且他们中靶的概率分布为0.8,0.7。
○…………装……学校:___________姓名:___○…………装……绝密★启用前 河北省衡水中学2016-2017学年高二下学期期末考试数学(理)试题 试卷副标题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、单选题 1.已知集合()2{|log 12}A x x =-<, {|6}B x a x =<<,且{|2}A B x x b ⋂=<<,则a b +=( ) A .5 B .6 C .7 D .4 2.若某几何体的三视图如图所示,则此几何体的体积等于( ) A . B . C . D . 3.执行如图所示的程序框图,若输出的结果为2,则输入的正整数的可能取值的集合是( )…○…………线…………○……※※…○…………线…………○……A.{}2345,,,B.{}123456,,,,,C.{}12345,,,,D.{}23456,,,,4.若cos22sin4απα=-⎛⎫-⎪⎝⎭,则sin cosαα+的值为()A.2-B.12-C.12D.25.已知向量,,,,若与共线,则等于()A.B.C.D.6.已知函数()sinf x x xωω=(0ω>)的图像的相邻两对称轴间的距离为2π,则当02xπ⎡⎤∈-⎢⎥⎣⎦,时,()f x的最大值为()A B.1C.D.1-7.设,是不同的直线,,,是不同的平面,有以下四个命题①;②;③;④.其中正确的命题是()A.①④B.①③C.②③D.②④8.设,,0,2A B Cπ⎛⎫∈ ⎪⎝⎭,且sin sin sinA C B-=,cos cos cosA C B+=,则B A-等于()○……_班级:_○……A .3π-B .3πC .6π-D .3π或3π- 9.已知 为 的导函数,若 ,且 ,则 的最小值为( ) A . B . C . D . 10.已知函数 是周期为 的偶函数,若 , 时, ,则( ) A . B . C . D . 11.若圆222x y r +=(0r >)上仅有4个点到直线20x y --=的距离为1,则实数r 的取值范围是( ) A .01r << B .1r > C .01r << D 11r << 12.已知函数 , ,实数 , 满足 ,若 , ,使得成立,则 的最大值为( ) A .4 B . C . D .3第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.已知数列满足,,则的最小值为__________.14.某企业三月中旬生产A、B、C三种产品共3000件,根据分层抽样的结果,企业统计员作了如下统计表格。
2018年下学期河北省衡水中学高二第一次月考理科数学试卷(附解析)第Ⅰ卷一.选择题(本题共12小题,每小题5分,共60分,只有一个选项正确,请把答案写在......)答题卷上....1.下列判断错误的是()A.命题“若,则”是假命题B.直线不能作为函数图象的切线C.“若,则直线和直线互相垂直”的逆否命题为真命题D.“”是“函数在处取得极值”的充分不必要条件2.曲线(e为自然对数的底数)在点处的切线方程为()A.B.C.D.3.若,则等于()A.-2 B.-4 C.2 D.04.若函数的导函数则函数的单调递减区间是()A.B.C.D.5.设函数,的导函数为,且,,则下列不等式成立的是(注:e为自然对数的底数)()A .B .C .D .6.已知函数()()π02f x x x =≥,图像的最高点从左到右依次记为1P ,3P ,5P ,,函数()y f x =的图像与x 轴的交点从左到右依次记为2P ,4P ,6P ,,设,则( )A .B .-C .D .-7.函数()ln f x x =的图像在点()()1,1f 处的切线的斜率等于( )A .1eB .1C .eD .2e8.已知f (x )是定义在区间(0,+∞)内的单调函数,且对∀x ∈(0,∞),都有f[f (x )﹣lnx]=e+1,设f′(x )为f (x )的导函数,则函数g (x )=f (x )﹣f′(x )的零点个数为( ) A .0B .lC .2D .39.已知函数()()()ln ,23f x x g x m x n ==++,若对任意的()0,x ∈+∞,总有()()f x g x ≤恒成立,记()23m n +的最小值为(),f m n ,则(),f m n 最大值为( ) A .1B .1eC .21e D10.已知函数()32f x ax bx cx d =+++的图象如图所示,则12b a ++的取值范围是( )A .21,52⎛⎫- ⎪⎝⎭B .13,22⎛⎫- ⎪⎝⎭C .35,22⎛⎫- ⎪⎝⎭D .31,22⎛⎫- ⎪⎝⎭11.已知数列{}{},n n a b 满足11,12n n a a b =+=,121n n nbb a +=-,则2017b =( )A .20172018B .20182017C .20152016D .2016201512.图一是美丽的“勾股树”,它是一个直角三角形分别以它的每一边向外作正方形而得到.图二是第1代“勾股树”,重复图二的作法,得到图三为第2代“勾股树”,以此类推,已知最大的正方形面积为1,则第n 代“勾股树”所有正方形的个数与面积的和分别 为( )A .21;n n -B .21;1n n -+C .121;n n +-D .121;1n n +-+第Ⅱ卷二.填空题(本题共4小题,每小题5分,共20分,请把答案写在答题卷上..........) 13.在平面直角坐标系xOy 中,函数()sin cos f x a ax ax =+(0a >)在一个最小正周期长的区间上的图象与函数()g x =______. 14.函数()ln f x x =在1x =处的切线方程是________.15.已知函数()sin cos 2f x x f x π⎛⎫=- ⎪⎝⎭',若04f π⎛⎫= ⎪⎭'⎝,则2f π⎛⎫= ⎪⎝⎭'______.16.若定义在[)1,-+∞上的函数()21143,1x f x x x x -≤≤=-+>⎪⎩,则()31d f x x -=⎰________.三.解答题(本题共6个大题,共70分.解答应写出必要的文字说明..............证明过程或演算步........骤,请把答案写在答题卷上............) 17.(10分)设f (x )=(lnx )ln (1﹣x ).(1)求函数y=f (x)的图象在(,f ())处的切线方程; (2)求函数y=f′(x )的零点.18.(12分)已知函数f(x)=在点(1,f(1))处的切线与x轴平行.(1)求实数a的值及f(x)的极值;(2)若对任意x1,x2∈[e2,+∞),有||>,求实数k的取值范围.19.(12分)通过计算可得下列等式:,,,┅┅,,将以上各式分别相加得:()()22112123n n n +-=⨯+++++,即:()11232n n n +++++=,类比上述求法:请你求出2222123n ++++的值.20.(12分)已知114a =,1122n n n a a --=+(2n ≥) (1)计算这个数列前4项,并归纳该数列一个通项公式; (2)用数学归纳法证明上述归纳的通项公式.21.(12分)已知函数,a为正常数.(1)若f(x)=lnx+φ(x),且,求函数f(x)的单调增区间;(2)若g(x)=|lnx|+φ(x),且对任意x1,x2∈(0,2],x1≠x2,都有,求a的取值范围.22.(12分)已知数列,,,,为该数列的前项和.(1)计算;(2)根据计算结果,猜想的表达式,并用数学归纳法证明.理科数学答案第Ⅰ卷一.选择题(本题共12小题,每小题5分,共60分,只有一个选项正确,请把答案写在......答题卷上....)第Ⅱ卷二.填空题(本题共4小题,每小题5分,共20分,请把答案写在答题卷上..........)13 14.1y x =-15.'12f π⎛⎫=- ⎪⎝⎭16.423π-三.解答题(本题共6个小题,共70分.解答应写出必要的文字说明..............证明过程或演算步........骤,请把答案写在答题卷上............) 17.【答案】(1)y=ln 2;(2)x=. 【解析】(1)f′(x )=,故f ()=ln 2,f′()=0,故切线方程是y=ln 2.(2)由(1)得,令f′(x )=0,即(1﹣x )ln (1﹣x )﹣xlnx=0, 令h (x )=(1﹣x )ln (1﹣x )﹣xlnx ,(0<x <1), 则h′(x )=lnx (1﹣x ),h″(x )=,令h″(x )>0,解得:0<x <;令h″(x )<0,解得:x >,故h′(x )在(0,)递增,在(,+∞)递减,故h′(x )<h′()=ln <0,故h (x )在(0,1)递减,而h ()=0,故h (x )在(0,1)的零点是x=.18.【答案】(1)1a =,f (x )有极大值为f (1)=1;(2)(],2-∞.【解析】(1)∵函数f (x )=,∴, 令f'(1)=0,∴=0,解得1a =;令f′(x )=0,则lnx=0,解得x=1,即f (x )有极大值为f (1)=1.(2)由||>,可得, 令,则g (x )=x ﹣xlnx ,其中x ∈(0,e ﹣2],g'(x )=﹣lnx ,又x ∈(0,e ﹣2],则g'(x )=﹣lnx≥2,即,因此实数k 的取值范围是(],2-∞.19.【答案】()()11216n n n ++. 【解析】3322131311-=⨯+⨯+3323232321-=⨯+⨯+,3324333331-=⨯+⨯+()3321331n n n n +-=⨯+⨯+, 将以上各式分别相加得:()()()3322221131233123n n n n +-=⨯+++++⨯++++, 所以()322221112311332n n n n n +⎡⎤++++=+---⎢⎥⎣⎦()()11216n n n =++. 20.【答案】(1)见解析;(2)见解析.【解析】(1)12341357,,,481632a a a a ====,归纳1212n n n a +-=. (2)当n=1时,显然成立;假设n k =命题成立,即1212k k k a +-=,则()()1111121112112222k k k k k k a ++++++--=⨯+=; 所以当n=k+1时,命题也成立,故,对任意的n N +∈,1212n n n a +-=恒成立. 21.【答案】(1)函数f (x )的单调增区间为,(2,+∞);(2).【解析】(1), ∵,令f′(x )>0,得x >2,或,∴函数f (x )的单调增区间为,(2,+∞).(2)∵,∴,∴,设h(x)=g(x)+x,依题意,h(x)在(0,2]上是减函数.当1≤x≤2时,,,令h′(x)≤0,得对x∈[1,2]恒成立,设,则,∵1≤x≤2,∴,∴m(x)在[1,2]上递增,则当x=2时,m(x)有最大值为,∴,当0<x<1时,,,令h′(x)≤0,得:,设,则,∴t(x)在(0,1)上是增函数,∴t(x)<t(1)=0,∴a≥0.综上所述,.22.【答案】(1);(2),证明见解析.【解析】(1).(2)猜想,用数学归纳法证明如下:①当时,,猜想成立;②假设当时,猜想成立,即,当时,故当时,猜想成立.由①②可知,对于任意的,都成立.。
2017-2018学年下学期高二年级期末考试理科数学试卷第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、若,,a b c 为实数,则下列正确的是A .若a b >,则22ac bc > B .若0a b <<,则22a ab b >> C .若0a b <<,则11a b < D .若0a b <<,则b aa b> 2、若12120,0x x y y <<<<,且1212x x y y +=+,则下列代数式中值最大的是 A .1122x y x y + B .1212x x y y + C .1221x y x y + D .123、已知实数,x y 满足2246120x y x y +-++=,则22x y --的最小值是A .4B .5-1 D . 4、以下四个中:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变; ②两个随机变量的线性相关性越强,则相关系数的绝对值越接近于1;③在某项测量中,测量结果ξ服从正态分布2(1,)(0)N σσ>,若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为0.8;④对分类变量X 与Y 的随机变量2K 的观测值k 来说,k 越小,判断“X 与Y 有关”的把握程度越大。
其中真的个数为A .1B .2C .3D .45、定义在区间[],()a b b a >上的函数()1sin 2f x x x =的值域是1[,1]2,则b a -的最小值m 和最大值M 分别是A .,63m M ππ==B .2,33m M ππ==C .4,23m M ππ==D .24,33m M ππ==6、函数()1f x x x a =++-,若不等式()6f x ≥的解集为(,2][4,)-∞-+∞,则实数a 的值为A .3-BC .3D .7、如图,已知80DEC ∠=,弧CD 的度数与弧AB 的度数的差为20,则DAC ∠的度数为A .35B .45C .55D .708、右图是函数sin()(0,0,)2y A wx A w πϕϕ=+>>≤图象的一部分,为了得到这个函数的图象,只要将sin ()y x x R =∈的图象上所有的点A .向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变; B .向左平移6π个单位长度,在把所的各点的横坐标伸长到原来的2倍,纵坐标不变;C .向左平移3π个单位长度,再把所得各点的横坐标到原来的12,纵坐标不变;D .向左平移3π个单位长度,再把所得各点的横坐标商场到原来的2倍,纵坐标不变。
河北定州中学2017-2018学年第一学期高二数学期中考试试题一、单选题1.如图所示,在边长为2的正方形纸片ABCD中,AC与BD相交于O,剪去AOB,将剩余部分沿OC,OD折叠,使OA,OB重合,则以()A B,C,D,O为顶点的四面体的体积为().A.23B.423C.23D.432.直角三角形的两条直角边的长度分别是3,4,以直角三角形的斜边所在直线为旋转轴,旋转一周形成几何体的体积是().A. 12πB. 144π5C.48π5D. 48π3.已知底面半径为1的圆锥的底面圆周和顶点都在表面积为16π的球面上,则该圆锥的体积为()A. 2+33π B.233π-C. ()2+3π D.2+33π或233π-4.如图,在平面四边形ABCD中,.将其沿对角线对角折成四面体ABCD,使平面平面BCD,若四面体ABCD的顶点在同一球面上,则该球的体积为()A. B. C. D.5.圆台上、下底面半径和母线的比为,高为,那么它的侧面积为( )A. B. C. D.6.一个四面体的三视图如图所示,则该四面体的表面积是( )A. B. C. D.7.如图,正方体1111ABCD A BC D -的棱长为1,线段11AC 上有两个动点E F ,,且1EF 2=;则下列结论错误的是( )A. BD CE ⊥B. EF 平面ABCDC. 三棱锥E FBC -的体积为定值D. BEF 的面积与CEF 的面积相等 8.已知m ,n 为两条不同的直线, α, β为两个不同的平面,对于下列四个命题: ①m α⊂,n α⊂, m β, n βαβ⇒ ②n m , n m αα⊂⇒ ③αβ, m α⊂, n m n β⊂⇒ ④m α, n m n α⊂⇒ 其中正确命题的个数有( )A. 0个B. 1个C. 2个D. 3个9.在梯形ABCD 中, AB CD , AB ⊂平面α, CD ⊄平面α,则直线CD 与平面α内的直线的位置关系只能是( )A. 平行B. 平行或异面C. 平行或相交D. 异面或相交10.在空间四边形ABCD 中,AB =BC ,AD =CD ,E 为对角线AC 的中点,下列判断正确的是( )A. 平面ABD ⊥平面BDCB. 平面ABC ⊥平面ABDC. 平面ABC ⊥平面ADCD. 平面ABC ⊥平面BED11.若m n ,是两条不同的直线, αβγ,,是三个不同的平面,则下列命题中正确的是()A. 若m βαβ⊂⊥,,则m α⊥B. 若m β⊥, m α,则αβ⊥C. 若αγ⊥, αβ⊥,则βγ⊥D. 若m αγ⋂=, n βγ⋂=, m n ,则αβ12.一条直线与两条平行线中的一条为异面直线,则它与另一条( )A. 相交B. 异面C. 相交或异面D. 平行二、填空题13.某三棱柱的三视图如图所示,则该三棱柱的表面积为__________.14.若三棱锥的三条侧棱两两垂直,且侧棱长均为,则其外接球的表面积是_____.15.已知()4,3,5M -到x 轴的距离为m ,到x O y 坐标平面的距离为n ,则2m n +=________.16.如图,已知正方体1111ABCD A BC D -的棱长为1,在侧面对角线1AD 上取一点M ,在侧面对角线1CD 上取一点N ,使得线段MN 平行于对角面11A ACC ,若DMN 是正三角形,则DMN 的边长为__________.三、解答题17.已知边长为2的正方形ABCD 与菱形ABEF 所在平面互相垂直, M 为BC 中点.(1)求证: EMP 平面ADF ;(2)若60ABE ∠=,求四面体M ACE -的体积.18.如图,四边形ABCD 是平行四边形,点E , F , G 分别为线段BC , PB , AD 的中点.(1)证明EF平面PAC;(2)证明平面PCG平面AEF;(3)在线段BD上找一点H,使得FH平面PCG,并说明理由参考答案ACDAB BDABD11.B12.C13.1242+14.15.3916.2 217.(1)证明见解析;(2)3 3.(1)∵四边形ABCD是正方形,∴BC∥AD.∵BC⊄平面ADF,AD⊂平面ADF,∴BC∥平面ADF.∵四边形ABEF是菱形,∴BE∥AF.∵BE⊄平面ADF,AF⊂平面ADF,∴BE∥平面ADF.∵BC∥平面ADF,BE∥平面ADF,BC∩BE=B,∴平面BCE∥平面ADF.∵EM⊂平面BCE,∴EM∥平面ADF.(2)取AB中点P,连结PE.∵在菱形ABEF中,∠ABE=60°,∴△AEB为正三角形,∴EP⊥AB.∵AB=2,∴EP=3.∵平面ABCD⊥平面ABEF,平面ABCD∩平面ABEF=AB,∴EP⊥平面ABCD,∴EP为四面体E﹣ACM的高.∴.18.(1)证明见解析;(2)证明见解析;(3)所找的H点为AE与BD的交点.(1)证明:∵E、F分别是BC,BP中点,∴12EF PC,∵PC⊂平面PAC,EF⊄平面PAC,∴EF平面PAC.(2)证明:∵E、G分别是BC、AD中点,∴AE CG,∵AE⊄平面PCG,CG⊂平面PCG,∴AE平面PCG,又∵EF PC,PC⊂平面PCG,EF⊄平面PCG,∴EF平面PCG,AE EF E⋂=点,AE,EF⊂平面AEF,∴平面AEF平面PEG.(3)设AE,GC与BD分别交于M,N两点,易知F,N分别是BP,BM中点,∴12FN PM,∵PM⊂平面PGC,FN⊄平面PGC,∴FN平面PGC,即N点为所找的H点.。
第 1 页 共 15 页 2017-2018学年河北衡水中学高二下学期期中考试数学(理)试题
一、单选题 1.与极坐标表示的不是同一点的极坐标是( ) A. B. C. D. 【答案】B 【解析】分析:利用极坐标的表示方法,即可得出结果.
详解:点在直角坐标系中表示点,而点在直角坐标系中表示点,所以点和点表示不同的点,故选B. 点睛:本题主要考查了极坐标的表示方法,着重考查了推理与计算能力,属于基础题. 2.下列表述: ①综合法是由因导果法;②综合法是顺推法;③分析法是执果索因法;④分析法是间接证明法;⑤分析法是逆推法. 其中正确的表述有( ) A. 2个 B. 3个 C. 4个 D. 5个 【答案】C 【解析】结合综合法和分析法的定义可知①②③⑤均正确,分析法和综合法均为直接证明法,故④不正确. 【考点】综合法和分析法的特征.
3.设复数满足(为虚数单位),则( )
A. B. C. D. 【答案】D
【解析】,所以, 的共轭复数为,故选D. 4.用反证法证明命题“若22sin1coscos1sin1,则sin0cos0且”时,下列假设的结论正确的是( ) A.sin0cos0或 B.sin0cos0或 C.sin0cos0且 D.sin0cos0且 第 2 页 共 15 页
【答案】B 【解析】试题分析:反证法要假设所要证明的结论的反面成立,本题中要反设sin0cos0或成立
【考点】反证法
5.方程22{2+2ttttxy(t为参数)表示的曲线是( ) A. 双曲线 B. 双曲线的上支 C. 双曲线的下支 D. 圆 【答案】B
【解析】由题意得,方程22222222222{{2+22+22ttttttttxxyy ,
两式相减,可得224yx,由2+222+22tttty, 所以曲线的方程为221,244yxy,表示双曲线的上支,故选B. 【考点】曲线的参数方程.
6.若,,,则,,的大小关系是( ) A. B. C. D. 【答案】A 【解析】分析:利用定积分,将已知化简,即可比较大小.
详解:由题意,可得,, , 则,所以,故选A.
点睛:本题主要考查了定积分的运算,其中根据微积分基本定理,求解的值是解答的关键,着重考查了推理与运算能力. 7.老王和小王父子俩玩一种类似于古代印度的“梵塔游戏”;有3个柱子甲、乙、丙,在甲柱上现有4个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图),把这4个盘子从甲柱全部移到乙柱游戏即结束,在移动过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下,设游戏结
束需要移动的最少次数为,则( ) 第 3 页 共 15 页
A. 7 B. 8 C. 11 D. 15 【答案】C 【解析】由题意得,根据甲乙丙三图可知最上面的两个是一样大小的,所以比三个操作
的此时 要多,此四个操作的此时要少,相当与操作三个的时候,最上面的那衣蛾动了几次,就会增加几次,故选C. 【考点】归纳推理. 8.在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,
按图所标边长,由勾股定理有.设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下一个三条侧棱两两垂直的三棱锥,如果用,,表示三个侧面面积,表示截面面积,那么类比得到的结论是( )
A. B. C. D. 【答案】B 【解析】分析:利用从平面图形到空间图形的类比推理,即可得到结论.
详解:建立从平面图形到空间图形的类比,与可得类比得到,故选B. 点睛:本题主要考查了从平面图形到空间的类比推理,着重考查了学生的知识量和知识的迁移,类比的基本能力,解答的关键是掌握好类比推理的概念与应用.
9.设函数sincos04xfxexxx,则函数fx的所有极大值之和为
A. e B. 2ee C. 3ee D. 3ee 【答案】D 【解析】∵函数sincosxfxexx ,
∴''sincossincos'2sinxxxfxexxexxex ,∵22xkk, 时, '0222fxxkk,, 时, '0fx ,∴22xkk,
时原函数递增, 222xkk, 时,函数sincosxfxexx 递减,第 4 页 共 15 页
故当2xk 时, fx 取极大值,其极大值为22sin2cos2kfkekk
2201kkee ,又04x ,∴函数fx 的各极大值之和
3See .故选D.
10.已知在平面直角坐标系中,曲线的参数方程为(为参数),是曲线上的动点.以原点为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系,
若曲线的极坐标方程为,则点到的距离的最大值为( ) A. B. C. D. 【答案】B 【解析】分析:把曲线的极坐标方程,可得曲线的直角坐标方程为,设
曲线上点的坐标为,由点到直线的距离公式,即可求得最大值. 详解:由曲线的极坐标方程为, 可得曲线的直角坐标方程为,
由曲线的参数方程,设曲线上点的坐标为, 由点到直线的距离公式可得, 当时,取得最大值,此时最大值为,故选B. 点睛:本题主要考查了极坐标方程与直角坐标方程的互化,以及曲线的参数方程的应用,着重考查了推理与运算能力.
11.已知函数与的图象如图所示,则函数(其中为自然对数的底数)的单调递减区间为( ) 第 5 页 共 15 页
A. B. , C. D. , 【答案】D
【解析】分析:结合函数的图象求出成立的的取值范围,即可得到结论. 详解:结合函数的图象可知:和时,,
又由,则, 令,解得, 所以函数的递减区间为,故选D. 点睛:本题主要考查了导数的四则运算,以及利用导数研究函数的单调性,求解单调区
间,其中结合图象,得到,进而得到的解集是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力.
12.已知函数,若关于的方程有个不同的实数解,则实数的取值范围是( )
A. B. C. D. 【答案】C
【解析】分析:利用导数得函数的单调性并求得最值,求解方程得到或,画出函数的图象,结合图象即可求解. 详解:设,则, 令,得, 当时,,函数为增函数,当时,,函数为减函数,
所以当时,函数取得极大值也是函数的最大值, 由方程,可得或, 第 6 页 共 15 页
画出函数的图象,如图所示, 结合图象可得实数的取值范围是,故选C.
点睛:本题主要考查了根的存在性与根的个数的判断,考查了利用导数求解函数的单调性与函数的最值,其中把根的存在性与根的个数问题转化为函数的图象的交点问题是解答的关键,着重考查了转化思想方法,以及数形结合思想的应用,试题属于中档试题.
二、填空题 13.复数(为虚数单位)的虚部为__________. 【答案】 【解析】分析:利用复数的运算,化简得,即可得到复数的虚部. 详解:由题意,复数, 所以复数的虚部为. 点睛:本题主要考查了复数的运算法则和复数的基本概念,其中熟记复数的四则运算法则和复数的基本概念是解答的关键,着重考查了推理与运算能力.
14.在极坐标系中,直线的方程为,则点到直线的距离为__________.
【答案】 【解析】分析:把直线的极坐标方程化为直角坐标方程,把的极坐标化为直角坐标,再利用点到直线的距离公式求得它到直线的距离即可.
详解:把直线的方程化为直角坐标方程得, 第 7 页 共 15 页
点的直角坐标为, 由点到直线的距离公式,可得. 点睛:本题主要考查了极坐标与直角坐标的互化,以及点到直线的距离公式的应用,着重考查了推理与运算能力,属于基础题. 15.在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说“甲说的对”;丁说:“反正我没有责任”.四人中只有一个人说的是真话,则该事故中需要负主要责任的人是__________. 【答案】甲 【解析】试题分析:若负主要责任的是甲,则甲乙丙都在说假话,只有丁说真话,符合题意.若负主要责任的是乙,则甲丙丁都在说真话,不合题意.若负主要责任的是丙,则乙丁都在说真话,不合题意.若负主要责任的是丁,则甲乙丙丁都在说假话,不合题意. 【考点】逻辑推理.
16.已知实数,满足,,则的最小值为__________.
【答案】 【解析】分析:分别设,则表曲线上的点到直线的距离,则最小值表示与直线平行的切线之间的距离,求出曲线的切线方程,根据平行线之间的距离公式,即可求解.
详解:分别设,
则表曲线上的点到直线的距离, 所以最小值表示与直线平行的切线之间的距离,
因为,所以, 令,解得,所以, 所以曲线过点的切线方程为,即,
所以直线与直线间的距离为, 即最小值.