2017-2018年河南省濮阳市濮阳县九年级上学期数学期中试卷带答案(b卷)
- 格式:doc
- 大小:592.51 KB
- 文档页数:27
濮阳市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)如果=,那么的值是()A .B .C .D .2. (2分)在函数y=中,自变量x的取值范围是()A . x>2B . x≥2C . x≠0D . x≠23. (2分)下列说法正确的是().A . 矩形都是相似图形B . 菱形都是相似图形C . 各边对应成比例的多边形是相似多边形D . 等边三角形都是相似三角形4. (2分)如图所示,有三个矩形,其中是相似形的是()A . 甲和乙B . 甲和丙C . 乙和丙D . 甲、乙和丙5. (2分)已知二次函数y=a(x+1)2+b有最大值0.1,则a与b的大小关系为()A . a>bB . a<bC . a=bD . 不能确定6. (2分)(2019·无锡) 下列结论中,矩形具有而菱形不一定具有的性质是()A . 内角和为360°B . 对角线互相平分C . 对角线相等D . 对角线互相垂直7. (2分)在同一平面直角坐标系中,同一水平线上开口最大的抛物线是()A .B .C .D .8. (2分) (2017九上·上城期中) 已知二次函数,当自变量分别取、3、0时,对应的函数值分别:,,,则,,的大小关系正确的是().A .B .C .D .9. (2分)抛物线y=5(x-1)2的对称轴是()A . 直线x=-1B . 直线x=1C . y轴D . x轴10. (2分)如图,将△ABC沿着过AB中点D的直线折叠,使点A落在BC边上的A1处,称为第1次操作,折痕DE到BC的距离记为h1;还原纸片后,再将△ADE沿着过AD中点D1的直线折叠,使点A落在DE边上的A2处,称为第2次操作,折痕D1E1到BC的距离记为h2;按上述方法不断操作下去…,经过第2015次操作后得到的折痕D2014E2014到BC的距离记为h2015 ,到BC的距离记为h2015 .若h1=1,则h2015的值为()A .B .C . 1-D . 2-二、填空题 (共6题;共10分)11. (5分) (2018九上·永定期中) 若,则 =__.12. (1分) (2017九上·宁波期中) 如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于________.13. (1分)(2018·高安模拟) 如图,在一张长为7cm,宽为5cm的矩形纸片上,现要剪下一个腰长为4cm 的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为________.14. (1分)(2019·通州模拟) 如图所示,某地三条互相平行的街道a,b,c与两条公路相交,有六个路口分别为A,B,C,D,E,F.路段EF正在封闭施工.若已知路段AB约为270.1米,路段BC约为539.8米,路段DE 约为282.0米,则封闭施工的路段EF的长约为________米.15. (1分)已知关于x的一元二次方程ax2+bx+c=3的一个根为x1=2,且抛物线y=ax2+bx+c的对称轴是直线x=2,则抛物线的顶点坐标为________.16. (1分)反比例反数y=(x>0)的图象如图所示,点B在图象上,连接OB并延长到点A,使AB=OB,过点A作AC∥y轴交y=(x>0)的图象于点C,连接BC、OC,S△BOC=3,则k=________ .三、解答题 (共9题;共86分)17. (5分)已知抛物线的顶点为(﹣1,2),且过点(2,1),求该抛物线的函数解析式.18. (10分)如图,中,,AB的中垂线交边BC于点E,交AC的延长线于点F,连结AE.(1)求证:∽ ;(2)若,求AE的长.19. (10分) (2020九上·鼓楼期末) 如图,已知点A在反比例函数(x>0)的图像上,过点A作AC⊥x 轴,垂足是C,AC=OC.一次函数y=kx+b的图像经过点A,与y轴的正半轴交于点B.(1)求点A的坐标;(2)若四边形ABOC的面积是,求一次函数y=kx+b的表达式.20. (1分)如图(1)所示,E为矩形ABCD的边AD上一点动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2 .已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段),则下列结论:①0<t≤5时,y= ;②当t=6秒时,△ABE≌△PQB;③cos∠CBE= ;④当t= 秒时,△ABE∽△QBP;⑤线段NF所在直线的函数关系式为:y=﹣4x+96.其中正确的是________.(填序号)21. (20分)如图,已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.(1)求抛物线的表达式;(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;(3)若抛物线上有一动点M,使△ABM的面积等于△ABC的面积,求M点坐标.(4)抛物线的对称轴上是否存在动点Q,使得△BCQ为等腰三角形?若存在,求出点Q的坐标;若不存在,说明理由.22. (10分)(2018·菏泽) 如图,已知点D在反比例函数y= 的图象上,过点D作DB⊥y轴,垂足为B (0,3),直线y=kx+b经过点A(5,0),与y轴交于点C,且BD=OC,OC:OA=2:5.(1)求反比例函数y= 和一次函数y=kx+b的表达式;(2)直接写出关于x的不等式>kx+b的解集.23. (10分) (2016九上·市中区期末) 如图所示,在矩形ABCD中,E是BC上一点,AF⊥DE于点F.(1)求证:DF•CD=AF•CE.(2)若AF=4DF,CD=12,求CE的长.24. (10分)(2016·姜堰模拟) 已知抛物线y1=ax2﹣4ax+3(a≠0)与y轴交于点A,A、B两点关于对称轴对称,直线OB分别与抛物线的对称轴相交于点C.(1)直接写出对称轴及B点的坐标;(2)已知直线y2=bx﹣4b+3(b≠0)与抛物线的对称轴相交于点D.①判断直线y2=bx﹣4b+3(b≠0)是否经过点B,并说明理由;②若△BDC的面积为1,求b的值.25. (10分) (2017七上·大石桥期中) 某移动通讯公司开设了两种通讯业务:“全球通”使用者缴50元月租费,然后每通话1分钟再付话费0.4元;“快捷通”不缴月租费,每通话1分钟,付话费0.6元.若一个月内通话x分钟,两种方式的费用分别为y1元和y2元.(1)用含x的代数式分别表示y1和y2;(2)某人估计一个月内通话300分钟,应选择哪种移动通讯合算些?参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共86分)17-1、18-1、18-2、19-1、19-2、20-1、21-1、21-2、21-3、21-4、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、。
河南省濮阳市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)下列方程中,不是一元二次方程的是()A .B .C .D .2. (2分)(2017·淄博) 将二次函数y=x2+2x﹣1的图象沿x轴向右平移2个单位长度,得到的函数表达式是()A . y=(x+3)2﹣2B . y=(x+3)2+2C . y=(x﹣1)2+2D . y=(x﹣1)2﹣23. (2分)已知x=﹣1是关于x的方程x2﹣x+m=0的一个根,则m的值为()A . -2B . -1C . 0D . 24. (2分) (2019八上·获嘉月考) 如图,是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,这块三角形木板另外一个角∠C的度数为()A . 30°B . 40°C . 50°D . 60°5. (2分) (2017七下·南平期末) 如图,在等腰直角△ABC中,∠B=90°,将△ABC绕顶点A逆时针方向旋转60°后得到△AB’C’则∠BAC’ 等于()A . 60°B . 105°C . 120°D . 135°6. (2分)(2017·通州模拟) 如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为()A . 2cmB . cmC . 2 cmD .二、填空题 (共6题;共6分)7. (1分) (2018九上·灌南期末) 若非零实数a、b、c满足4a﹣2b+c=0,则关于x的一元二次方程ax2+bx+c=0一定有一个根为________.8. (1分)对于二次函数y=x2-2mx-3 ,有下列说法:①它的图象与x轴有两个公共点;②如果当x≤1时y随x的增大而减小,则m=1;③如果将它的图象向左平移3个单位后过原点,则m=-1;④如果当x=4时的函数值与x=2008时的函数值相等,则当x=2012时的函数值为-3 .其中正确的说法是________.(把你认为正确说法的序号都填上)9. (1分) (2017九上·官渡期末) 如图,在⊙O中,弦AB=6,圆心O到AB的距离OC=2,则⊙O的半径长为________.10. (1分)(2017·沂源模拟) 如图,三角板ABC的两直角边AC,BC的长分别是40cm和30cm,点G在斜边AB上,且BG=30cm,将这个三角板以G为中心按逆时针旋转90°,至△A′B′C′的位置,那么旋转后两个三角板重叠部分(四边形EFGD)的面积为________ cm2 .11. (1分) (2017九上·西湖期中) 我们规定:一个正边形(为整数)的最短对角线与最长对角线长度的比值叫做这个正边形的“特征值”,记为,那么 ________.12. (1分)(2017·东丽模拟) 如图,在平面直角坐标系中,二次函数y=ax2+c(a≠0)的图象过正方形ABOC 的三个顶点A,B,C,则ac的值是________.三、解答题 (共11题;共104分)13. (5分) (2019九上·中原月考) 用适当的方法解下列方程:(1)(2)14. (5分)已知二次函数的顶点坐标为(3,-1),且其图象经过点(4,1),求此二次函数的解析式.15. (10分)(2012·辽阳) 如图,方格纸中的每个小正方形的边长都是1.A、B、C三点都在格点上.(1)请你以格线所在直线为坐标轴建立平面直角坐标系,使A、B两点的坐标分别为A(﹣2,3),B(﹣3,1),并写出C点坐标;(2)连接AB、BC、CA得△ABC,将△ABC向右平移4个单位,画出平移后的△A1B1C1;(3)将△A1B1C1绕点B1按顺时针方向旋转90°,画出旋转后的△A2B1C2,并求出在旋转过程中线段A1B1所扫过的图形的面积.16. (5分)如图:⊙O的内接正方形ABCD,E为边CD上一点,且DE=CE,延长BE交⊙O于F,连结FC,若正方形边长为1,求弦FC的长.17. (11分)已知,如图,在⊙O中,AB=DE,BC=EF.求证:AC=DF.18. (10分)已知x1 , x2是一元二次方程(a﹣6)x2+2ax+a=0的两个实数根.(1)是否存在实数a,使﹣x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;(2)求使(x1+1)(x2+1)为正整数的实数a的整数值.19. (11分)如图,是某河上一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的和距离都是1m,拱桥的跨度为10m,桥洞与水面的最大距离是5m,桥洞两侧壁上各有一盏距离水面4m的景观灯,建立适当坐标系.(1)求抛物线的解析式.(2)求两盏景观灯之间的水平距离.20. (10分)(2011·嘉兴) 如图,△ABC中,以BC为直径的圆交AB于点D,∠ACD=∠ABC.(1)求证:CA是圆的切线;(2)若点E是BC上一点,已知BE=6,tan∠ABC= ,tan∠AEC= ,求圆的直径.21. (11分) (2017八下·西华期末) 我县黄泛区农场有A、B两个果园,分别收获水果380件,320件,现需把这些水果全部运往甲、乙两个销售点,每件运费如图所示。
河南省濮阳市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2017八下·顺义期末) 下列交通标志中是中心对称图形的是()A .B .C .D .2. (2分)一元二次方程的一次项系数、常数项分别是()。
A . -1,1B . -1,-1C . 1,1D . 1,-13. (2分) (2020八上·昌平期末) 已知点p (-2,3),则点P关于原点对称的点的坐标是()A . (-2,-3)B . (2,-3)C . (2, 3)D . (-2, 3)4. (2分)用配方法解方程时,原方程应变形为()A .B .C .D .5. (2分) (2018九上·绍兴月考) 将抛物线y=(x-1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为()A . y=(x-2)2B . y=(x-2)2+6C . y=x2+6D . y=x26. (2分) (2016九上·朝阳期中) 一元二次方程x2﹣16=0的根是()A . x=2B . x=4C . x1=2,x2=﹣2D . x1=4,x2=﹣47. (2分)关于x的方程x2+2kx+k﹣1=0的根的情况描述正确的是()A . k为任何实数,方程都没有实数根B . k为任何实数,方程都有两个不相等的实数拫C . k为任何实数,方程都有两个相等的实数根D . 根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种8. (2分) (2019九上·十堰期末) 如图,△ABC的顶点坐标分别为A(4,6)、B(5,2)、C(2,1),如果将△ABC绕点C按逆时针方向旋转90°,得到△ ,那么点A的对应点的坐标是().A . (-3,3)B . (3,-3)C . (-2,4)D . (1,4)9. (2分)如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=3,则BE=()A . 2B . 3C . 4D . 510. (2分)已知二次函数()的图象如图所示,有下列结论:⑴abc>0;⑵a+b+c>0;⑶a-b+c<0;其中正确的结论有()A . 0个B . 1个C . 2个D . 3个11. (2分) (2019九上·巴南期末) 某药品原价为100元,连续两次降价后,售价为64元,则的值为()A . 10B . 20C . 23D . 3612. (2分)(2017·岱岳模拟) 二次函数y=ax2+bx+c(a≠0)的图象如图,下列四个结论:①4a+c<0;②m(am+b)+b>a(m≠﹣1);③关于x的一元二次方程ax2+(b﹣1)x+c=0没有实数根;④ak4+bk2<a(k2+1)2+b(k2+1)(k为常数).其中正确结论的个数是()A . 4个B . 3个C . 2个D . 1个二、填空题 (共6题;共6分)13. (1分)方程3x2=5x+2的二次项系数为________,一次项系数为________.14. (1分) (2019九上·岑溪期中) 抛物线y=(x﹣1)2+3的顶点坐标为________.15. (1分) (2019九上·东莞期末) m是方程x2+x﹣1=0的根,则式子m2+m+2018的值为________.16. (1分)(2018·宣化模拟) 如图,把边长为1的正方形ABCD绕顶点A逆时针旋转30°到正方形AB′C′D′,则它们的公共部分的面积等于________17. (1分)已知二次函数y= x2的图象如图所示,线段AB∥x轴,交抛物线于A、B两点,且点A的横坐标为2,则AB的长度为________.18. (1分) (2017九下·盐都开学考) 二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论:①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正确的结论是________.(写出正确命题的序号)三、解答题 (共8题;共36分)19. (2分)小明同学在解一元二次方程时,他是这样做的:(1)小明的解法从第几步开始出现错误;计算此题的正确结果(2)用因式分解法解方程:x(2x-1)=3(2x-1)20. (11分)已知的三个顶点的坐标分别为A(-2,3)、B(-6,0)、C(-2,3)(1)请直接写出点A关于y轴对称的点A的坐标;(2)将绕坐标原点O逆时针旋转90°.画出图形,直接写出点B的对应点B的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.21. (7分)如图,在△ABC中,AB=AC=10,sinB= ,(1)求边BC的长;(2)将△ABC绕着点C旋转得△A′B′C,点A的对应点A′,点B的对应点B′.如果点A′在BC边上,那么点B和点B′之间的距离等于多少?22. (4分)已知点A(x1 , y1),B(x2 , y2)在二次函数y=ax2+1(a<0)的图象上,若x1>x2>0,则y1________y2.(填“>”“<”或“=”)23. (6分)某生物实验室需培育一群有益菌.现有60个活体样本,经过两轮培植后,总和达24 000个,其中每个有益菌每一次可分裂出若干个相同数目的有益菌.(1)每轮分裂中平均每个有益菌可分裂出多少个有益菌?(2)按照这样的分裂速度,经过三轮培植后有多少个有益菌?24. (2分)(2017·黔东南模拟) 如图,为了绿化小区,某物业公司要在形如五边形ABCDE的草坪上建一个矩形花坛PKDH.已知:PH∥AE,PK∥BC,DE=100米,EA=60米,BC=70米,CD=80米.以BC所在直线为x轴,AE所在直线为y 轴,建立平面直角坐标系,坐标原点为O.(1)求直线AB的解析式.(2)若设点P的横坐标为x,矩形PKDH的面积为S,求S关于x的函数关系式.25. (2分)如图,在四边形ABCD中,AB∥CD,BC⊥CD,垂足为点C,E是AD的中点,连接BE并延长交CD 的延长线于点F.(1)图中△EFD可以由△________绕着点________旋转________度后得到;(2)若AB=4,BC=5,CD=6,求四边形ABCD的面积.26. (2分)(2018·肇庆模拟) 在平面直角坐标系中,抛物线与x轴交于A、B(A点在B点的左侧)与y轴交于点C。
濮阳市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)下列轴对称图形中,对称轴条数最少的是().A . 等腰直角三角形B . 等边三角形C . 正方形D . 长方形2. (2分)(2017·岱岳模拟) 若a,b(a<b)是关于x的一元二次方程(x﹣m)(x﹣n)+1=0的两个根,且m<n,则m,n,b,a的大小关系是()A . a<b<m<nB . b<a<n<mC . a<m<n<bD . m<a<b<n3. (2分) (2016九上·港南期中) 抛物线y=2(x﹣3)2+1的顶点坐标是()A . (3,1)B . (4,﹣1)C . (﹣3,1)D . (﹣3,﹣1)4. (2分)已知m,n是方程x2-2x-1=0的两根,且(7m2-14m+a)(3n2-6n-7)=8,则a的值等于()A . -5B . 5C . -9D . 95. (2分)(2016·上海) 如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A . y=(x﹣1)2+2B . y=(x+1)2+2C . y=x2+1D . y=x2+36. (2分) (2016八上·江津期中) 如图,在△ABC中,AD是∠A的外角平分线,P是AD上异于A的任意一点,设PB=m,PC=n,AB=c,AC=b,则(m+n)与(b+c)的大小关系是()A . m+n>b+cB . m+n<b+cC . m+n=b+cD . 无法确定7. (2分)如图为二次函数y=ax2+bx+c的图象,在下列说法中:①ac<0;②方程ax2+bx+c=0的根是x1=-1,x2=3;③a+b+c>0;④当x>1时,y随着x的增大而增大.正确的说法有A . ①②③B . ①②④C . ②③④D . ①③④8. (2分)如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A . 45°B . 30°C . 60°D . 90°9. (2分)已知二次函数y=ax2+bx+c(a≠0)的图象如下图所示,有下列5个结论:①abc<0;②a-b+c>0;③2a+b=0;④b2-4ac>0⑤a+b+c>m(am+b)+c,(m>1的实数),其中正确的结论有()A . 1个B . 2个C . 3个D . 4个10. (2分)将点A(4,0)绕着原点O顺时针方向旋转30角到对应点A,则点A的坐标是()A .B .C .D .11. (2分)(2017·通州模拟) 为搞好环保,某公司准备修建一个长方体的污水处理池,池底矩形的周长为100m,则池底的最大面积是()A . 600 m2B . 625 m2C . 650 m2D . 675 m212. (2分)(2018·烟台) 如图,矩形ABCD中,AB=8cm,BC=6cm,点P从点A出发,以lcm/s的速度沿A→D→C 方向匀速运动,同时点Q从点A出发,以2cm/s的速度沿A→B→C方向匀速运动,当一个点到达点C时,另一个点也随之停止.设运动时间为t(s),△APQ的面积为S(cm2),下列能大致反映S与t之间函数关系的图象是()A .B .C .D .二、填空题: (共6题;共11分)13. (1分) (2017九上·三明期末) 已知二次函数y=2x2﹣6x+m的图象与x轴没有交点,则m的值为________.14. (3分)若抛物线y=a(x﹣h)2+k上有点A(2,1),且当x=﹣2时,y有最大值3,则a=________,h=________,k=________.15. (1分)已知点A(2a+3b,﹣2)和点B(8,3a+2b)关于原点对称,则a+b= ________16. (2分)如图,∠BAC=80°,∠B=40°,∠E=60°,若将图中的△ADE旋转(平移),则所得到的新三角形与△ABC________,与△ADE________17. (1分) (2017八上·丹东期末) 某人带7元钱去买笔和本(两种文具都买),每支笔2元,每个本1元,所有的购买方案共有________种.18. (3分)我们约定,若一个三角形(记为△A1)是由另一个三角形(记为△A)通过一次平移,或绕其任一边的中点旋转180°得到的,则称△A1是由△A复制的.以下的操作中每一个三角形只可以复制一次,复制过程可以一直进行下去.如图1,由△A复制出△A1 ,又由△A1复制出△A2 ,再由△A2复制出△A3 ,形成了一个大三角形,记作△B.以下各题中的复制均是由△A开始的,通过复制形成的多边形中的任意相邻两个小三角形(指与△A全等的三角形)之间既无缝隙也无重叠.(1)图1中标出的是一种可能的复制结果,小明发现△A∽△B,其相似比为________ .在图1的基础上继续复制下去得到△C,若△C的一条边上恰有11个小三角形(指有一条边在该边上的小三角形),则△C中含有________ 个小三角形;(2)若△A是正三角形,你认为通过复制能形成的正多边形是________ ;(3)请你用两次旋转和一次平移复制形成一个四边形,在图2的方框内画出草图,并仿照图1作出标记.三、解答题 (共8题;共74分)19. (10分)(2017·泰兴模拟) 如图,在平面直角坐标系中,直线AB与y轴相交于点A(0,﹣2),与反比例函数在第一象限内的图象相交于点B(m,2),△AOB的面积为4.(1)求该反比例函数和直线AB的函数关系式;(2)求sin∠OBA的值.20. (10分)(2017·泰州) 如图,正方形ABCD中,G为BC边上一点,BE⊥AG于E,DF⊥AG于F,连接DE.(1)求证:△ABE≌△DAF;(2)若AF=1,四边形ABED的面积为6,求EF的长.21. (5分)(2018·滨州模拟) 先化简后求值:,其中x= .22. (7分)(2017·天津模拟) 某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获得1250元,问第二周每个旅游纪念品的销售价格为多少元?解题方案:(1)设该商店第二周降低x元销售,用含x的代数式表示:①该商店第二周的销售利润为________元;②该商店对剩余纪念品清仓处理后的利润为________元.(2)按题意的要求完成解答.23. (10分)如图,抛物线y=ax2+4ax+4与x轴仅有一个公共点,经过点A的直线交该抛物线于点C,交y 轴于点B,且点B是线段AC的中点,(1)求该抛物线的解析式;(2)求直线AC的解析式.24. (7分) (2019七上·昌平期中) 阅读下列材料:1×2=(1×2×3-0×1×2),2×3=(2×3×4-1×2×3),3×4=(3×4×5-2×3×4),由以上三个等式相加,可得1×2+2×3+3×4=×3×4×5=20.读完以上材料,请你计算下列各题:(1)1×2+2×3+3×4+…+10×11(写出过程);(2)1×2+2×3+3×4+…+n×( n+1)=________;(3)1×2×3+2×3×4+3×4×5+…+7×8×9=________.25. (10分)(2018·云南) 某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发A,B两种商品,为科学决策,他们试生产A、B两种商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A商品,1千克B商品所需要的甲、乙两种原料及生产成本如下表所示.甲种原料(单位:千克)乙种原料(单位:千克)生产成本(单位:元)A商品32120B商品 2.5 3.5200设生产A种商品x千克,生产A、B两种商品共100千克的总成本为y元,根据上述信息,解答下列问题:(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(2) x取何值时,总成本y最小?26. (15分) (2019九上·浙江期中) 如图,抛物线与x轴相交于点A(-2,0)、B(4,0),与y轴相交于点C,连接BC,以线段BC为直径作⊙M,过点C作直线CE∥AB,与抛物线和⊙M分别交于点D,E。
2016-2017学年上学期九年级期中试卷数学一、选择题(本题有9小题,每小题3分,共27分) 1.一元二次方程240x -=的解为( ) A .12x =,22x =-B .2x =-C . 2x =D .12x =,20x =2.抛物线1)3(22+-=x y 的顶点坐标是( )A.(3, 1)B.(3,-1)C.(-3, 1)D.(-3, -1) 3.点M (2,-3)关于原点对称的点N 的坐标是: ( )A.(-2,-3)B.(-2, 3)C.(2, 3)D.(-3, 2) 4.用配方法解方程2420x x -+=,下列配方正确的是( ) A .2(2)6x -= B .2(2)2x +=C .2(2)2x -=-D .2(2)2x -=5.下列平面图形中,既是轴对称图形,又是中心对称图形的是 ( )6.抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( ) A. 23(1)2y x =++ B. 23(1)2y x =+- C. 23(1)2y x =-- D. 23(1)2y x =-+ 7.某品牌服装原价173元,连续两次降价x%后售价为127元,下面所列方程中正确的是( )A . 173(1+x%)2=127 B .173(1-2x%)=127 C . 127(1+x%)2=173 D .173(1-x%)2=1278.三角形两边长分别为2和4,第三边是方程x 2-6x+8=0的解,•则这个三角形的周长是( ) A .10 B .8或10 C .8 D .8和10 9.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出四个结论:①b 2> 4ac ;②2a+b=0;③a-b +c=0;④5a < b .其中正确结论有( )A .1个B .2个C .3个D .4个二、填空题(本题有6小题,每小题3分,共分18分)10、把方程3x (x +1)=2(x –2)+8化为一般形式 ,二次项系数,一次项系数,常数项。
河南省濮阳市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2019八下·高新期中) 在下列英文大写正体字母中,是中心对称图形的选项是()A . VB . WC . XD . Y2. (2分)方程3x2+x-6=0左边配成一个完全平方式后,所得的方程是()A .B .C .D .3. (2分) (2019九上·大同期中) 抛物线的顶点坐标为()A . (-2, 2)B . (2, -2)C . (2, 2)D . (-2, -2)4. (2分) (2016九上·徐闻期中) 若关于x的方程x2+x﹣a+ =0有两个不相等的实数根,则实数a的取值范围是()A . a>2B . a≥2C . a≤2D . a<25. (2分)一次函数y=ax+b(a≠0)、二次函数y=ax2+bx和反比例函数y=(k≠0)在同一直角坐标系中的图象如图所示,A点的坐标为(-2,0),则下列结论中,正确的是()A . b=2a+kB . a=b+kC . a>b>0D . a>k>06. (2分)抛物线y=ax2+bx+c的图象先向右平移3 个单位长度,再向下平移2 个单位长度,所得图象的解析式是y=x2﹣3x+5,则a+b+c=()A . 13B . 11C . 10D . 127. (2分)已知关于x的一元二次方程(k-2)2x2+(2k+1)x+1=0有两个不相等的实数根,则k的取值范围是()A . k>且k≠2B . k≥且k≠2C . k >且k≠2D . k≥且k≠28. (2分)已知二次函数y=x2+x+m,当x取任意实数时,都有y>0,则m的取值范围是()A . m≥B . m>C . m≤D . m<9. (2分)如图,若正方形EFGH由正方形ABCD绕某点旋转得到,则可以作为旋转中心的是()A . M或O或NB . E或O或CC . E或O或ND . M或O或C10. (2分) (2020七上·长兴期末) 若实数a,b,c在数轴上对应点的位置如图所示,则|a+b|+|a+c|-|b-c|可化简为()A . 0B . 2a+2bC . 2b-2cD . 2a+211. (2分) (2018九上·台州开学考) 某果园2014年水果产量为100吨,2016年水果产量为144吨,求该果园水果产量的年平均增长率。
河南省濮阳市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、精心选一选,一锤定音 (共10题;共20分)1. (2分) (2016九上·海淀期中) 里约奥运会后,受到奥运健儿的感召,群众参与体育运动的热度不减,全民健身再次成为了一种时尚,球场上也出现了更多年轻人的身影.请问下面四幅球类的平面图案中,是中心对称图形的是()A .B .C .D .2. (2分)抛物线y=﹣(x﹣3)2+2的顶点坐标是()A . (2,3)B . (﹣3,2)C . (3,2)D . (﹣3,﹣2)3. (2分)关于x的两个方程x2-x-2=0与有一个解相同,则a的值为()A . −2B . −3C . −4D . −54. (2分)用配方法解方程x2+8x+7=0,则配方正确的是()A . (x+4)2=9B . (x-4)2=9C . (x-8)2=16D . (x+8)2=575. (2分) (2016九上·武威期中) 已知关于x的一元二次方程(k﹣1)x2﹣ x+ =0有实数根,则k 的取值范围是()A . k为任意实数B . k≠1C . k≥0D . k≥0且k≠16. (2分)已知点A(m,1)与点B(5,n)关于原点对称,则m和n的值为()A . m=5,n=﹣1B . m=﹣5,n=1C . m=﹣1,n=﹣5D . m=﹣5,n=﹣17. (2分) (2016九上·怀柔期末) 将抛物线向上平移2个单位,则得到的抛物线表达式为()A .B .C .D .8. (2分)某商品经过两次连续降价,每件售价由原来的55元降到了35元.设平均每次降价的百分率为x,则下列方程中正确的是()A . 35(1+x)2=55B . 55 (1+x)2=35C . 35(1-x)2=55D . 55 (1-x)2=359. (2分)如图,在方格纸上建立的平面直角坐标系中,将△AB0绕点O按顺时针方向旋转90°,得到△A′B′O′,则点A′的坐标为()A . (3,1)B . (3,2)C . (2,3)D . (1,3)10. (2分)如图所示,二次函数y=ax2+bx+c(a≠0)的图象经过点(-1,2),且与x轴交点的横坐标分别为x1 , x2 ,其中-2<x1<-1,0<x2<1,下列结论(1)4a-2b+c<0;(2)2a-b<0;(3)a-3b>0;(4)b2+8a<4ac;其中正确的有()A . 1个B . 2个C . 3个D . 4个二、耐心填空。
2017学年河南省濮阳市开发区三中九年级(上)期中数学试卷(五四学制)一、选择题(本题有9小题,每小题3分,共27分)1.(3分)一元二次方程x2﹣4=0的解是()A.x1=2,x2=﹣2B.x=﹣2C.x=2D.x1=2,x2=02.(3分)抛物线y=2(x﹣3)2+1的顶点坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)3.(3分)点P(2,﹣3)关于原点对称的点的坐标是()A.(﹣2,﹣3)B.(2,3)C.(﹣2,3)D.(﹣3,2)4.(3分)用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2B.(x+2)2=2C.(x﹣2)2=﹣2D.(x﹣2)2=65.(3分)下列平面图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.(3分)抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是()A.y=3(x﹣1)2﹣2B.y=3(x+1)2﹣2C.y=3(x+1)2+2D.y=3(x﹣1)2+27.(3分)某品牌服装原价173元,连续两次降价x%后售价为127元,下面所列方程中正确的是()A.173(1+x%)2=127B.173(1﹣2x%)=127C.127(1+x%)2=173D.173(1﹣x%)2=127 8.(3分)三角形两边长分别为2和4,第三边是方程x2﹣6x+8=0的解,则这个三角形的周长是()A.10B.8或10C.8D.8和109.(3分)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③a﹣b+c=0;④5a<b.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(本题有6小题,每小题3分,共分18分)10.(3分)把方程3x(x+1)=2(x﹣2)+8化为一般形式,二次项系数,一次项系数,常数项.11.(3分)当a时,关于x的方程(3a+1)x2+5ax+4=0是一元二次方程.12.(3分)把抛物线y=ax2+bx+c的图象先向右平移3个单位,再向下平移2个单位,所得的图象的解析式是y=x2﹣3x+5,则a+b+c=.13.(3分)已知抛物线y=﹣x2﹣x+c的顶点为(m,3),则m=,c=.14.(3分)如果函数y=(k﹣3)+kx+1是二次函数,那么k的值一定是.15.(3分)如图所示,已知二次函数y=ax2+bx+c的图象经过(﹣1,0)和(0,﹣1)两点,则化简代数式+=.三、解答题:(每题4分,共16分)16.(16分)(1)﹣3x2+5x+2=0(公式法)(2)x2+6x﹣4=0(配方法)(3)(m﹣1)(m+3)=12(4)x2+x﹣132=0.17.(8分)已知抛物线的顶点为(﹣1,﹣3),与y轴的交点为(0,﹣5),求抛物线的解析式.18.(10分)已知:抛物线的解析式为y=x2﹣(2m﹣1)x+m2﹣m,(1)求证:此抛物线与x轴必有两个不同的交点;(2)若此抛物线与直线y=x﹣3m+4的一个交点在y轴上,求m的值.19.(10分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出C1的坐标;(2)以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标.。
濮阳市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()A .B .C .D .2. (2分)用配方法解方程x2+8x+9=0,变形后的结果正确的是()A . (x+4)2=﹣7B . (x+4)2=﹣9C . (x+4)2=7D . (x+4)2=253. (2分) (2016九上·遵义期中) 抛物线y=﹣2(x+3)2﹣4的顶点坐标是()A . (﹣4,3)B . (﹣4,﹣3)C . (3,﹣4)D . (﹣3,﹣4)4. (2分) (2016九上·遵义期中) 平面直角坐标系内的点A(﹣2,3)关于原点对称的点的坐标是()A . (3,2)B . (2,﹣3)C . (2,3)D . (﹣2,﹣3)5. (2分) (2016九上·遵义期中) 把抛物线y=3x2向左平移2个单位,再向上平移1个单位,所得的抛物线的解析式是()A . y=3(x﹣2)2+1B . y=3(x﹣2)2﹣1C . y=3(x+2)2+1D . y=3(x+2)2﹣16. (2分) (2016九上·遵义期中) 函数y=2x2﹣3x+4经过的象限是()A . 一,二,三象限B . 一,二象限C . 三,四象限D . 一,二,四象限7. (2分) (2016九上·三亚期中) 一元二次方程x2﹣2x+2=0的根的情况是()A . 有两个不相等的正根B . 有两个不相等的负根C . 没有实数根D . 有两个相等的实数根8. (2分) (2017九上·桂林期中) 近年来某市加大了对教育经费的投入,2013年投入2500万元,2015年将投入3600万元,该市投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A . 2500x2=3600B . 2500(1+x)2=3600C . 2500(1+x%)2=3600D . 2500(1+x)+2500(1+x)2=36009. (2分) (2016九上·柳江期中) 如图,△O AB绕点O逆时针旋转80°到△OCD的位置,已知∠AOB=45°,则∠AOD等于()A . 55°B . 45°C . 40°D . 35°10. (2分) (2016九上·遵义期中) 已知抛物线y=ax2+bx+c的图象如图所示,则一元二次方程ax2+bx+c=0()A . 没有实根B . 只有一个实根C . 有两个实根,且一根为正,一根为负D . 有两个实根,且一根小于1,一根大于211. (2分) (2017九上·桂林期中) 设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+1上的三点,则y1 , y2 , y3的大小关系为()A . y1>y2>y3B . y1>y3>y2C . y3>y2>y1D . y3>y1>y212. (2分) (2016九上·云阳期中) 已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc<0;②3a+c>0;③4a+2b+c>0;④2a+b=0;⑤b2>4ac其中正确的结论的有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共6分)13. (1分)(2019·兴县模拟) 已知两点都在反比例函数的图象上,且,则 ________ (填“>”或“<”)14. (1分) (2016九上·遵义期中) 点A(a﹣1,﹣4)与点B(﹣3,1﹣b)关于原点对称,则a+b的值为________15. (1分) (2016九上·遵义期中) 抛物线y=x2﹣2x﹣3与x轴的交点坐标为________16. (1分) (2016九上·平凉期中) 已知二次函数y=kx2﹣7x﹣7的图象和x轴有交点,则k的取值范围________.17. (1分) (2016九上·遵义期中) 已知x1 , x2是一元二次方程x2﹣2x﹣1=0的两根,则=________.18. (1分) (2016九上·遵义期中) 某商品进货单价为30元,按40元一个销售能卖40个;若销售单价每涨1元,则销量减少1个.为了获得最大利润,此商品的最佳售价应为________元.三、解答题 (共9题;共82分)19. (5分) (2018八上·婺城期末) 解不等式组20. (5分) (2016九上·遵义期中) 已知关于的一元二次方程x2﹣6x+2m﹣1=0有两个相等的实数根,求m 的值及方程的根.21. (5分) (2016九上·遵义期中) 已知二次函数的顶点坐标为(1,4),且其图象经过点(﹣2,﹣5),求此二次函数的解析式.22. (10分) (2016九上·遵义期中) 用长为20cm的铁丝,折成一个矩形,设它的一边长为xcm,面积为ycm2 .(1)求出y与x的函数关系式.(2)当边长x为多少时,矩形的面积最大,最大面积是多少?23. (15分) (2016九上·遵义期中) 抛物线y=﹣2x2+8x﹣6.(1)求抛物线的顶点坐标和对称轴;(2) x取何值时,y随x的增大而减小?(3) x取何值时,y=0;x取何值时,y>0;x取何值时,y<0.24. (10分) (2016九上·遵义期中) 宜春三中学校团委爱心社组织学生为高三学生进行献爱心活动,学生踊跃捐款.初三年级第一天收到捐款1000元,第三天收到1210元.(1)求这两天收到捐款的平均增长率.(2)按照(1)中的增长速度,第四天初三年级能收到多少捐款?25. (10分) (2016九上·遵义期中) 如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,(1)画出△ABC关于x轴对称的△A1B1C1 .(2)画出△ABC绕原点O旋转180°后的△A2B2C2 .26. (12分) (2016九上·遵义期中) 如图,在△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O逆时针方向旋转90°得到△OA1B1 .(1)线段A1B1的长是________,∠AOA1的度数是________;(2)连结AA1 ,求证:四边形OAA1B1是平行四边形;(3)求四边形OAA1B1的面积.27. (10分) (2016九上·遵义期中) 如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).(1)求抛物线的解析式;(2)若点D为该抛物线上的一个动点,且在直线AC上方,当以A,C,D为顶点的三角形面积最大时,求点D 的坐标及此时三角形的面积.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共9题;共82分)19-1、20-1、21-1、22-1、22-2、23-1、23-2、23-3、24-1、24-2、25-1、25-2、26-1、26-2、26-3、27-1、27-2、。
河南省濮阳市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共8分)1. (1分) (2019九上·昭阳开学考) 一元二次方程3x2-4x-7=0的二次项系数,一次项系数,常数项分别是()A . 3,-4,-7B . 3,-4,7C . 3,4,7D . 3,4,-72. (1分)(2018·濮阳模拟) 若关于x的方程有两个不相等的实数根,则满足条件的最小整数a的值是()A . -1B . 0C . 1D . 23. (1分) (2017九上·吴兴期中) 已知⊙O的半径为4,若点P是⊙O所在平面内的一点,且OP=5,则点P 与⊙O的位置关系为()A . 点P在⊙O上B . 点P在⊙O内C . 点P在⊙O外D . 以上都不对4. (1分)已知:如图,⊙O是△ABC的内切圆,下列说法错误的是()A . 点O在△ABC的三边垂直平分线上B . 点O在△ABC的三个内角平分线上C . 如果△ABC的面积为S,三边长为a,b,c,⊙O的半径为r,那么r=D . 如果△ABC的三边长分别为5,7,8,那么以A、B、C为端点三条切线长分别为5,3,25. (1分) (2019八下·方城期末) 某跳远队准备从甲、乙、丙、丁4名运动员中选取成绩好且稳定的一名选手参赛,经测试,他们的成绩如下表,综合分析应选()成绩甲乙丙丁平均分(单位:米)6.06.15.54.6方差0.80.20.30.1A . 甲B . 乙C . 丙D . 丁6. (1分)(2017·长宁模拟) 在平面直角坐标系中,抛物线y=﹣(x﹣1)2+2的顶点坐标是()A . (﹣1,2)B . (1,2)C . (2,﹣1)D . (2,1)7. (1分)(2020·平昌模拟) 如图,点I和O分别是△ABC的内心和外心,则∠AIB和∠AOB的关系为()A . ∠AIB=∠AOBB . ∠AIB≠∠AOBC . 4∠AIB﹣∠AOB=360°D . 2∠AOB﹣∠AIB=180°8. (1分) (2020九上·谢家集月考) 在间一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b=0的图象可能是()A .B .C .D .二、填空题 (共8题;共8分)9. (1分) (2019八下·鄂城期末) 一组数据2,3,4,5,3的众数为________.10. (1分) (2018九上·上杭期中) 已知是二次函数,则 ________.11. (1分)小芳同学有两根长度为 5cm、10cm 的木棒,她想钉一个三角形相框,桌上有五根木棒供她选择(如图所示),从中任选一根,能钉成三角形相框的概率是________.12. (1分) (2020七下·孝义期末) 如图,三角形中,,将三角形沿方向平移得到三角形与交于点D,,则图中四边形的面积为________.13. (1分)(2019·南平模拟) 已知扇形的弧长为4π,半径为8,则此扇形的面积为________.14. (1分) (2019九上·红安月考) 若抛物线y=x2-2x+3不动,将平面直角坐标系xOy先沿水平方向向右平移1个单位长度,再沿铅直方向向上平移3个单位长度,则原抛物线图象的解析式应变为________.15. (1分) (2016九上·牡丹江期中) 把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16厘米,则球的半径为________厘米.16. (1分)圆内接四边形ABCD,两组对边的延长线分别相交于点E、F,且∠E=40°,∠F=60°,求∠A=________°.三、解答题 (共11题;共27分)17. (2分) (2017九上·海淀月考) 用配方法解一元二次方程:.18. (3分)(2020·柯桥模拟) 某校组织全校1200名学生进行经典诗词诵读活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取40名学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表如下:一周诗词诵背数量3首4首5首6首7首8首人数13561015请根据调查的信息分析:(1)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数.(2)选择适当的统计量,至少从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.19. (2分) (2020九上·英德期末) 在一个不透明的口袋中装有3张相同的纸牌,它们分别标有数字3,﹣1,2,随机摸出一张纸牌不放回,记录其标有的数字为x ,再随机摸取一张纸牌,记录其标有的数字为y ,这样就确定点P的一个坐标为(x , y)(1)用列表或画树状图的方法写出点P的所有可能坐标;(2)写出点P落在双曲线上的概率.20. (2分)(2018·绍兴模拟) 关于x的一元二次方程x2﹣(k+3)x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求k的取值范围.21. (1分)如图,AB为⊙O的直径,EF切⊙O于点D,过点B作BH⊥EF于点H,交⊙O于点C,连接BD.(1)求证:BD平分∠ABH;(2)如果AB=12,BC=8,求圆心O到BC的距离.22. (3分) (2018九上·瑞安月考) 某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围.(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?23. (2分)(2018·建湖模拟) 已知:如图,在△ABC 中,∠C=90°,∠BAC 的平分线 AD 交 BC于点 D,过点 D 作DE⊥AD 交 AB 于点 E,以 AE 为直径作⊙O.(1)求证:BC 是⊙O 的切线;(2)若 AC=3,BC=4,求 BE 的长.(3)在(2)的条件中,求cos∠EAD 的值.24. (4分) (2018九上·灵石期末)(1)【探索发现】如图①,是一张直角三角形纸片,∠B=90°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为________.(2)【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为________.(用含a,h的代数式表示)(3)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B 为所剪出矩形的内角),求该矩形的面积.(4)【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC= ,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,求该矩形的面积.25. (2分)(2018·洪泽模拟) 如图,AB为⊙O的直径,AB的长是4,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.(1)求证:AC平分∠DAB;(2)若cos∠DAC= ,求弧BC的长.26. (3分)(2020·吴兴模拟) 如图,AB是⊙O的直径,BC⊥AB,弦AD∥OC。
2017-2018学年河南省濮阳市濮阳县九年级(上)期中数学试卷(B卷)一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填在题后括号内.1.(3分)下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.2.(3分)已知关于x的方程x2+mx﹣6=0的一个根为2,则m的值及另一个根是()A.1,3 B.﹣1,3 C.1,﹣3 D.﹣1,﹣33.(3分)如图,⊙O是△ABC的外接圆,∠OBC=42°,则∠A的度数是()A.42°B.48°C.52°D.58°4.(3分)若二次函数y=x2+bx+5配方后为y=(x﹣2)2+k,则b、k的值分别为()A.0,5 B.0,1 C.﹣4,5 D.﹣4,15.(3分)在平面直角坐标系中,点A(﹣1,5),将点A向右平移2个单位、再向下平移3个单位得到点A1;再将线段OA1绕原点O顺时针旋转90°得到OA2.则A2的坐标为()A.(﹣1,2)B.(2,1) C.(2,﹣1)D.(3,﹣1)6.(3分)一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A.20 B.24 C.28 D.307.(3分)小明家凉台呈圆弧形,凉台的宽度AB为8m,凉台的最外端C点离AB的距离CD为2m,则凉台所在圆的半径为()A.4m B.5m C.6m D.7m8.(3分)如图,在平面直角坐标系中,△ABC绕某一点P旋转一定的角度得到△A′B′C′,根据图形变换前后的关系可得点P的坐标为()A.(0,1) B.(1,﹣1)C.(0,﹣1)D.(1,0)9.(3分)如图,矩形ABCD中,AB=4,BC=3,动点E从B点出发,沿B﹣C﹣D ﹣A运动至A点停止,设运动的路程为x,△ABE的面积为y,则y与x的函数关系用图象表示正确的是()A.B.C.D.10.(3分)如图,已知△ABC中,AC=BC,∠ACB=90°,直角∠DFE的顶点F是AB中点,两边FD,FE分别交AC,BC于点D,E两点,当∠DFE在△ABC内绕顶点F旋转时(点D不与A,C重合),给出以下个结论:①CD=BE ②四边形CDFE=S△ABC,上述结论中不可能是正方形③△DFE是等腰直角三角形④S四边形CDFE始终正确的有()A.①②③B.②③④C.①③④D.①②④二、填空题(每小题3分,共15分)11.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是.12.(3分)在一个不透明的布袋中有除颜色外其它都相同的红、黄、蓝球共200个,某位同学经过多次摸球试验后发现,其中摸到红色球和蓝色球的频率稳定在35%和55%,则口袋中可能有黄球个.13.(3分)如图,某小区规划在一个长为16m、宽为9m的矩形场地ABCD上修建三条同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草.若草坪部分的总面积为112m2,求小路的宽度.若设小路的宽度为xm,则x满足的方程为.14.(3分)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的周长是.15.(3分)如图,以AD为直径的半圆O经过Rt△ABC的斜边AB的两个端点,交直角边AC于点E.B、E是半圆弧的三等分点,弧BE的长为,则图中阴影部分的面积为.三、解答题(本大题共8小题,满分75分)16.(5分)解方程:2x2﹣5x+3=0.17.(9分)2015年榕城区从中随机调查了5所初中九年级学生的数学考试成绩,学生的考试成绩情况如表(数学考试满分120分)(1)这5所初中九年级学生的总人数有多少人?(2)统计时,老师漏填了表中空白处的数据,请你帮老师填上;(3)从这5所初中九年级学生中随机抽取一人,恰好是108分以上(不包括108分)的概率是多少?18.(9分)关于x的一元二次方程x2﹣3x﹣k=0有两个不相等的实数根.(1)求k的取值范围;(2)请选择一个整数k值,使方程的两根同号,并求出方程的根.19.(9分)如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上.将△ABC绕点A顺时针旋转90o得到△AB1C1.(1)在网格中画出△AB1C1;(2)如果以AC所在直线为x轴,BC所在直线为y轴建立平面直角坐标系,请你写出C1、B1的坐标;(3)计算点B旋转到B1的过程中所经过的路径长.(结果保留π)20.(10分)已知抛物线y=ax2+bx经过点A(﹣3,3)和点P(m,0),且m≠0.(1)如图,若该抛物线的对称轴经过点A,求此时y的最小值和m的值.(2)若m=﹣2时,设此时抛物线的顶点为B,求四边形OAPB的面积.21.(10分)如图,在△ABC中,AB=AC,以AB为直径的O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)如果AB=5,BC=6,求DE的长.22.(10分)某电子科技公司开发一种新产品,公司对经营的盈亏情况每月最后一天结算1次.在1~12月份中,公司前x个月累计获得的总利润y(万元)与销售时间x(月)之间满足二次函数关系式y=a(x﹣h)2+k,二次函数y=a(x﹣h)2+k的一部分图象如图所示,点A为抛物线的顶点,且点A、B、C的横坐标分别为4、10、12,点A、B的纵坐标分别为﹣16、20.(1)试确定函数关系式y=a(x﹣h)2+k;(2)分别求出前9个月公司累计获得的利润以及10月份一个月内所获得的利润;(3)在前12个月中,哪个月该公司一个月内所获得的利润最多?最多利润是多少万元?23.(13分)如图,是将抛物线y=﹣x2平移后得到的抛物线,其对称轴为x=1,与x轴的一个交点为A(﹣1,0),另一个交点为B,与y轴的交点为C.(1)求抛物线的函数表达式;(2)若点N为抛物线上一点,且BC⊥NC,求点N的坐标;(3)点P是抛物线上一点,点Q是一次函数y=x+的图象上一点,若四边形OAPQ为平行四边形,这样的点P、Q是否存在?若存在,分别求出点P、Q的坐标;若不存在,说明理由.2017-2018学年河南省濮阳市濮阳县九年级(上)期中数学试卷(B卷)参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填在题后括号内.1.(3分)下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.【解答】解:A图形不是中心对称图形;B图形是中心对称图形;C图形不是中心对称图形;D图形不是中心对称图形,故选:B.2.(3分)已知关于x的方程x2+mx﹣6=0的一个根为2,则m的值及另一个根是()A.1,3 B.﹣1,3 C.1,﹣3 D.﹣1,﹣3【解答】解:将x=2代入方程中,得:4+2m﹣6=0,解得:m=1.设方程的另一个根为n,由根与系数的关系,得:2n=﹣6,解得:n=﹣3.故选:C.3.(3分)如图,⊙O是△ABC的外接圆,∠OBC=42°,则∠A的度数是()A.42°B.48°C.52°D.58°【解答】解:连接OC,∵OB=OC,∠OBC=42°,∴∠OCB=∠OBC=42°,∴∠BOC=180°﹣∠OBC﹣∠OCB=96°,∴∠A=∠BOC=48°.故选:B.4.(3分)若二次函数y=x2+bx+5配方后为y=(x﹣2)2+k,则b、k的值分别为()A.0,5 B.0,1 C.﹣4,5 D.﹣4,1【解答】解:∵y=(x﹣2)2+k=x2﹣4x+4+k=x2﹣4x+(4+k),又∵y=x2+bx+5,∴x2﹣4x+(4+k)=x2+bx+5,∴b=﹣4,k=1.故选:D.5.(3分)在平面直角坐标系中,点A(﹣1,5),将点A向右平移2个单位、再向下平移3个单位得到点A1;再将线段OA1绕原点O顺时针旋转90°得到OA2.则A2的坐标为()A.(﹣1,2)B.(2,1) C.(2,﹣1)D.(3,﹣1)【解答】解:如图所示,点A向右平移两个单位再向下平移3个单位得A1(1,2),再将线段OA1绕原点O顺时针旋转90°得到OA2,A2坐标(2,﹣1).故选:C.6.(3分)一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A.20 B.24 C.28 D.30【解答】解:根据题意得=30%,解得n=30,所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.故选:D.7.(3分)小明家凉台呈圆弧形,凉台的宽度AB为8m,凉台的最外端C点离AB的距离CD为2m,则凉台所在圆的半径为()A.4m B.5m C.6m D.7m【解答】解:设圆心为O点,连接OA,OD,根据题意得:OC⊥AB,∴D为AB的中点,即AD=BD=AB=4(m),设圆半径为r,则有OD=OC﹣CD=(r﹣2)m,在Rt△AOD中,OA2=AD2+OD2,即r2=42+(r﹣2)2,解得:r=5,则凉台所在圆的半径为5m.故选:B.8.(3分)如图,在平面直角坐标系中,△ABC绕某一点P旋转一定的角度得到△A′B′C′,根据图形变换前后的关系可得点P的坐标为()A.(0,1) B.(1,﹣1)C.(0,﹣1)D.(1,0)【解答】解:由图形可知,对应点的连线CC′、AA′的垂直平分线的交点是点(1,﹣1),根据旋转变换的性质,点(1,﹣1)即为旋转中心.故旋转中心坐标是P(1,﹣1).故选:B.9.(3分)如图,矩形ABCD中,AB=4,BC=3,动点E从B点出发,沿B﹣C﹣D ﹣A运动至A点停止,设运动的路程为x,△ABE的面积为y,则y与x的函数关系用图象表示正确的是()A.B.C.D.【解答】解:当点E在BC上运动时,三角形的面积不断增大,最大面积===6;当点E在DC上运动时,三角形的面积为定值6.当点E在AD上运动时三角形的面积不断减小,当点E与点A重合时,面积为0.故选:B.10.(3分)如图,已知△ABC中,AC=BC,∠ACB=90°,直角∠DFE的顶点F是AB中点,两边FD,FE分别交AC,BC于点D,E两点,当∠DFE在△ABC内绕顶点F旋转时(点D不与A,C重合),给出以下个结论:①CD=BE ②四边形CDFE 不可能是正方形③△DFE是等腰直角三角形④S=S△ABC,上述结论中四边形CDFE始终正确的有()A.①②③B.②③④C.①③④D.①②④【解答】解:连接CF,∵AC=BC,∠ACB=90°,点F是AB中点,∴∠A=∠B=45°,CF⊥AB,∠ACF=∠ACB=45°,CF=AF=BF=AB,∴∠DCF=∠B=45°,∵∠DFE=90°,∴∠DFC+∠CFE=∠CFE+∠EFB=90°,∴∠DFC=∠EFB,∴△DCF≌△EBF,∴CD=BE,故①正确;∴DF=EF,∴△DFE是等腰直角三角形,故③正确;∴S=S△BEF,△DCF=S△CDF+S△CEF=S△EBF+S△CEF=S△CBF=S△ABC,故④正确.∴S四边形CDFE若EF⊥BC时,则可得:四边形CDFE是矩形,∵DF=EF,∴四边形CDFE是正方形,故②错误.∴结论中始终正确的有①③④.故选:C.二、填空题(每小题3分,共15分)11.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是k≤5且k≠1.【解答】解:∵一元二次方程(k﹣1)x2+4x+1=0有实数根,∴k﹣1≠0,且b2﹣4ac=16﹣4(k﹣1)≥0,解得:k≤5且k≠1,故答案为:k≤5且k≠1.12.(3分)在一个不透明的布袋中有除颜色外其它都相同的红、黄、蓝球共200个,某位同学经过多次摸球试验后发现,其中摸到红色球和蓝色球的频率稳定在35%和55%,则口袋中可能有黄球20个.【解答】解:∵某位同学经过多次摸球试验后发现,其中摸到红色球和蓝色球的频率稳定在35%和55%,∴摸到黄球的概率=1﹣35%﹣55%=10%,∴口袋中黄球的个数=200×10%=20,即口袋中可能有黄球20个.故答案为20.13.(3分)如图,某小区规划在一个长为16m、宽为9m的矩形场地ABCD上修建三条同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草.若草坪部分的总面积为112m2,求小路的宽度.若设小路的宽度为xm,则x满足的方程为(16﹣2x)(9﹣x)=112.【解答】解:设小路的宽度为xm,那么草坪的总长度和总宽度应该为16﹣2x,9﹣x;根据题意即可得出方程为:(16﹣2x)(9﹣x)=112,故答案为:(16﹣2x)(9﹣x)=112.14.(3分)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的周长是2.【解答】解:连接AC1,∵四边形AB1C1D1是正方形,∴∠C1AB1=×90°=45°=∠AC1B1,∵边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,∴∠B1AB=45°,∴∠DAB1=90°﹣45°=45°,∴AC1过D点,即A、D、C1三点共线,∵正方形ABCD的边长是1,∴四边形AB1C1D1的边长是1,在Rt△C1D1A中,由勾股定理得:AC1==,则DC1=﹣1,∵∠AC1B1=45°,∠C1DO=90°,∴∠C1OD=45°=∠DC1O,∴DC1=OD=﹣1,同理求出A、B1、C三点共线,求出OB1=﹣1,∴四边形AB1OD的周长是AD+OD+OB1+AB1=1+﹣1+﹣1+1=2,故答案为2.15.(3分)如图,以AD为直径的半圆O经过Rt△ABC的斜边AB的两个端点,交直角边AC于点E.B、E是半圆弧的三等分点,弧BE的长为,则图中阴影部分的面积为.【解答】解:连接BD,BE,BO,EO,∵B,E是半圆弧的三等分点,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAC=∠EBA=30°,∴BE∥AD,∵的长为,∴=,解得:R=2,∴AB=ADcos30°=2,∴BC=AB=,∴AC===3,∴S△ABC=×BC×AC=××3=,∵△BOE和△ABE同底等高,∴△BOE和△ABE面积相等,∴图中阴影部分的面积为:S△ABC ﹣S扇形BOE=﹣=﹣.故答案为:.三、解答题(本大题共8小题,满分75分)16.(5分)解方程:2x2﹣5x+3=0.【解答】解:方程2x2﹣5x+3=0,因式分解得:(2x﹣3)(x﹣1)=0,可得:2x﹣3=0或x﹣1=0,解得:x1=,x2=1.17.(9分)2015年榕城区从中随机调查了5所初中九年级学生的数学考试成绩,学生的考试成绩情况如表(数学考试满分120分)(1)这5所初中九年级学生的总人数有多少人?(2)统计时,老师漏填了表中空白处的数据,请你帮老师填上;(3)从这5所初中九年级学生中随机抽取一人,恰好是108分以上(不包括108分)的概率是多少?【解答】解:(1)这5所初中九年级学生的总人数=368÷0.2=1840人;(2)∵81﹣﹣﹣﹣95分的频率为1﹣(0.2+0.25+0.2)=0.35,则81﹣﹣﹣﹣95分的频数为1840×0.35=644人,∴109﹣﹣﹣﹣119分的频数为1840﹣(368+460+644+184+54)=130,故答案为:644,0.35,130;③随机抽取一人,恰好是获得108分以上的概率==.18.(9分)关于x的一元二次方程x2﹣3x﹣k=0有两个不相等的实数根.(1)求k的取值范围;(2)请选择一个整数k值,使方程的两根同号,并求出方程的根.【解答】解:(1)∵方程x2﹣3x﹣k=0有两个不相等的实数根,∴△=(﹣3)2+4k=9+4k>0,解得:k>﹣.(2)∵方程的两根同号,∴﹣k>0,∴k=﹣2或﹣1.当k=﹣2时,原方程为x2﹣3x+2=(x﹣1)(x﹣2)=0,解得:x1=1,x2=2.19.(9分)如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上.将△ABC绕点A顺时针旋转90o得到△AB1C1.(1)在网格中画出△AB1C1;(2)如果以AC所在直线为x轴,BC所在直线为y轴建立平面直角坐标系,请你写出C1、B1的坐标;(3)计算点B旋转到B1的过程中所经过的路径长.(结果保留π)【解答】解:(1)如图,△AB1C1即为所求;(2)由图可知,C1(﹣4,﹣4),B1(﹣1,﹣4);(3)∵AB==5,∴点B旋转到B1的过程中所经过的路径长==.20.(10分)已知抛物线y=ax2+bx经过点A(﹣3,3)和点P(m,0),且m≠0.(1)如图,若该抛物线的对称轴经过点A,求此时y的最小值和m的值.(2)若m=﹣2时,设此时抛物线的顶点为B,求四边形OAPB的面积.【解答】解:(1)根据题意得:A是抛物线的顶点,∴此时y的最小值﹣3,对称轴是直线x=﹣3,∴m=﹣6.(2)将(﹣2,0)、(﹣3,﹣3)代入y=ax2+bx中,得,解得.∴抛物线解析式为y=﹣x2﹣2x=﹣(x+1)2+1,∴抛物线顶点B(﹣1,1).=S△OPB+S△OPA=×2×1+×2×3=4.∴S四边形OAPB∴四边形OAPB的面积是4.21.(10分)如图,在△ABC中,AB=AC,以AB为直径的O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)如果AB=5,BC=6,求DE的长.【解答】解:(1)相切,理由如下:连接AD,OD,∵AB为⊙O的直径,∴∠ADB=90°.∴AD⊥BC.∵AB=AC,∴CD=BD=BC.∵OA=OB,∴OD∥AC.∴∠ODE=∠CED.∵DE⊥AC,∴∠ODE=∠CED=90°.∴OD⊥DE.∴DE与⊙O相切.(2)由(1)知∠ADC=90°,∴在Rt△ADC中,由勾股定理得AD==4.∵S ACD=AD•CD=AC•DE,∴×4×3=×5DE.∴DE=.22.(10分)某电子科技公司开发一种新产品,公司对经营的盈亏情况每月最后一天结算1次.在1~12月份中,公司前x个月累计获得的总利润y(万元)与销售时间x(月)之间满足二次函数关系式y=a(x﹣h)2+k,二次函数y=a(x﹣h)2+k的一部分图象如图所示,点A为抛物线的顶点,且点A、B、C的横坐标分别为4、10、12,点A、B的纵坐标分别为﹣16、20.(1)试确定函数关系式y=a(x﹣h)2+k;(2)分别求出前9个月公司累计获得的利润以及10月份一个月内所获得的利润;(3)在前12个月中,哪个月该公司一个月内所获得的利润最多?最多利润是多少万元?【解答】解:(1)根据题意可设:y=a(x﹣4)2﹣16,当x=10时,y=20,所以a(10﹣4)2﹣16=20,解得a=1,所求函数关系式为:y=(x﹣4)2﹣16.﹣﹣﹣﹣﹣﹣﹣(4分)(2)当x=9时,y=(9﹣4)2﹣16=9,所以前9个月公司累计获得的利润为9万元,又由题意可知,当x=10时,y=20,而20﹣9=11,所以10月份一个月内所获得的利润11万元.﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(3)设在前12个月中,第n个月该公司一个月内所获得的利润为s(万元)则有:s=(n﹣4)2﹣16﹣[(n﹣1﹣4)2﹣16]=2n﹣9,因为s是关于n的一次函数,且2>0,s随着n的增大而增大,而n的最大值为12,所以当n=12时,s=15,所以第12月份该公司一个月内所获得的利润最多,最多利润是15万元.﹣﹣(4分)23.(13分)如图,是将抛物线y=﹣x2平移后得到的抛物线,其对称轴为x=1,与x轴的一个交点为A(﹣1,0),另一个交点为B,与y轴的交点为C.(1)求抛物线的函数表达式;(2)若点N为抛物线上一点,且BC⊥NC,求点N的坐标;(3)点P是抛物线上一点,点Q是一次函数y=x+的图象上一点,若四边形OAPQ为平行四边形,这样的点P、Q是否存在?若存在,分别求出点P、Q的坐标;若不存在,说明理由.【解答】解:(1)设抛物线的解析式是y=﹣(x﹣1)2+k.把(﹣1,0)代入得0=﹣(﹣1﹣1)2+k,解得k=4,则抛物线的解析式是y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;(2)在y=﹣x2+2x+3中令x=0,则y=3,即C的坐标是(0,3),OC=3.∵B的坐标是(3,0),∴OB=3,∴OC=OB,则△OBC是等腰直角三角形.∴∠OCB=45°,过点N作NH⊥y轴,垂足是H.∵∠NCB=90°,∴∠NCH=45°,∴NH=CH,∴HO=OC+CH=3+CH=3+NH,设点N坐标是(a,﹣a2+2a+3).∴a+3=﹣a2+2a+3,解得a=0(舍去)或a=1,∴N的坐标是(1,4);(3)∵四边形OAPQ是平行四边形,则PQ=OA=1,且PQ∥OA,设P(t,﹣t2+2t+3),代入y=x+,则﹣t2+2t+3=(t+1)+,整理,得2t2﹣t=0,解得t=0或.∴﹣t2+2t+3的值为3或.∴P、Q的坐标是(0,3),(1,3)或(,)、(,).综上所述,P、Q的坐标是(0,3),(1,3)或(,)、(,).赠送初中数学几何模型【模型二】半角型:图形特征:45°4321A1FB正方形ABCD中,∠EAF=45°∠1=12∠BAD推导说明:1.1在正方形ABCD中,点E、F分别在BC、CD上,且∠FAE=45°,求证:EF=BE+DFE-a1.2在正方形ABCD中,点E、F分别在BC、CD上,且EF=BE+DF,求证:∠FAE=45°DEa+b-aa45°A BE挖掘图形特征:a+bx-aa 45°DBa+b-a45°A运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM . (1)求证:EF =FM(2)当AE =1时,求EF 的长.E3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.F。