语音信号处理综合实验
- 格式:pdf
- 大小:203.77 KB
- 文档页数:5
语音信号处理实验报告实验二一、实验目的本次语音信号处理实验的目的是深入了解语音信号的特性,掌握语音信号处理的基本方法和技术,并通过实际操作和数据分析来验证和巩固所学的理论知识。
具体而言,本次实验旨在:1、熟悉语音信号的采集和预处理过程,包括录音设备的使用、音频格式的转换以及噪声去除等操作。
2、掌握语音信号的时域和频域分析方法,能够使用相关工具和算法计算语音信号的短时能量、短时过零率、频谱等特征参数。
3、研究语音信号的编码和解码技术,了解不同编码算法对语音质量和数据压缩率的影响。
4、通过实验,培养我们的动手能力、问题解决能力和团队协作精神,提高我们对语音信号处理领域的兴趣和探索欲望。
二、实验原理(一)语音信号的采集和预处理语音信号的采集通常使用麦克风等设备将声音转换为电信号,然后通过模数转换器(ADC)将模拟信号转换为数字信号。
在采集过程中,可能会引入噪声和干扰,因此需要进行预处理,如滤波、降噪等操作,以提高信号的质量。
(二)语音信号的时域分析时域分析是对语音信号在时间轴上的特征进行分析。
常用的时域参数包括短时能量、短时过零率等。
短时能量反映了语音信号在短时间内的能量分布情况,短时过零率则表示信号在单位时间内穿过零电平的次数,可用于区分清音和浊音。
(三)语音信号的频域分析频域分析是将语音信号从时域转换到频域进行分析。
通过快速傅里叶变换(FFT)可以得到语音信号的频谱,从而了解信号的频率成分和分布情况。
(四)语音信号的编码和解码语音编码的目的是在保证一定语音质量的前提下,尽可能降低编码比特率,以减少存储空间和传输带宽的需求。
常见的编码算法有脉冲编码调制(PCM)、自适应差分脉冲编码调制(ADPCM)等。
三、实验设备和软件1、计算机一台2、音频采集设备(如麦克风)3、音频处理软件(如 Audacity、Matlab 等)四、实验步骤(一)语音信号的采集使用麦克风和音频采集软件录制一段语音,保存为常见的音频格式(如 WAV)。
实验二语音信号的频域特性一、实验目的(1)结合汉语语音信号的各类音素和复元音的特点分析其频域性质;(2)熟悉语音信号的各类音素和复元音的频域参数;(3)熟悉声音编辑软件PRAAT的简单使用和操作。
二、实验记录与思考题1. 观察语音信号的频域特点,总结其规律。
浊音段:其谱线结构是与浊音信号中的周期信号密切相关。
具有与基音及其谐波对应的谱线。
频谱包络中有几个凸起点,与声道的谐振频率相对应。
这些凸起点为共振峰。
清音段:清音的频谱无明显的规律,比较平坦。
2.总结清音/b/p/m/f/d/t/n/l/g/k/h/j/q/x/z/c/s/zh/ch/sh/r/共21个的语谱图的规律,给出辅音的能量集中区;语谱图中的花纹有横杠、乱纹和竖直条。
横杠是与时间轴平行的几条深黑色带纹,它们是共振峰。
从横杠对应的频率和宽度可以确定相应的共振峰频率和带宽。
在一个语音段的语谱图中,有没有横杠出现是判断它是否是浊音的重要标志。
竖直条是语谱图中出现于时间轴垂直的一条窄黑条。
每个竖直条相当于一个基音,条纹的起点相当于声门脉冲的起点,条纹之间的距离表示基音周期,条纹越密表示基音频率越高。
b,p……清音的语谱图为乱纹。
辅音的能量集中区为:高频区3. 总结浊音/a/o/e/i/u/ü/ao/ai/ei/ou/ie /an/en/in/ang/eng/ong/ing/共18个的语谱图的规律,提取这18个浊音的基频、前三个共振峰频率4./r/、/m/、/n/、/l/ 从这几个音素的的基频、共振峰频率5.分析宽带语谱图和窄带语谱图的不同之处,请解释原因;语谱图中的花纹有横杠、乱纹和竖直条等。
横杠是与时间轴平行的几条深黑色带纹,它们是共振峰。
从横杠对应的频率和宽度可以确定相应的共振峰频率和带宽。
在一个语音段的语谱图中,有没有横杠出现是判断它是否是浊音的重要标志。
竖直条(又叫冲直条)是语谱图中出现与时间轴垂直的一条窄黑条。
每个竖直条相当于一个基音,条纹的起点相当于声门脉冲的起点,条纹之间的距离表示基音周期。
通信工程学院12级1班罗恒2012101032实验一语音信号的低通滤波和短时分析综合实验一、实验要求1、根据已有语音信号,设计一个低通滤波器,带宽为采样频率的四分之一,求输出信号;2、辨别原始语音信号与滤波器输出信号有何区别,说明原因;3、改变滤波器带宽,重复滤波实验,辨别语音信号的变化,说明原因;4、利用矩形窗和汉明窗对语音信号进行短时傅立叶分析,绘制语谱图并估计基音周期,分析两种窗函数对基音估计的影响;5、改变窗口长度,重复上一步,说明窗口长度对基音估计的影响。
二、实验目的1.在理论学习的基础上,进一步地理解和掌握语音信号低通滤波的意义,低通滤波分析的基本方法。
2.进一步理解和掌握语音信号不同的窗函数傅里叶变化对基音估计的影响。
三、实验设备1.PC机;2。
MATLAB软件环境;四、实验内容1。
上机前用Matlab语言完成程序编写工作.2。
程序应具有加窗(分帧)、绘制曲线等功能。
3.上机实验时先调试程序,通过后进行信号处理。
4.对录入的语音数据进行处理,并显示运行结果。
5。
改变滤波带宽,辨别与原始信号的区别。
6。
依据曲线对该语音段进行所需要的分析,并且作出结论。
7.改变窗的宽度(帧长),重复上面的分析内容。
五、实验原理及方法利用双线性变换设计IIR滤波器(巴特沃斯数字低通滤波器的设计),首先要设计出满足指标要求的模拟滤波器的传递函数Ha(s),然后由Ha(s)通过双线性变换可得所要设计的IIR滤波器的系统函数H(z)。
如果给定的指标为数字滤波器的指标,则首先要转换成模拟滤波器的技术指标,这里主要是边界频率Wp和Ws的转换,对ap和as指标不作变化。
边界频率的转换关系为∩=2/T tan(w/2).接着,按照模拟低通滤波器的技术指标根据相应设计公式求出滤波器的阶数N和3dB截止频率∩c ;根据阶数N查巴特沃斯归一化低通滤波器参数表,得到归一化传输函数Ha(p);最后,将p=s/ ∩c 代入Ha(p)去归一,得到实际的模拟滤波器传输函数Ha(s)。
语音信号处理实验报告——语音信号分析实验一.实验目的及原理语音信号分析是语音信号处理的前提和基础,只有分析出可表示语音信号本质特征的参数,才有可能利用这些参数进行高效的语音通信、语音合成和语音识别等处理,并且语音合成的音质好坏和语音识别率的高低,都取决于对语音信号分析的准确性和精确性。
贯穿语音分析全过程的是“短时分析技术”。
因为从整体来看,语音信号的特性及表征其本质特征的参数均是随时间变化的,所以它是一个非平稳态过程,但是在一个短时间范围内(一般认为在10~30ms的时间内),其特性基本保持不变,即相对稳定,可将其看做一个准稳态过程,即语音信号具有短时平稳性。
所以要将语音信号分帧来分析其特征参数,帧长一般取为10ms~30ms。
二.实验过程1.2. 仿真结果(1) 时域分析男声及女声(蓝色为时域信号,红色为每一帧的能量,绿色为每一帧的过零率)x 104-0.6-0.4-0.200.20.40.60.81x 105-0.4-0.200.20.40.60.811.2某一帧的自相关函数-1-0.8-0.6-0.4-0.200.20.40.60.813. 频域分析①一帧信号的倒谱分析和FFT 及LPC 分析对应的倒谱系数:119.2,-7.6895,……对应的LPC 预测系数:1,-0.1,-0.02,-0.4,-0.27,……②男声和女声的倒谱分析③浊音和清音的倒谱分析原语音波形一帧语音波形一帧语音的倒谱④浊音和清音的FFT分析和LPC分析(红色为FFT图像,绿色为LPC图像)三.实验结果分析1.时域分析实验中采用的是汉明窗,窗的长度对能否由短时能量反应语音信号的变化起着决定性影响。
这里窗长合适,En能够反应语音信号幅度变化。
同时,从图像可以看出,En可以作为区分浊音和清音的特征参数。
短时过零率表示一帧语音中语音信号波形穿过横轴(零电平)的次数。
从图中可以看出,短时能量和过零率可以近似为互补的情况,短时能量大的地方过零率小,短时能量小的地方过零率较大。
华南理工大学《语音信号处理》实验报告实验名称:基音周期估计姓名:学号:班级:10级电信5班日期:2013年5 月15日1.实验目的本次试验的目的是通过matlab编程,验证课本中基音周期估计的方法,本实验采用的方法是自相关法。
2. 实验原理1、基音周期基音是发浊音时声带震动所引起的周期性,而基音周期是指声带震动频率的倒数。
基音周期是语音信号的重要的参数之一,它描述语音激励源的一个重要特征,基音周期信息在多个领域有着广泛的应用,如语音识别、说话人识别、语音分析与综合以及低码率语音编码,发音系统疾病诊断、听觉残障者的语音指导等。
因为汉语是一种有调语言,基音的变化模式称为声调,它携带着非常重要的具有辨意作用的信息,有区别意义的功能,所以,基音的提取和估计对汉语更是一个十分重要的问题。
由于人的声道的易变性及其声道持征的因人而异,而基音周期的范围又很宽,而同—个人在不同情态下发音的基音周期也不同,加之基音周期还受到单词发音音调的影响,因而基音周期的精确检测实际上是一件比较困难的事情。
基音提取的主要困难反映在:①声门激励信号并不是一个完全周期的序列,在语音的头、尾部并不具有声带振动那样的周期性,有些清音和浊音的过渡帧是很难准确地判断是周期性还是非周期性的。
②声道共振峰有时会严重影响激励信号的谐波结构,所以,从语音信号中直接取出仅和声带振动有关的激励信号的信息并不容易。
③语音信号本身是准周期性的(即音调是有变化的),而且其波形的峰值点或过零点受共振峰的结构、噪声等的影响。
④基音周期变化范围大,从老年男性的50Hz到儿童和女性的450Hz,接近三个倍频程,给基音检测带来了一定的困难。
由于这些困难,所以迄今为止尚未找到一个完善的方法可以对于各类人群(包括男、女、儿童及不向语种)、各类应用领域和各种环境条件情况下都能获得满意的检测结果。
尽管基音检测有许多困难,但因为它的重要性,基音的检测提取一直是一个研究的课题,为此提出了各种各样的基音检测算法,如自相关函数(ACF)法、峰值提取算法(PPA)、平均幅度差函数(AMDF)法、并行处理技术、倒谱法、SIFT、谱图法、小波法等等。
实验一 显示语音信号的语谱图一、实验目的综合信号频谱分析和滤波器功能,对语音信号的频谱进行 分析,并对信号含进行高通、低通滤波,实现信号特定处理 功能。
加深信号处理理论在语音信号中的应用;理解语谱图 与时频分辨率的关系。
二、实验原理语谱图分析语音又称语谱分析,语谱图中显示了大量的与语音的语句特性有关的信息,它总额了频谱图和时域波形的优点,明显地显示出语音频谱随时间的变化情况。
语谱图实际上是一种三维频谱,即同时在时间和频率上显示出语音的特性,或者说是一种动态的频谱。
窄带语谱图可以得到较好的频域分辨率,窗长通常为至少两个基音周期的“长窗”;而宽带语谱图可以给出较好的时域分辨率,窗长为小于一个基音周期的“短窗”。
三、实验内容实验数据为工作空间 ex3M2.mat 中数组 we_be10k 是单词“we ”和“be ”的语音波形(采样率为10000 点/秒) 。
1、 听一下 we_be10k (可用 sound )2、使用函数 specgram_ex3p19.显示语谱图和语音波形,如图一。
图一、参数窗长 20ms (200 点) 、帧间隔 1ms (10 点)0.511.5-2-1012Time (s)SPEECHTime (ms)F r e q u e n c y (H z )SPECTROGRAM00.51 1.5200040002、 对比调用参数窗长 20ms (200 点) 、帧间隔 1ms (10 点),(如图一)和参数窗长5ms (50点) 、帧间隔 1ms (10点)(如图二) ;图二、参数窗长5ms (50点) 、帧间隔 1ms (10点)图三、参数窗长30ms (300点) 、帧间隔 1ms (10点)0.511.5-2-1012Time (s)SPEECHTime (ms)F r e q u e n c y (H z )SPECTROGRAM00.51 1.5200040000.511.5-2-1012Time (s)SPEECHTime (ms)F r e q u e n c y (H z )SPECTROGRAM00.51 1.520004000图四、参数窗长20ms (200点) 、帧间隔 5ms (50点)3、 再对比窗长>20ms 或小于5ms ,以及帧间隔>1ms 时的语谱图说明宽带语谱图、窄带语谱图与时频分辨率的关系及如何得到时频折中。
华南理工大学《语音信号处理》实验报告实验名称:DTW算法实现及语音模板匹配姓名:学号:班级:10级电信5班日期:2013年6 月17日一、实验目的运用课堂上所学知识以及matlab工具,利用DTW(Dynamic Time Warping,动态时间规整)算法,进行说话者的语音识别。
二、实验原理1、语音识别系统概述一个完整特定人语音识别系统的方案框图如图1所示。
输入的模拟语音信号首先要进行预处理,包括预滤波、采样和量化、加窗、端点检测、预加重等,然后是参数特征量的提取。
提取的特征参数满足如下要求:(1)特征参数能有效地代表语音特征,具有很好的区分性;(2)参数间有良好的独立性;(3)特征参数要计算方便,要考虑到语音识别的实时实现。
图1 语音识别系统方案框图语音识别的过程可以被看作模式匹配的过程,模式匹配是指根据一定的准则,使未知模式与模型库中的某一个模型获得最佳匹配的过程。
模式匹配中需要用到的参考模板通过模板训练获得。
在训练阶段,将特征参数进行一定的处理后,为每个词条建立一个模型,保存为模板库。
在识别阶段,语音信号经过相同的通道得到语音特征参数,生成测试模板,与参考模板进行匹配,将匹配分数最高的参考模板作为识别结果。
2、语音信号的处理1、语音识别的DTW算法本设计中,采用DTW算法,该算法基于动态规划(DP)的思想解决了发音长短不一的模板匹配问题,在训练和建立模板以及识别阶段,都先采用端点检测算法确定语音的起点和终点。
在本设计当中,我们建立的参考模板,m为训练语音帧的时序标号,M为该模板所包含的语音帧总数,R(m)为第m帧的语音特征矢量。
所要识别的输入词条语音称为测试模板,n为测试语音帧的时序标号,N为该模板所包含的语音帧总数,T(n)为第n帧的语音特征矢量。
参考模板和测试模板一般都采用相同类型的特征矢量(如LPCC系数)、相同的帧长、相同的窗函数和相同的帧移。
考虑到语音中各段在不同的情况下持续时间会产生或长或短的变化,因而更多地是采用动态规划DP的方法。
语音信号处理试验实验一:语音信号时域分析实验目的:(1)录制两段语音信号,内容是“语音信号处理”,分男女声。
(2)对语音信号进行采样,观察采样后语音信号的时域波形。
实验步骤:1、使用window自带录音工具录制声音片段使用windows自带录音机录制语音文件,进行数字信号的采集。
启动录音机。
录制一段录音,录音停止后,文件存储器的后缀默认为.Wav。
将录制好文件保存,记录保存路径。
男生女生各录一段保存为test1.wav和test2.wav。
图1基于PC机语音信号采集过程。
2、读取语音信号在MATLAB软件平台下,利用wavread函数对语音信号进行采样,记住采样频率和采样点数。
通过使用wavread函数,理解采样、采样频率、采样位数等概念!Wavread函数调用格式:y=wavread(file),读取file所规定的wav文件,返回采样值放在向量y中。
[y,fs,nbits]=wavread(file),采样值放在向量y中,fs表示采样频率(hz),nbits表示采样位数。
y=wavread(file,N),读取前N点的采样值放在向量y中。
y=wavread(file,[N1,N2]),读取从N1到N2点的采样值放在向量y中。
3、编程获取语音信号的抽样频率和采样位数。
语音信号为test1.wav和test2.wav,内容为“语音信号处理”,两端语音保存到工作空间work文件夹下。
在M文件中分别输入以下程序,可以分两次输入便于观察。
[y1,fs1,nbits1]=wavread('test1.wav')[y2,fs2,nbits2]=wavread('test2.wav')结果如下图所示根据结果可知:两端语音信号的采样频率为44100HZ,采样位数为16。
4、语音信号的时域分析语音信号的时域分析就是分析和提取语音信号的时域参数。
进行语音分析时,最先接触到并且夜市最直观的是它的时域波形。
最新语音信号处理实验报告实验二实验目的:本实验旨在通过实际操作加深对语音信号处理理论的理解,并掌握语音信号的基本处理技术。
通过实验,学习语音信号的采集、分析、滤波、特征提取等关键技术,并探索语音信号处理在实际应用中的潜力。
实验内容:1. 语音信号采集:使用语音采集设备录制一段时长约为10秒的语音样本,确保录音环境安静,语音清晰。
2. 语音信号预处理:对采集到的语音信号进行预处理,包括去噪、归一化等操作,以提高后续处理的准确性。
3. 语音信号分析:利用傅里叶变换等方法分析语音信号的频谱特性,观察并记录基频、谐波等特征。
4. 语音信号滤波:设计并实现一个带通滤波器,用于提取语音信号中的特定频率成分,去除噪声和非目标频率成分。
5. 特征提取:从处理后的语音信号中提取关键特征,如梅尔频率倒谱系数(MFCC)等,为后续的语音识别或分类任务做准备。
6. 实验总结:根据实验结果,撰写实验报告,总结语音信号处理的关键技术和实验中遇到的问题及其解决方案。
实验设备与工具:- 计算机一台,安装有语音信号处理相关软件(如Audacity、MATLAB 等)。
- 麦克风:用于采集语音信号。
- 耳机:用于监听和校正采集到的语音信号。
实验步骤:1. 打开语音采集软件,调整麦克风输入设置,确保录音质量。
2. 录制语音样本,注意控制语速和音量,避免过大或过小。
3. 使用语音分析软件打开录制的语音文件,进行频谱分析,记录观察结果。
4. 设计带通滤波器,设置合适的截止频率,对语音信号进行滤波处理。
5. 应用特征提取算法,获取语音信号的特征向量。
6. 分析滤波和特征提取后的结果,评估处理效果。
实验结果与讨论:- 描述语音信号在预处理、滤波和特征提取后的变化情况。
- 分析实验中遇到的问题,如噪声去除不彻底、频率成分丢失等,并提出可能的改进措施。
- 探讨实验结果对语音识别、语音合成等领域的潜在应用价值。
结论:通过本次实验,我们成功实现了语音信号的基本处理流程,包括采集、预处理、分析、滤波和特征提取。
语⾳信号处理实验报告语⾳信号处理实验报告【实验⼀】⼀、实验题⽬Short time analysis⼆、实验要求Write a MA TLAB program to analyze a speech and simultaneously, on a single page, plot the following measurements:1. the entire speech waveform2. the short-time energy, En3. the short-time magnitude, Mn4. the short-time zero-crossing, Zn5. the narrowband spectrogram6. the wideband spectrogramUse both the speech waveforms in the wznjdx_normal.wav. Choose appropriate window sizes, window shifts, and window for the analysis. Explain your choice of these parameters.三、实验程序clear[x,fs]=wavread('wznjdx_normal.wav');n=length(x);N=320;subplot(4,1,1);plot(x);h=linspace(1,1,N);En=conv(h,x.*x);subplot(4,1,2);plot(En);Mn=conv(h,abs(x));subplot(4,1,3);plot(Mn);for i=1:n-1if x(i)>=0 y(i)=1;else y(i)=-1;endif x(i+1)>=0 y(i+1)=1;else y(i+1)=-1;endw(i)=abs(y(i+1)-y(i));endk=1;j=0;while (k+N-1)Zm(k)=0;for i=0:N-1Zm(k)=Zm(k)+w(k+i);endj=j+1;k=k+N/2;endfor w=1:jQ(w)=Zm(160*(w-1)+1)/(2*N);endsubplot(4,1,4);plot(Q);grid;figure(2);subplot(2,1,1);spectrogram(x,h,256,200,0.0424*fs); subplot(2,1,2);spectrogram(x,h,256,200,0.0064*fs);四、实验结果语谱图:(Matlab 7.0 ⽤不了spectrogram)【实验⼆】⼀、实验题⽬Homomorphic analysis⼆、实验要求Write a MATLAB program to compute the real cepstrums of a section of voiced speech and unvoiced speech. Plot the signal, the log magnitude spectrum, the real cepstrum, and the lowpass liftered log magnitude spectrum.三、实验程序nfft=256;[x,fs] = wavread('wznjdx_normal.wav');fx=x;Xvm=log(abs(fft(fx,nfft)));xhv=real(ifft(Xvm,nfft));lifter=zeros(1,nfft);lifter(1:30)=1;lifter(nfft-28:nfft)=1;fnlen=0.02*fs; % 20mswin=hamming(fnlen);%加窗n=fnlen;%窗宽度赋给循环⾃变量nnoverlap=0.5*fnlen;while(n<=length(x)-1)fx=x(n-fnlen+1:n).*win;n=n+noverlap;endxhvp=xhv.*lifter';figure;subplot(4,1,1)plot(lifter);title('倒谱滤波器');subplot(4,1,2)plot(x);title('语⾳信号波形');subplot(4,1,3)plot(Xvm);title('Xvm');subplot(4,1,4)plot(xhv);title('xhv');四、实验结果【实验三】⼀、实验题⽬LP analysis⼆、实验要求Write a MATLAB program to convert from a frame of speech to a set of linear prediction coefficients. Plot the LPC spectrum superimposed on the corresponding STFT.三、实验程序clear;[x,fs]=wavread('wznjdx_normal.wav');fx=x(4000:4160-1);p=10;[a,e,k]=aryule(fx,p);G=sqrt(e*length(fx));f=log(abs(fft(fx)));h0=zeros(1,160);h=log(G)-log(abs(fft(a,160)));figure(1);subplot(211);plot(fx);subplot(212);plot(f);hold on;plot((0:160-1),h,'r');四、实验结果【实验四】⼀、实验题⽬Pitch estimation⼆、实验内容Write a program to implement the pitch estimation and the voiced/unvoiced decision using the LPC-based method.三、实验程序clear[x,fs]=wavread('wznjdx_normal.wav');n=length(x);Q = x';NFFT=512;N = 256;Hamm = hamming(N);frame = 30;M = Q(((frame -1) * (N / 2) + 1):((frame - 1) * (N / 2) + N)); Frame = M .* Hamm';% lowpass filter[b2,a2]=butter(2,900/4000);speech2=filter(b2,a2,Frame); % filter% residual[a,e] = lpc(speech2,20);errorlp=filter(a,1,speech2); % residual% Short-term autocorrelation.re = xcorr(errorlp);% Find max autocorrelation for lags in the interval minlag to maxlag. minlag = 17; % F0: 450Hzmaxlag =160; % F0: 50Hz[remax,idx] = max(re(fnlen+minlag:fnlen+maxlag));figuresubplot(3,1,1);plot(Frame);subplot(3,1,2);plot(speech2);subplot(3,1,3);plot(re);text(500,0,'idx');idx=idx-1+minlagremax四、实验结果【实验五】⼀、实验题⽬Speech synthesis⼆、实验内容Write a program to analyze a speech and synthesize it using the LPC-based method.三、实验程序主程序clear;[x,sr] = wavread('wznjdx_normal.wav');p=[1 -0.9];x=filter(p,1,x);N=256;inc=128;y=lpcsyn(x,N,inc);wavplay(y,sr);⼦程序lpcsynfunction y=lpcsyn(x,N,inc)%[x,sr] = wavread('wznjdx_normal.wav');%pre = [1 -0.97];%x = filter(pre,1,x);%N=256;%inc=128;fn=floor(length(x)/inc);y=zeros(1,50000);for (i=1:fn)x(1:N,i)=x((i-1)*inc+1:(i+1)*inc);[A(i,:),G(i),P(i),fnlen,fnshift] = lpcana(x(1:N,i),order); if (P(i)) % V oiced frame.e = zeros(N,1);e(1:P(i):N) = 1; % Impulse-train excitation.else % Unvoiced frame.e = randn(N,1); % White noise excitation.endyt=filter(G(i),A(i,:),e);j=(i-1)*inc+[1:N];y(j) = y(j)+yt';end;end⼦程序lpcanafunction [A,G,P,fnlen,fnshift] = lpcana(x,order) fnlen=256;fnshift=fnlen/2;n=length(x);[b2,a2]=butter(2,900/4000);speech2=filter(b2,a2,x);[A,e]=lpc(speech2,order);errorlp=filter(A,1,speech2);re=xcorr(errorlp);G=sqrt(e*length(speech2));minlag=17;maxlag=160;[remax,idx]=max(re(n+minlag:n+maxlag));P=idx-1+minlag;end四、实验结果【实验六】⼀、实验题⽬Speech enhancement⼆、实验内容Write a program to implement the basic spectral magnitude subtraction.三、实验程序clear[speech,fs,nbits]=wavread('wznjdx_normal.wav');%读⼊数据alpha=0.04;%噪声⽔平winsize=256;%窗长size=length(speech);%语⾳长度numofwin=floor(size/winsize);%帧数hamwin=zeros(1,size);%定义汉明窗长度enhanced=zeros(1,size);%定义增强语⾳的长度ham=hamming(winsize)';%%产⽣汉明窗x=speech'+alpha*randn(1,size);%信号加噪声noisy=alpha*randn(1,winsize);%噪声估计N=fft(noisy);nmag=abs(N);%噪声功率谱%分帧for q=1:2*numofwin-1frame=x(1+(q-1)*winsize/2:winsize+(q-1)*winsize/2);%对带噪语⾳帧间重叠⼀半取值hamwin(1+(q-1)*winsize/2:winsize+(q-1)*winsize/2)=...hamwin(1+(q-1)*winsize/2:winsize+(q-1)*winsize/2)+ham;%加窗y=fft(frame.*ham);mag=abs(y);%带噪语⾳功率谱phase=angle(y);%带噪语⾳相位%幅度谱减for i=1:winsizeif mag(i)-nmag(i)>0clean(i)=mag(i)-nmag(i);else clean(i)=0;endend%频域中重新合成语⾳spectral=clean.*exp(j*phase);%反傅⾥叶变换并重叠相加enhanced(1+(q-1)*winsize/2:winsize+(q-1)*winsize/2)=...enhanced(1+(q-1)*winsize/2:winsize+(q-1)*winsize/2)+real(ifft(spectral));endfigure(1);subplot(3,1,1);plot(speech);xlabel('样点数');ylabel('幅度');title('原始语⾳波形'); subplot(3,1,2);plot(x);xlabel('样点数');ylabel('幅度');title('语⾳加噪波形'); subplot(3,1,3);plot(enhanced);xlabel('样点数');ylabel('幅度');title('增强语⾳波形');四、实验结果。