Effect of Synthetic Drilling Fluid Base Oils on Asphaltene Stability and Wetting in Sandstone Cores
- 格式:pdf
- 大小:257.46 KB
- 文档页数:5
动态滤失 || dynamic filtration动切力 || yield value动塑比 || ratio of dynamic shear force/yield value to plastic viscosity堵漏 || plugging堵塞 || seal堵塞比(DR) || damage ratio堵塞物 || bulkhead堵水 || water shutoff毒性大 || high toxicity毒性污染环境 || toxicity ruins the environment短过渡 || short transition time短纤维 || brief fiber断层发育 || mature fault断裂带 || faulted zone对策 || countermeasure多产层 || multilayered reservoir多分支侧钻井 || multi-lateral sidetracking well多功能添加剂 || multifunction additive多孔介质 || porons medium多目标定向井 || multi-target directional well多相稳态胶体悬浮体系 || polynomial gel suspension system多元醇 || polyatomic alcohol多元非线性回归 || multielement non-linesr regression多元统计 || multivariate statistics惰性材料 || inert material惰性润滑剂 || inert lubricantE二次沉淀 || secondary precipitation二叠系 || Permian system二甲胺 || dimethylamine二甲基二烯丙基氯化铵 || dimethyl diallyl ammonium chloride二价阳离子 || bivalent ion二开 || second section二氧化碳(CO2) carbon dioxide二元共聚物 || binary polymerF发气剂 || gas-development发展趋势 || development tendency反排解堵 || plug removal by reverse flow范氏力 || van der waals force范氏粘度计 || fann viscosimeter返回 || go back to方便钻井液复合粉 || convenient mud compound powder 方程 || equation芳香烃 || aromatic group防窜水泥 || anti-fluid-channeling cement防腐 || anti-corrosion防卡 || pipe-sticking prevention ,anti-sticking防漏失 || lost circulation prevention防气窜 || anti-fluid-channeling防塌机理 || mechanism of anti-caving防塌剂 || anti-caving/collapse agent , clay stabilizer防止|| prevent…from纺织 || textile放空不返 || loss of bit load with loss return放射性示踪剂 || radioactive tracer tritium非均质 || nonhomogeneity非离子 || nonionic非牛顿流体 || non-newtonian fluid非渗透性 || impervious废泥浆 || mud disposal沸石 || zeolite分布 || distribution分段固井技术 || stage cementing technology分光度法 || spectrophotometer分类 || division分散 || dispersion分散剂 || dispersant分散介质 || dispersion medium分析 || analysis分形理论 || fractal theory分形几何 || fractal geometry分子 || molecules分子间能量交换 || energy exchange between molecules 分子量 || molecular weight分子链 || molecular chain分子形态 || shape of molecular chain粉尘 || dust粉煤灰 || fly ash粉末 || powder粉砂质 || aleuritic texture酚羟基的邻位或对位氢 || p-or o-hydrogen atom of phenolic group封闭剂 || sealing agent封闭稳定 || good isolation封堵 || formation sealing封堵剂 || formation sealant封固段 || interval isolation扶正器 || centralizer氟硼酸 || borofluorhydric浮力效应 || effect of buoyancy孵化速度 || incubation浮游植物 || floating vegetation复合 || combine复合离子 || multifunctional ionic复合离子聚合物 || amphiprotic/amphoteric polymers , 复合金属两性离子聚合物 || composite metal zwitterionic polymer复合聚合物泥浆 || compound-polymer mud复配方案 || compositional formulation复杂地层 || complex formation, troublesome region ,trick formation复杂度 || complex rate复杂时效 || outage time复杂情况 || down-hole troublesome condition 腐蚀 || corrosion腐蚀电位 || corrosion potential腐蚀速率 || corrosion rate腐殖酸 || humate ,humic acid腐殖酸钾(KHm) || potassium humic辅料 || auxiliary material负 || negative ||负压钻井 || underbalanced drilling符合 || accord with符合率 || coincidence || rate副产品 || by-product附加密度 || addition mud densityG改善泥饼质量 || improvement of mud cake改性 || modification改性淀粉 || modified starch改性沥青 || modified asphalt改造 || refomation钙 || calcium钙矾石 || ettringite钙膨润土钠化 || sodium modified calcium betonite || 干混拌技术 || mixing technology干扰 || interfere with甘油 || glycerol锆 || zirconium高分子 || higher molecular weight高分子聚合物 || macromoleclar polymer ||高分子絮凝剂 || polymer flocculant高负荷 || high load高级脂肪醇树脂 || higher fatty alcohol高价金属阳离子 || high valent cationic高角度微裂缝 || high angle micro-fracture高矿化度地层水 || highly mineralized formation brines 高岭土 || kaolinite高炉矿渣(BFS) || blast furnace slag高密度钻井液 || high density drilling fluid高难度 || high challenge高粘度清扫液 || viscous sweeping fluid高砂比 || high sand ratio高温静置 || quiescence in high temperature 高温泥浆 || high-temperature mud高吸水量树脂 || absorbent resin高温高压流变仪 || HTHP rheometer高效润滑剂 || super lubricant高压盐水层 || high pressured slatwater layer 膏岩层 || gypsolyte膏质泥岩 || creaming mudstone膏状磺化沥青 || paste sulphonated asphalt隔离冲洗液 || spacer/flushing fluid隔离膜 || isolating membrane各向异性 || anisotropy工程 || engineering共聚 || copolymerization共聚物 || copolymer共聚物类降粘剂 || copolymer thinner狗腿 || dogleg构造裂缝 || structural fracture固化 || solidification固化剂 || hardener , curing agent固井技术 || cementing technology固体团块 || solid cake固相 || solid phase固相含量 || solid concentration固相颗粒 || solid particles固相颗粒侵入 || solid invasion固相控制技术 || solid control technology固相损害 || damage of particles固液分离技术 || centrifugal separation method 胍胶 || guargum瓜尔胶 || guar挂片失重法 || weight loss method ||关掉电机 || turn off the power光谱 || spectroscopy硅 || silicone硅粉 || silica powder硅氟 || fluosilicic硅铝比 || ratio of silicate to aluminium硅酸钠 || sodium silicate硅酸盐 || silicate滚轮失重法 || roller weight loss method国内外 || home and abroad过渡金属 || transitional metal过平衡压力 || over-balanced pressure过剩浓度 || residual concentration过氧化物 || peroxideH海绿石 || chlorite海上 || offshore海水泥浆 || sea water mud海湾 || bay海洋生物 || marine animal含量 || content含水量 || moisture content耗氧量(COD) || chemical oxygen demand耗氧量(BOD520) || biological oxygen demand核桃壳粉 || walnut shell flour核磁共振(NMR) || nuclear magnetic resonance 合成 || synthesis合成基钻井液 || synthetic base drilling fluid合格 || eligible合理级配 || reasonable distribution褐煤 || lignite赫巴模式 || Herschel-Buckley model黑色正电胶(BPG) || black positive gel恒定滤失速率 || constant filtration rate 葫芦串 || irregular borehole护胶剂 || colloid protecting resistance护胶作用 || colloid stability互层 || interbeded红外光谱 || infrared spectrography花岗岩 || granite划眼作业 || reaming operation化学螯合剂 || chelating agent化学冲洗液 || chemically washing solution 化学结垢(沉淀) || chemical precipitation 环保型 || environment friendly /acceptable 环境保护 || environment protection环空当量密度 || annular equivalent density 环空返速 || velocity in annular环空压耗 || annular pressure lost环氧丙烷 || epoxypropare环氧氯丙烷(ECH) || epoxychloropropane ,epichlorohydric缓蚀剂 || corrosion inhibitor磺化 || sulfonation磺化酚醛树脂 || sulfomethal phenolaldehy resin 磺化剂 || sulfonating agent磺化类处理剂 || sulfonated additives磺化沥青 || sulfonated gilsonite磺化沥青泥浆 || sulfonated-asphalt mud磺甲基酚醛树脂 || sulfonated methypheuoformald-ehyde磺酸基团 || sulfonic acid group ,sulfo group灰色关联分析法 || gray relative analysis method 灰岩 || limestone回归分析 || regressive analysis回收率 || recovery percent回填还耕 || refilling for plowland火成岩 || igneous rock火山喷发岩 || volcanic混合金属层状氢氧化物(MMLHC) || mixed metal layerhydroxide compound混合金属氢氧化物(MMH) || mixed metal hydroxides 混合纤维 || composite fiber混合盐水 || mixed salt活动套管 || moving casing活度 || water activity活性硅灰 || activated grammite活性粘土矿物 || active clayey mineral活性污泥法 || activated sludge process宏观 || macroscopicJ基液 || base fluid机械力 || mechanical机械杂质 || mechanical impurity机械钻速(ROP) || rate of penetrate及时反出 || timely return极限剪切粘度 || high shear viscosity极限应变 || ultimate strain极性基团 || polar group极压润滑剂 || pressured/extreme || lubricator 挤堵 || squeeze激光多普勒测速仪(LDA) || laser Doppler anemometer 激光粒度仪 || laser particle analyzer激活剂 || activator技术措施 || technical measure技术讲座 || workshop for technology技术经济效果 || technical-economic effect技术套管 || intermediate casing季铵盐 || quaternary ammonium, anionic group钾 || potassium ,kalium钾基石灰泥浆 || potassium base lime mud甲硅烷基化处理 || methylsilicane甲基 || methyl甲基硅油聚磺高密度钻井液 || methyl silicone oil polysulfonatedrilling fluid with high density甲醛 || formaldehyde , methanal甲酸盐 || formate加量 || dosage加重剂 || heavy weight additive加重泥浆 || weighted mud加重钻井液“垂沉” || sag phenomenon of weighteddrilling fluid架桥粒子 || bridge particle价数 || valence监督 || supervision碱 || alkali简化泥浆处理 || simplify mud treatment简介 || brief description检查井 || inspection well检测 || inspection/monitor减轻剂 || lightening admixture减阻剂 || anti-friction agent , drag reducer剪切破坏 || shear failure剪切稀释能力 || shear thinning property , shearing dilution剪切应力 || shear stress键 || bond健康,安全与环境(HSE) || health , safety and environment间隙 || clearance降解产物 || degradation productsK卡森方程 || Casson equation卡钻 || pipe-sticking卡钻因子 || stuck-pipe factor勘探与开发 || exploration and development开发井 || development well开钻泥浆 || spud mud抗冲击韧性 || toughness抗冲击性 || impact resistance抗电解质 || potential resistance to electrolyte contamination抗钙 || compatibility of calcium抗裂程度 || rupture strength抗温抗盐 || heat and salinity tolerance抗压强度 || compressive strength抗折强度 || breaking strength栲胶 || tannin , quebrocho克 || gram颗粒 || particle颗粒级配理论 || theory of granulartity苛刻 || rigorous可变形粒子 || deformation particle可靠 || inerrable可逆 || reversible可溶性盐 || soluble salt可压缩性 || compressibility可用性 || feasibility可钻性 || drillability刻度盘 || dial scale坑内密封法 || seal in a pit空气湿度 || air humidity孔洞 || cavern孔喉 || pore throat孔隙 || pore孔隙度测井 || porosity log孔隙压力 || pore pressure孔隙液 || pore fluid快钻剂 || quick drilling矿化度 || mineral salt concentration , mineralization 矿石 || ore矿物 || mineral矿物组分 || mineralogical composation矿物晶体 || mineral crystal矿物油 || mineral oil矿渣 || slag扩散 || diffusionL老化时间 || ageing time老区 || maturing field雷诺数 || Renault number类别 || category累计厚度 || gross thickness累托石 || rectorite沥青 || asphalt ,gilsonite,bitumen沥青类产品 || gilsonite and similar materials 离心法敏感性评价 || centrifugation sensitivity evaluation离心机 || centrifugal machine离心机固控技术 || centrifugal solid control离子 || ionic离子形态 || ionic forms粒度 || grain grade粒度分布 || particles/size distribution粒度分析 || particles size analysis粒子 || particle砾石充填 || gravel pack连通性 || formation communication连续提取法 || continuous extraction两凝水泥浆 || two-stage cementing cement两性离子 || zwitter ionic裂缝 || fissure裂缝壁 || side of fracture plugging裂隙地层 || fractured formation裂隙滞后效应 || fracture lag-effect邻井 || offset/adjacent well林产 || forestry淋洗量 || wash out amount磷 || phosphorus磷酸 || phosphate磷酸氢二铵 || diammonium phosphate磷酸盐 || phosphate || salt磷酸酯 || organic phosphate临界点 || critical point临界环空流速 || critical annular fluid velocity 临界流量 || critical flow velocity临界盐度 || critical salinity零点 || zero point零析水 || zero free water硫 || sulfur硫化氢 || hydrogen sulfide硫化物 || sulfide硫酸 || sulfate硫酸钠 || sodium sulphate流变参数 || reheological parameter流变模式 || reheology model流变性 || rheology behavior流变性能改进剂 || rheology conditioner 流变学 || rheology流动度 || fluidity流动介质 || flow media流动孔喉 || flowing pore throat流动摩阻压力 || flowage friction drag 流动实验 || flow test流动阻力 || flow resistance流沙层 || drift sand formation流态 || flow pattern流体力学 || hydromechanics theory流体输送减阻 || accelerating fluid feeding流型 || fluid type漏斗粘度 || funnel viscosity漏失 || lost circulation漏失层位 || location of the thief zone漏失通道 || porous media陆上 || onshore卤虫 (甲壳类动物) || crustacean卤水 || bitter铬 || chromium络合 || coordination ,chelate络合行为热效应 || thermal effect of the coordination 录井 || log裸眼 || open well裸眼井段 || barefoot interval滤饼 || filter cake滤失量 || filtration滤饼电性质 || electro kinetic property滤液 || filtrate滤液侵入 || filtrate invasion铝 || aluminum铝酸盐 || aluminate氯酚 || chlophenol氯化钙(CaCl2) || calcium chloride氯化物 || chlorideKCl溶液 || potassium chloride solutionM马来酸酐 || maleic anhydride埋深 || burial depth满足…需要 || meet requirement of曼尼希反应 || Mannick reaction芒硝层 || chuco毛细管吸收时间测定仪(CST) || capillary suction timer 毛细管压力 || capillary pressure酶 || enzyme煤层 || coal bed煤层气储层 || coalbed methane reservoir镁 || magnesium门限流动压差 || threshold differential pressure of flow蒙脱石 || smectite咪错基 || imidazoline醚基 || ether密胺树脂 || melamine resin密闭液 || sealing fluid密度 || density密实 || dense幂律模式 || power law method敏感性 || sensitivity敏感性流动实验 || flowrate test膜 || film , membrane磨铣 || mill摩擦 || friction摩擦付 || friction couples摩擦系数 || friction coefficient摩阻损失 || friction loss末端毛细管阻力 || terminal capillary pressure 木质素磺酸盐 || lignosulfonate模拟 || analog, simulate模式(型) || model目 || meshN纳米材料 || nano-composite material纳米技术 || nano-tech钠 || sodium钠化 || sodium treatment钠膨润土泥浆 || sodium bentonite mud囊衣 || capsule dressing囊芯 || capsule-core内聚力 || cohesion内摩擦角 || internal frictional angle内泥饼 || internal filter cake内切圆半径 inscribed circle radius内烯烃 || isomerised || olefins内源和外源颗粒 || endogenous and exogenous granula 内在因素 || intermediate factor能量交换 || energy exchange泥包 || bit balling泥饼 || mud-cake泥饼强度冲刷仪 || mud filter cake tester泥浆处理 || mud treatment泥浆跟踪剂 || mud tracer泥浆配方 || mud formula泥浆转化为水泥浆(MTC) || mud to cement泥岩 || mudstone , conglomerate泥页岩 || shale , || argillutite泥质膏岩 || argillaceous粘度 || viscosity粘度极大值 || maximum viscosity粘度计 || viscosimeter粘附 || adhere粘附张力 || adhesive tension粘弹性 || viscoelastic粘土 || clay粘土分级评价法 || method of grading mud-making clay 粘土矿物层间距(d001) || crystal || indices粘土矿物含量 || clay mineral content粘土片 || clay latice粘土膨胀 || clay swelling粘土膨胀倍数 || swelling ratio of clays粘土稳定性 || clay stability粘性流体 || viscous fluid柠檬酸 || citric acid凝固点 || freezing point凝析油 || condensate oil牛顿流体 || Newtonian fluid扭距 || torque浓度 || concentration浓硫酸 || strong sulfuric浓缩 || concentrationP排列 || line along排驱压力 || displacement pressure排水 || water draining剖面图 || profile map泡沫流体实验装置 || aerated fluid test simulator 泡沫剂 || foaming agent泡沫衰变机理 || foam decay mechanism泡沫质量 || foam quality泡沫钻井液 || foam drilling fluid配方 || formula ,recipe ,composition配浆时间 || drilling fluid preparing time配位体 || ligand配伍性 || compatibility配制 || madeup盆地 || basin喷 || blowout喷射钻井 || jet drilling喷嘴粘度 || nozzle viscosity膨润土 || bentonite ,montmorillonite膨润土含量 || bentonite content膨胀 || swell膨胀剂 || sweller膨胀率 || expansion ratio膨胀性堵漏材料 || expandable plugging additives硼冻胶 || boracium gel硼砂 || borax硼酸盐 || borate偏心度 || excentricity偏移 || shift片麻岩 || gneiss漂珠 || hollow microsphere品种 || variety平衡线膨胀率 || equalibrium linear expansion value 平衡压力钻井 || balanced drilling评价 || evaluation评价标准 || evaluation criterion评价井 || appraisal well平板型层流 || plate laminar flow平均井深 || average well depth平均线膨胀率 || average expansion rate平均直径 || mean diameter屏蔽环 || shielding zone屏蔽暂堵技术 || temporary shieldingmethod ,barrier-building temporary seal incores 破胶剂 || gel breaker破胶性 || breaking property破裂压力 || fracture pressure破裂压力梯度 || fracture pressure gradient破乳 || break the emulsion破乳剂 || demulsifying agent葡萄糖 || glucoseQ起到重要作用 || play an important role起泡剂 || frothing agent起下钻阻卡 || blockage during tripping气液表面能 || gas-liquid interface energy迁移 || migration前置液 || prepad fluid铅(Pb) lead潜在因素 || implicit factor潜山 || buried hill浅高压气层 || shallow high pressure gas formation 浅海 || shallow-water , neritic area浅井 || shallow well嵌段聚合物 || block polymer欠饱和盐水钻井液 || unsaturated salt water drilling fluid欠平衡钻井 || underbanlanced drilling欠压实 || uncompaction羟基 || hydroxy羟基水 || hydroxy water羟丙基淀粉 || hydroxypropul starch羟乙基纤维素 || hydroxyethyl cellulose强造浆软泥岩 || high mud making soft shale桥堵剂 || bridge additive切力 || shearing force侵入深度 || invasion depth侵蚀 || erosion亲核化学吸附 || nucleophyllic chemical adsorption 亲水环境 || hydrophilic environment亲水性 || hydrophilcity亲油性 || lipophilic氢 || hydrogen氢氟酸 || hydrofluoric acid氢键 || hydrogen bond氢氧化钠 || alkali氢氧化钙 || calcium hydroxide清扫液 || sweeping fluid清水 || clear water清洗剂 || cleaning agent蜻纶 || acrylon fiber蜻纶费丝 || nitrilon倾角 || dip angle丘陵 || hill type球形胶束 || roundness glues区块 || block屈服强度 || shear strength屈服值 || yielding point曲边三角形 || curved line trangle取代度 || substituted ratio取芯 || core,coring operation取芯进尺 || coring footage取芯收获率 || coring recovery rate曲线 || curve去除 || wipe off醛 || aldehydeR热采井 || thermal production wells热分析 || thermoanalysis热滚 || hot aging热滚分散实验 || roller oven test , hot rolling test 热力学 || thermodynamics热凝橡胶 || coagulative rubber热效应 || thermal effect ||热稳定性 || temperature resistance ,heatstability ,stabilityat high temperature热重法(TG) || thermogravimetry人工神经网络 || artificial neural network韧性 || tenacity韧性粒子 || tenacity particle日产气 || daily gas融合 || amalgamation溶洞 || cave溶胶 || sol溶解氧 || dissolved oxygen溶蚀 || corrode溶蚀性孔洞 || solution cave ||溶液 || solution柔性棒状胶束 || flexibility claviform glues蠕虫状胶束 || vermiculate glues乳滴聚结实验 || emulsion drop aggregation test 乳化 || emulsify ,emulsion乳化剂 || emulsifier乳化钻井液 || emulsion drilling fluid乳化作用 || emulsification入井液 || working fluid软化点沥青 || softening point asphalt软泥岩 || soft mudstone软件包 || software package润滑剂 || lubricant润滑仪 || lubricity tester润湿反转 || wetting transition , wettability reversed 润湿性 || wettability弱面 || weak planeS塞流顶替 || plug-flow displacement3r/min读值 || 3r/m reading三高一适当(3H1S) || three high and one proper三磺饱和盐水泥浆 ||three-sulfonated-polymer-saturated-brine mud三钾胺 || dimethyl amine三甲基单烯丙基氯化铵 || trimethyl allyl ammonium chloride三维网状结构 || three-dimensional network structure 三乙醇胺 || triethavolamine散射 || scatter铯 || cesium射孔 || perforation射孔液 || perforation fluidX-射线计算机层析技术(CT) || computerized tomography 沙砾岩 || glutenite砂泥岩 || sand shale砂岩 || sand ,sandstone杀菌剂 || bacteriostat筛管 || screen pipe上泵容易 || easy pumpability上部地层 || upper formation /segment上古生界 || upper palaeozoic上升趋势 || escalating trend上下密度差 || difference of densities上下限 || top and bottom limitation上游领域 || upstream扫描电镜 (SEM) || scanning electronic microscope设计 || design设计原理 || design principle神经网络 || nerve network深穿透射孔枪弹 || deep penetrating bullet深度 || depth深井钻井 || deep drilling深探井 || exploration well渗流 || phase flow s渗漏 || leakage渗透 || peculation `渗透率 || fluid permeability渗透率各向异性 || permeability anisotropy 渗透率恢复值 || return permeability渗透水化 || osmotic hydration ||渗透性地层 || permeable formation渗析纯化purified by dialysis method 声波测井 || sonic logging声幅值 || acoustic amplitude生产能力 || production capacity生态环境 || ecology environment生物处理 || biological treatment生物毒性 || biotoxicity生物降解 || biological degradation生物聚合物 || biological polymer ,xanthan 生物流化床法 biological fluid bed method 生物滤池法 || bio-filter process生物转盘法 || biological rotary method实验 || trail十八醇 || octadecanol失水 || water loss失重 || weightlessness, || weight loss时间推移技术 || time delaying method石膏 || gypsolyte, gypsum石灰 || lime石蜡 || alpha , paraffin wax石炭系 || carboniferous system石英 || quartz石油加工 || oil refinery石油裂化 || petroleum cracking process施工作业 || field operation ||事故率 || failure rate湿挤压 || wet-extrusion室内模拟实验 || simulating lab test室内实验和现场 || lab and field室内研究 || laboratory study室温 || ambient temperature适量 || defined amount ||适应温度 || reaction temperature示踪分析法 || mud filtrate tracer analysis释放 || release收缩 || shrink疏水性 || hydrophobicity叔胺盐 || tertiary ammonium salt数据库 || data base数学模型 || mathematical model数字模拟 || digital analog塑料小球 || plastic beads树脂 || resin, || colophony s束缚 || irreducible束缚水 || bond water衰变 || decay瞬时滤失 || instantaneous filtration , spurt loss 瞬时速度 || instantaneous velocity双层组合套管固井技术 || pipe-in-pipe casing string 双电层斥力 || double electrode layer repulsion双分支侧钻水平井 || bi-lateral sidetracking horizontal well水包油型乳化液 || oil-in-water fluid水不溶物 || water insoluble matter水层 || water layer水化 || hydration水化膨胀分散 || hydrous disintegration水化抑制剂 || hydrate control水泥环 || cement sheath水泥浆 || cement slurry水泥石 || set cement水泥熟料 || cement clinker水泥早强剂 || cement hardener水解 || hydration水解度 || hydrolyzing degree水力学 || hydraulics水基泥浆 || water-base drilling fluid水敏性 || water sensitivity水平井段 || net horizontal section水平井段长 || extended horizontal depth水平井偏心环空 || horizontal eccentric annulus水平位移 || horizontal displacement水溶性 || water-soluble水溶液 || aqueous solution水锁 || water lock水眼粘度 || bit nozzle viscosity ,Casson high shearviscosity锶 || strontium四苯硼酸钠 || sodium tetraphenyl borate四级固控系统 || four stage solid control system 四球机 || four-ball instrument松弛测量法 || relaxation measurement松散地层 || unconsolidated formation松散吸附水 || adsorbed water塑性粘度 || plastic viscosity塑性水泥 || plastic cement速度场 || velocity field速敏 || speed-sensitivity速凝 || fast setting速凝剂 || accelerator酸度计滴定法 || acidometer titration酸酐 || anhydride酸碱滴定法 || acid-base titration酸敏 || acid sensitivity酸溶性 || acid soluble酸性条件 || acidic condition酸性粘土 || acid clay酸渣 || acid-slug随钻堵漏 || plugging while drilling顺利 || go smoothly缩合 || condensation缩合共聚 || condensation-copolymerization缩径 || hole shrinkage ||羧基 || carboxylic ,carboxyl羧甲基纤维素钠(Na-CMC) || sodium salt of carboxy methyl-celluloseT塔里木盆地 || tarim basin太古界 || archaeozoic滩海 || tidal坍塌 || slough /cave坍塌压力 || collapse pressure坍塌页岩 || sloughing shale弹塑性 || plastoelasticity弹性力学 || elastic mechanic弹性模量 || elastic modulus探井 || prospecting well碳化 || carbonization碳酸钙 || calcium carbonate碳酸氢根离子(HCO3-) || bicarbonate ion碳酸盐 || carbonate碳质 || carbon羰基 || carboxide陶粒 || ceramsite套管 || casing套管壁 || casing wall套管居中 || casing centralization套管开窗井段 || window killing section套管外封隔器 || external casing packer特低密度 || ultralow density ||特性粘度 || intrinsic viscosity梯度 || gradient梯度多凝水泥浆 || gradient multi-setting cement slurry提出 || propose提取 || extraction体积分布 || volume distribution体积分散 || volume ratio体积恢复当量 || equivalent volume体系 || system天然或人造 || natural and synthetic填充粒子 || filler particle田青粉 || sesbania调凝剂 || thickening time control agent调整井 || adjustment well铁垢 || iron dirty铁矿粉 || hematite铁离子(Fe) ferrous ion铁离子稳定剂 || ferrous stability铁落木质素磺酸盐 || fer-rochrome lignosulfonte 烃类 || hydro carbons通井 || drafting process同时 || simultaneously同心环空 || concentric annulus统计 || statistics统计分析 || statistics analysis投料比 || rate of charge土酸 || clay/mud || acid钍 || thorium途径 || way突破 || breakthroughW外部因素 || external factors 外源 || exogenous完井液 || completion fluid 完善井 || improved well完钻井深 || total depth烷基化 || alkylate烷氧基 || alkoxy。
石油专业英语复习资料Section 1Petroleum 石油Drilling 钻井Kelly 钻杆String 管汇、管柱Drill pipe 钻杆BHA(Bottom Hole Assembly) 底部钻具组合Sub/joint 接头Collar 钻铤Bit 钻头Finger bit 刮刀钻头Toothed bit 牙轮钻头Diamond bit 金刚石钻头DC 钻铤DS 钻柱Section 2Cat walk 猫道、滑道Cat head 猫头dog house (司钻)休息室、值班室dog leg 狗腿goose neck 鹅颈管monkey board 猴台(二层台)rat hole 大鼠洞mouse hole 小鼠洞fish 落鱼fishing 打捞kick 井涌BOP 防喷器KOP 造斜点Section 3Straight well 直井Directional well 定向井Horizontal well 水平井Extended reach well 大位移井Superdeep well 超深井Underbalance drilling 欠平衡钻井Casing drilling 套管钻井Drilling operations 钻井操作Make a trip/tripping 起下钻Trip up/out 起钻Trip in/down 下钻Make a connection 接单根Completion 固井Completion 完井Logging 测井、录井Derrick system 起升系统Rotary system 旋转系统Draw works 绞车Rotary table 转盘Circulating system 循环系统Muclpump 钻井泵Section 4 Hoisting system 起升系统1 Crown block 天车Traveling block 游动滑车(游车)Hook 大钩Wire line 钢丝绳Derrick 井架2 The type of derrick 井架类型Pyramid derrick 塔式井架Self-elevating derrick 自升式井架Cantilever derrick 前开口井架A-mast derrick A形井架W-mast derrick 桅形井架3 The draw works 绞车刹车Main brake 主刹车Assist brake 辅刹车Band brake 带式刹车Disc brake 盘式刹车Electromagnetic brake 电磁刹车Eaton brake 伊顿刹车Brake band 刹车带Brake drum 刹车筒Pitman 连杆Brake handle 刹把Brake block 刹车块Hydraulic disc brake 液压盘刹Section 5 The rotary system 旋转系统1 Rotary table 转盘Turntable 转台Master bushing 方补心Swivel 水龙头Top drive 顶驱Rotary hose 水龙带Standpipe 立管2 三管goose neck 鹅颈管wash pipe 冲管base pipe/center pipe 中心管3 三轴承main bearing 主轴承upper alignment bearing 上扶正轴承lower alignment bearing 下扶正轴承4 四密封upper machine oil seal 上机油密封lower machine oil seal 下机油密封upper drilling fluid seal 上钻井液密封lower drilling fluid seal 下钻井液密封section 6 The drilling fluid 钻井液1 Mud 泥浆Slurry 水泥浆2 The drilling fluid 钻井液Water base drilling fluid 水基钻井液Oil base drilling fluid 油基钻井液Oil-in water 水包油Water-in-oil 油包水Synthetic drilling fluid 合成基钻井液3 Liquid phase 液相Water 水Oil 油4 Solid phase 固相Clay 粘土Adulterant 加重剂Treating chemical 化学处理剂5 Bentonite 搬土Barite 重晶石Sang content 含砂量Solid phase content 固相含量Colloid 胶体Emulsion 乳状液Foam 泡沫Density 密度Viscosity 粘度Shear 切力Filtration 滤失Viscometer 粘度计Filter press 失水仪Density meter 密度计Section 7 The rig personnel 井队人员编制The rig personnel 井队人员编制Tool pusher 队长Assistant tool pusher 副队长Diller 司钻Secretary 书记assistant diller 副司钻derrickman 井架工roughneck 钻工beach worker 钳工mud man 泥浆工section 8 power and drive system 动力驱动系统1 Power and drive system 动力驱动系统Diesel engine 柴油机Current 电源DC(direct current) 直流电AC(alternating current) 交流电2 The plane of drive 驱动方式Unity drive 统一驱动Unit drive 单独驱动Subunit drive 分组驱动3 Power equipment 驱动设备Mechanical drive 机械驱动Electric drive 电驱动Combination drive 复合驱动Section 9 the actuating system 传动系统1 Type of actuating 传动类型Belt 胶带、皮带Chain 链条Gear 齿轮2 Belt rig 胶带钻机Chain rig 链条钻机Gear rig 齿轮钻机3 Hygraulic drive 液压传动Hygrodynamic drive 液力传动Electric drive 电传动4 Braking 减速Paralleling 并车Astern 倒车Shift 变速Section 10 the control system 控制系统1 The control system 控制系统Air control 气控Air feeder 供气设备Executive element 执行元件Control element 控制元件Assistant element 辅助元件2Air feeder供气设备Air compressor 空气压缩机Air tank 储气罐Air purification equipment 空气净化设备3Excutive element 执行元件Cylinder 气缸Air motor 气马达Air drive friction clutch 气动摩擦离合器Control element 控制元件Pressure control valve 压力控制阀门Temperature control valve 温度控制阀门Flow control valve 流量控制阀门4 Assistant element 辅助元件Antiflocculant 防凝器Alarm 报警器Potating joint 旋转接头Fitting 管汇、管件Section 11 The sub structure system 底座系统1 drilling floor 钻台Derrick 井架Drawworks 绞车Roary table 转盘Pipe setback 立根盒Wellhead tod 井口工具Driller” console 司钻控制台2 control room 机房Power package 动力机组Actuating equipment 传动机组Section 12 The assistant system 辅助系统1Blowout preventer(BOP) 防喷器Kick 井涌、溢流Blowout 井喷Well control 井控Shut well in 关井Kill the well 压井2 BOP 防喷器Rotary BOP 旋转防喷器Annulus BOP 环形防喷器Double ram type BOP 双闸板防喷器Spool 四通Ram type BOP 单闸板防喷器。
钻井液用润滑剂研究进展金军斌【摘要】The research advances of the lubricants for drilling fluid were reviewed.The basic knowledge of lubricants for drilling fluid was briefly introduced.The research and application of high-quality lubricants for drilling fluid was focused on,such as environmental lubricants,extreme pressure lubricants and nano lubricants.According to the recent reports,a large number of high-quality lubricants have been successfully synthesized and applied in the field,in order to achieve the requirement of drilling fluid lubrication performance.However,the drilling fluid lubrication performance decreased significantly when the temperature was above 150 ℃,because of the temperature and salt disadvantage of some environmental lubricants.Some extreme pressure lubricants could not meet the environmental requirements,and nano lubricants had compatibility problems.Furthermore,the development suggestions of the lubricants for drilling fluids were also proposed.%综述了近年来国内外钻井液润滑剂的研究进展,简要介绍了钻井液润滑剂的种类和润滑作用机理,重点介绍了环保润滑剂、极压润滑剂和纳米润滑剂等高效润滑剂的国内外研究和应用情况.指出国内外已成功开发出多种高效润滑剂以替代传统润滑剂,部分产品已成功现场应用,但部分环保润滑剂抗温、抗盐不足,150℃以上时润滑性能下降明显,部分极压润滑剂难以满足环保要求,纳米润滑剂配伍问题突出,最后提出了钻井液润滑剂今后研究和应用的发展建议.【期刊名称】《应用化工》【年(卷),期】2017(046)004【总页数】5页(P770-774)【关键词】钻井液;润滑剂;环保润滑剂;纳米润滑剂【作者】金军斌【作者单位】中国石化石油工程技术研究院,北京 100101【正文语种】中文【中图分类】TQ314;TE254.3随着石油勘探开发向海上和深部地层发展、页岩油气勘探开发加速,水平井数量增多和水平段长度增加,钻井作业对钻井液的润滑性能要求越来越高[1-2]。
乳液聚合物的合成及在钻井液中的研究【摘要】:为了克服聚丙烯酰胺类干粉化学剂的缺点,采用乳液聚合方法合成了2种乳液聚合物A和B,通过室内实验测试了2种乳液聚合物钻井液体系的各种性能,结果表明该类乳液聚合物在钻井液中具有增黏、提切、抗温、降失水的性能。
所合成的2种乳液聚合物属于同一体系,相比较,A的性能稍好于B,且合成A更经济,因此选用化学剂A更合适。
通过对比实验,自制的乳液聚合物具有比大庆乳液聚合物和河北乳液聚合物样品更低的API滤失量和更好的稳定性;相比其他包被剂,所合成的乳液聚合物具有更好的增黏、提切、降失水性能。
关键词:乳液聚合物;钻井液;降滤失Synthesis of Emulsion Polymer and Research in theDrilling FluidAbstract: In order to overcome the shortcomings of polyacrylamide type of dry chemical agent,this article synthesized two kinds of emulsion polymers A and B through emulsion polymerization. Various performance of emulsion polymer drilling fluid system were tested and analyzed through laboratory experiments,showing that adding such emulsion polymers into the drilling fluid can improve the performance of drilling fluid in viscosity increasing effect、increasing shear force、temperature resistance、filtration reductio. The two kinds of synthesis of emulsion polymer was belonged to the same system,in comparison,the performance of A was slightly better than B,but it was more economic to choose the chemical agent A. Through the contrast experiment,the API filtration and stability of homemade emulsion polymer was better than the daqing emulsion polymers and HeBei emulsion polymers,the performance of synthetic polymer emulsion in this paper in viscosity increasing effect、increasing shear force、temperature resistance、filtration reduction were better than other coating agent.Key word: emulsion polymer; drilling fluid; filtration reduction引言目前,中国油田用聚丙烯酰胺的产品形式基本为粉剂,现场应用时需要大型的溶解装置,且在制成干粉过程中,高温烘干和剪切作用又容易使高分子链降解或者断裂,使其性能变差。
2019年3月第34卷第2期西安石油大学学报(自然科学版)Journal of Xi'an Shiyou University (Natural Science Edition )Mar.2019Vol.34No.2收稿日期:2018-04-27基金项目:国家科技重大专项(2016ZX05040-005),中国博士后科学基金面上项目(2017M612344),山东省博士后创新项目专项(201703044)作者简介:刘均一(1988-),男,高级工程师,博士,研究方向:井壁稳定理论及防塌防漏技术、环保高性能钻井液技术。
E-mail :danielliu1988@126.comDOI :10.3969/j.issn.1673-064X.2019.02.013中图分类号:TE254文章编号:1673-064X (2019)02-0086-07文献标识码:A页岩气水平井强化井壁水基钻井液研究刘均一1,2,郭保雨1(1.中石化胜利石油工程有限公司钻井工艺研究院,山东东营257064;2.胜利油田博士后科研工作站,山东东营257064)摘要:利用物理或化学方法强化封堵页岩微纳米尺度裂缝是解决页岩气地层井壁失稳与井漏问题的技术关键。
在研究页岩气地层井壁失稳机理基础上,探讨了通过钻井液物理-化学协同封堵强化页岩井壁稳定的机理。
采用乳液聚合方法,研制了一种微纳米聚合物微球封堵剂,并利用压力传递实验、核磁共振等评价了微纳米聚合物微球封堵剂与化学封堵剂的协同封堵作用效果。
研究表明,微纳米聚合物微球“吸附-架桥-可变形填充”、化学封堵剂“封堵-固结”两种封堵机理协同作用,能够在井壁周围形成连续、致密的承压封堵层,阻止压力传递与滤液侵入,实现物化协同封堵强化井壁的目的。
进一步优化了页岩气地层强化井壁水基钻井液体系,密度达2.0g /cm 3时仍具有良好的流变、滤失及润滑性能,可有效地封堵页岩微纳米尺度缝隙、抑制页岩水化效应,为页岩气钻探开发提供了钻井液技术支撑。
石油钻井业常用专业词汇海绿石 || chlorite海上 || offshore海水泥浆 || sea water mud海湾 || bay海洋生物 || marine animal含量 || content含水量 || moisture content耗氧量(COD) || chemical oxygen demand耗氧量(BOD520) || biological oxygen demand核桃壳粉 || walnut shell flour核磁共振(NMR) || nuclear magnetic resonance 合成 || synthesis合成基钻井液 || synthetic base drilling fluid 合格 || eligible合理级配 || reasonable distribution褐煤 || lignite赫巴模式 || Herschel-Buckley model黑色正电胶(BPG) || black positive gel恒定滤失速率 || constant filtration rate葫芦串 || irregular borehole护胶剂 || colloid protecting resistance护胶作用 || colloid stability互层 || interbeded红外光谱 || infrared spectrography花岗岩 || granite划眼作业 || reaming operation化学螯合剂 || chelating agent化学冲洗液 || chemically washing solution化学结垢(沉淀) || chemical precipitation环保型 || environment friendly /acceptable环境保护 || environment protection环空当量密度 || annular equivalent density环空返速 || velocity in annular环空压耗 || annular pressure lost环氧丙烷 || epoxypropare环氧氯丙烷(ECH) || epoxy chloropropane ,epichlorohydric 缓蚀剂 || corrosion inhibitor磺化 || sulfonation磺化酚醛树脂 || sulfomethal phenolaldehy resin磺化剂 || sulfonating agent磺化类处理剂 || sulfonated additives磺化沥青 || sulfonated gilsonite磺化沥青泥浆 || sulfonated-asphalt mud磺甲基酚醛树脂 || sulfonated methypheuo formald-ehyde磺酸基团 || sulfonic acid group ,sulfo group灰色关联分析法 || gray relative analysis method 灰岩 || limestone回归分析 || regressive analysis回收率 || recovery percent回填还耕 || refilling for plowland火成岩 || igneous rock火山喷发岩 || volcanic混合金属层状氢氧化物(MMLHC) || mixed metal layer hydroxide compound混合金属氢氧化物(MMH) || mixed metal hydroxides 混合纤维 || composite fiber混合盐水 || mixed salt活动套管 || moving casing活度 || water activity活性硅灰 || activated grammite活性粘土矿物 || active clayey mineral活性污泥法 || activated sludge process宏观 || macroscopic。
广 东 化 工 2021年 第4期· 242 · 第48卷 总第438期FLAT-PRO 深水合成基钻井液恒流变作用机理研究李超1,罗健生1,刘刚1,史赫2(1.中海油田服务股份有限公司 油田化学事业部,河北 燕郊 065201;2.石油工程教育部重点实验室(中国石油大学(北京),北京 102249)[摘 要]目前,适应于深水、超深水作业的FLAT-PRO 恒流变合成基钻井液体系由于其良好的恒流变特性、抗污染能力及储层保护性,已在中国南海成功应用近10井。
但是近年来,所钻遇的地层越来越复杂,要求的温度范围和密度范围越来越高,这需要对合成基钻井液恒流变机理有更清楚的认识。
文章旨在FLAT-PRO 恒流变合成基钻井液体系的基础上,对体系恒流变机理进行研究。
体系中的核心处理剂流型调节剂通过氢键作用插入有机土层间,扩大层间距并促进其片层在油中高度分散,温度越高,插入有机土层间的流型调节剂分子越多,补偿由于温度升高导致的粘度降低,从而形成具有温度响应的网架结构。
[关键词]深水;恒流变机理;有机土;流型调节剂[中图分类号]TE254 [文献标识码]A [文章编号]1007-1865(2021)04-0242-02Study on the Flat-rheological Mechanism of FLAT-PRO Flat-rheologySynthetic-based Drilling Fluid System in DeepwaterLi Chao 1, Luo Jiansheng 1, Liu Gang 1, Shi He 2(1. COSL Oilfield Chemicals Division, Sanhe 065201;2. MOE Key Laboratory of Petroleum, China University of Petroleum (Beijing), Beijing 102249, China)Abstract: FLAT-PRO flat-rheology synthetic-based drilling fluid system in deepwater has excellent performance in flat-rheological property, anti-contamination and reservoir protection, it has been successfully in 10 wells in South China Sea .But with the formations drilling through more and more complex,the temperature and density required higher and higher, we requires a clearer study on the flat- rheological mechanism of the synthetic- based drilling fluid system. In this work, FLAT-PRO synthetic-based drilling fluid system was taken to clarify the mechanism of flat-rheology. The rheological-modifier could intercalate into the interlayer space of organoclays, enlarging the interlayer spacing and promoting the highly dispersion of platelets in oil through hydrogen bonding. The more rheological modifier molecules intercalated into the interlayer space of organoclays with temperature increasing led to a greater increase of rheological properties, forming a temperature-responsive dense network.Keywords: Deepwater ;Flat- rheological mechanism ;Organoclays ;Rheological modifier海洋深水钻井工程中常用的合成基钻井液面临窄安全密度窗口地层漏失严重、低温-高温大温差下乳液不稳定及低温流变性调控等技术难题,严重制约我国深海油气资源的钻探开发进程。
Effect of Synthetic Drilling Fluid Base Oils on Asphaltene Stability and Wetting in Sandstone Cores†Yongsheng Zhang,‡Jianxin Wang,§Norman R.Morrow,‡and Jill S.Buckley*,§Department of Chemical and Petroleum Engineering,University of Wyoming,Laramie,Wyoming82071,and New Mexico Petroleum Recovery Research Center,New Mexico Tech,Socorro,New Mexico87801Received September3,2004.Revised Manuscript Received November15,2004Tests of imbibition rates in Berea sandstone cores have been used to examine the wettability effects of displacement of crude oils with a number of synthetic base oils.In all cases examined to date,the products that flocculated asphaltenes from crude oils also caused water-wet sandstone cores to become markedly less water-wet or even oil-wet.Relatively minor effects on wetting were observed with base oils that did not destabilize asphaltenes.A simple diagnostic test of asphaltene stability can be used to identify specific crude oil/base oil pairs that precipitate asphaltenes.IntroductionWith the increasing use of oil-based drilling fluids, obtaining cores with wettability that is representative of reservoir conditions is becoming more difficult.The surfactants used in oil-based muds have long been suspected of affecting core wettability.They necessitate extensive cleaning and wettability restoration that add to the uncertainty in the results of core studies.The introduction of synthetic oil-based muds(SBMs)has compounded the problem of wettability alteration by raising the prospect of surface precipitation of asphalt-enes.In synthetic oil-based drilling fluids,diesel has been replaced,for environmental reasons,by base oils that are very low in aromatic hydrocarbons.Several types of base oil are now in use.They may be paraffinic or olefinic,or they may consist of other organic compounds such as esters.At sufficiently high concentration in mixtures with crude oils(for example,in mixing zones associated with displacement of crude oil),the paraffinic base oils are very likely to precipitate asphaltenes. Simple tests of asphaltene onset conditions show that a variety of olefinic base oils can also destabilize asphaltenes whereas ester products do not. Asphaltenes are implicated in many undesirable phenomena including plugging,fouling,emulsion sta-bilization,and wettability alteration.The extent to which asphaltenes create problems is more closely related to their stability than to their amount in an oil. Asphaltenes can be destabilized when oils are depres-surized or when oils are mixed with injected or lift gas. Whether asphaltenes precipitate under reservoir or well-bore conditions is a complicated question that has been addressed in previous papers.1,2In this paper we show that some synthetic oil-based drilling muds are a previously unrecognized source of potentially destabiliz-ing fluid.Asphaltene Stability.Asphaltenes,by definition, are the materials in a crude oil that are soluble in toluene and insoluble in pentane,hexane,or heptane. They represent a range of materials,some of which are insoluble in even higher molecular weight hydrocarbons such as pentadecane and more of which are insoluble in propane,ethane,and methane.The most direct method to assess the potential for any additive to destabilize asphaltenes is to add different amounts of additive to an oil and observe the resulting mixtures after some time has elapsed.(Note that adding oil to an additive can result in locally high concentrations of additive and overestimation of the tendency for floc-culation to occur.)The amount of time allowed before observations should be determined by the flocculation kinetics,which can sometimes be slow,on the order of days.3The appearance of asphaltene aggregates in an initially clear mixture indicates instability.The mixture with the smallest amount of additive in which ag-gregates appear is designated as the onset mixture. The solubility parameter of onset mixtures with n-paraffins can be estimated from measurements of the refractive index(RI).4For the synthetic base oils,there is no simple conversion between the RI and solubility parameter.Nevertheless,P RI(the RI of the mixture at the onset of precipitation)can provide a relative indica-tion of stability.Wettability Alteration and Assessment.Contact with crude oil,bitumen,or their heavy products such as fuel oil,coal tar,or creosote can alter the wetting of initially water-wet minerals through adsorption of polar†Presented at the5th International Conference on Petroleum Phase Behavior and Fouling.*To whom correspondence should be addressed.E-mail jill@ .‡University of Wyoming.§New Mexico Tech.(1)Wang,J.X.;Buckley,J.S.In Proceedings of the2001Oilfield Chemistry Symposium,Houston,TX,February13-16,2001,SPE Paper No.64994.(Available from SPE,Richardson,TX.)(2)Wang,J.X.;Buckley,J.S.;Burke,N.E.;Creek,J.L.SPE Prod. Facil.2004,19,152-160.(3)Mason,T.G.;Lin,M.Y.J.Chem.Phys.2003,119,565-571.(4)Buckley,J.S.;Hirasaki,G.J.;Liu,Y.;Von Drasek,S.;Wang,J. X.;Gill,B.S.Pet.Sci.Technol.1998,16,251-285.1412Energy&Fuels2005,19,1412-141610.1021/ef049777u CCC:$30.25©2005American Chemical SocietyPublished on Web03/18/2005materials including asphaltenes.5The extent of such wetting changes can be observed on smooth surfaces by measurements of contact angles and in porous media by observing the rate and extent of spontaneous imbibi-tion of water or oil.6-8Surface Precipitation.The extent to which a par-ticular crude oil alters wetting depends on many factors. These include the nature of the polar fractions of the oil,the mineralogy of surfaces with which the oil comes into contact,and the composition of the aqueous phase, if water is present.Adsorption mechanisms in the absence of water can be completely different from those that dominate when water is present.9In the latter case, there are several potential mechanisms by which oil components adsorb onto mineral surfaces including acid/ base and ion-binding interactions and surface precipita-tion of asphaltenes.The potential for surface precipi-tation depends on the existence of asphaltene components and on their stability.Sharp increases in contact angles that indicate more oil-wet conditions have been reported for mica surfaces aged in onset mixtures of crude oils and heptane,compared to mica aged in the same crude oils without added heptane.10It is likely that surface precipitation is responsible for making Berea sandstone cores less water-wet when an asphaltic crude oil is miscibly displaced by a paraffinic mineral oil.A com-parison is shown in Figure1(using published data11)for Minnelusa crude oil,displaced by decalin(5pore volumes)followed by Soltrol220(a paraffinic mineral oil),and the same crude oil displaced directly by the mineral oil.A slow and very limited extent of displace-ment of oil from Berea sandstone by spontaneous imbibition of water after direct displacement by para-ffinic mineral oil indicates that this core is much less water-wet than a similarly treated core in which direct contact between crude and mineral oils is avoided by displacement with decalin,an intermediate solvent.Experimental SectionCrude Oils.Three crude oils were used in this study:Fuji from the Gulf of Mexico,Gullfaks from the North Sea,and Minnelusa from Wyoming.Selected properties of these oils are summarized in Table1.They span a range of asphaltene content from0.4%to9%.Wettability ateration of silicate surfaces by crude oils can show distinct differences.For example,on quartz glass surfaces,Minnelusa crude oil induced strong wetting alteration that was stable to repeated measure-ment cycles of water advancing and receding contact angles, whereas the extent of wetting alteration induced by Gullfaks crude oil decreased with each measurement cycle.12 Synthetic Base Oils and n-Paraffins.Selected synthetic base oils were tested for their tendency to precipitate asphalt-enes from Fuji and Minnelusa crude oils.It is difficult to quantify the onset conditions in Gullfaks because there is very little material in the asphaltene fraction(Table1).Properties of the base oils tested are summarized in Table2,with density and viscosity data included for oils used in core tests.Soltrol 220,a refined mineral oil composed of C13-C16isoalkanes,is not a synthetic base oil,but is included in this study because it is frequently used in laboratory displacement tests,including those shown in Figure1.Asphaltene stability was also tested with three n-paraffins s n-heptane(n-C7),n-undecane(n-C11), and n-pentadecane(n-C15),all of which were purchased from Fisher Scientific with greater than99%purity s for comparison to the synthetic base oils.Onset Measurements.Mixtures with varying volume percentages of crude and synthetic base oils or n-alkanes were prepared in batch mode24h before observation.The temper-ature was maintained at20or60°C during the storage period. The absence or presence of flocculated asphaltenes was determined by microscopic observation,as described else-where.13,14Onset solubility conditions were quantified by measurements of the RI using an automatic refractometer (Index Instruments,model GPR11-37)with the temperature maintained by a circulating water bath.The accuracy of the RI measurement is(0.0001.The accuracy of P RI is determined by the minimum volume differential in the batch experiments. Near the onset,mixtures differing by1vol%precipitant were observed,and the accuracy of P RI is thus about(0.001.Cores.Berea sandstone core samples,3.8cm in diameter and7.5cm in length,were cut from two blocks,identified as C4and C5,with similar petrophysical properties.Their average air permeability(k g)was about80md,and their porosity was about17%.Initially water-wet cores were exposed first to synthetic seawater(containing28000ppm NaCl,935 ppm KCl,5365ppm MgCl2,1190ppm CaCl2,and100ppm NaN3as biocide,with a total dissolved solids content of35490 ppm)and then flooded with viscous mineral oil to establish an initial water saturation(S wi).The mineral oil was displaced by decalin,which was in turn displaced by crude oil.Cores(5)Buckley,J.S.Curr.Opin.Colloid Interface Sci.2001,6,191-196.(6)Morrow,N.R.J.Pet.Technol.1990,42,1476-1484.(7)Morrow,N.R.;Mason,G.Curr.Opin.Colloid Interface Sci.2001, 6,321-337.(8)Tong,Z.X.;Xie,X.;Morrow,N.R.Petrophysics2003,44,233-242.(9)Buckley,J.S.;Liu,Y.;Monsterleet,S.SPE J.1998,3,54-61.(10)Al-Maamari,R.S.H.;Buckley,J.S.SPE Reservoir Eval.Eng. 2003,6,210-214.(11)Tie,H.;Tong,Z.;Morrow,N.R.Proceedings of the2003 International Symposium of the Society of Core Analysts,Pau,France, September21-24,2003,SCA Paper No.2003-02.(Available from theSociety of Core Analysts,Dublin,CA.)(12)Xie,X.;Morrow,N.R.;Buckley,J.S.J.Pet.Sci.Eng.2002, 33,147-159.(13)Buckley,J.S.;Wang,J.X.J.Pet.Sci.Eng.2002,33,195-202.(14)Wang,J.Ph.D.Thesis,New Mexico Institute of Mining& Technology,Socorro,NM,2000.Figure1.Cores are less water-wet,as indicated by slower imbibition if crude oil is displaced with a paraffinic oil(after ref11).The dimensionless time,t D,is defined by eq1.Rates of imbibition were measured in Berea sandstone at ambient conditions after aging of cores in crude oil at elevated tem-perature;see ref11for experimental details.Effect of SBM Base Oils on Asphaltenes and Wetting Energy&Fuels,Vol.19,No.4,20051413were then aged at elevated temperature (75°C)for 10days.The abbreviation MXW is used to denote mixed-wet cores that contain connate water and crude oil.MXW-F denotes a core from which the crude oil has been miscibly displaced to leave adsorbed films (F)that control the wetting conditions.Rate of Imbibition.The rate of imbibition of water was determined from the rate of oil recovery versus dimensionless time,t D ,scaled to account for differences in permeability and porosity,sample geometry,liquid viscosities,and interfacial tension (eq 1,where t is elapsed imbibition time,k is perme-ability,φis porosity,σis interfacial tension,µo and µw are viscosities of the oil and water phases,respectively,and L c is a characteristic length that depends on the geometry of the imbibing core).This empirical scaling group has been shown to facilitatecomparisons of imbibition rates using cores and fluids with a wide range of properties.7Since core wettability is not included in the scaling group,differences in wetting can be demon-strated by comparing scaled rates of imbibition,as in Figure 1,where examples of scaled rate of imbibition results are shown for MXW-F cores.Results and DiscussionAsphaltene Stability.Asphaltenes were destabi-lized by most of the synthetic base oils tested.Figure 2summarizes asphaltene onset tests with Fuji crude oil at 20°C.The RI of each base oil is shown next to the RI of the mixture at onset conditions (P RI ).The onset conditions observed with mixtures of Fuji and two n -paraffins,n -heptane and n -pentadecane,are included for comparison.The P RI for Accolade was similar to that for n -heptane;for other base oils,P RI was closer to that for n -pentadecane.No asphaltene onset was found with either Petrofree (original)or Petrofree LV.Minnelusa stock tank crude oil was tested at 60°C to disperse existing asphaltene aggregates that would interfere with onset observations.The results are sum-marized in Figure 3.LVT 200precipitates asphaltenes at solubility conditions that are intermediate between those of n -C 7and n -C 11;Soltrol 220and Petrofree SF produce asphaltene aggregates at solubility conditions that are closer to those of the n -C 15onset.No precipita-tion was observed in mixtures of Petrofree LV with Minnelusa crude oil in anyproportions.Figure 2.RI and P RI for the onset of asphaltene precipitation from Fuji crude oil at 20°C.Table 1.Crude Oil Propertiesname API (deg)RI at 20°C RI at 60°C n -C 7asphaltene concn (wt %)acid no.(mg of KOH/g of oil)base no.(mg of KOH/g of oil)viscosity at 20°C (mPa s)Fuji27.9 1.4995 1.4834 2.00.70 1.3229Gullfaks 27.1 1.4930 1.47610.40.24 1.1916Minnelusa24.61.51431.49799.00.172.2956Table 2.Properties of Base Oils and Mineral Oiltrade name material descriptiondensity at 20°C (g/mL)RI at 20°C viscosity at 20°C (mPa s)Accolade blend of internal olefins and esters 0.8243 1.4424 4.86Biobase 240linear R -olefins 0.7712 1.4359 2.07Biobase 560linear paraffins 0.7596 1.4278 1.92GOM 4blend internal olefins 0.7845 1.4436 3.49LVT 200paraffins0.8177 1.4503 2.91Petrofree (original)fatty acid esters 0.8581 1.44207.62Petrofree LV fatty acid esters 0.8617 1.4354 3.86Petrofree SF internal olefins 0.7847 1.4448 3.64SF Base internal olefins 0.7852 1.4445 3.62Soltrol 220C 13-C 16isoalkanes 0.7833 1.4357 3.80XP-07linear paraffins0.76171.42862.31t D )t(k φ)1/2σ(µo µw )1/21L c2(1)1414Energy &Fuels,Vol.19,No.4,2005Zhang et al.Alteration of Wetting in Cores.A reference curve for very strongly water-wet recovery of refined oil is included in Figures 4-6.Results for Minnelusa crude oil are shown in Figure 4.Aging in Minnelusa (MXW)resulted in a significant change from the very strongly water-wet reference curve.Displacement of the Min-nelusa crude oil by any of the synthetic base oils resulted in a reduced rate of imbibition.Cores treated with Gullfaks (Figure 5)are more water-wet,but depressed rates were observed when the oil was dis-placed by either Petrofree SF (internal olefin)or LVT 200(paraffinic oil).Similar results are shown for Fuji crude oil in Figure 6.The internal olefin base oils (Petrofree SF)and the paraffinic LVT 200consistently suppress the initial rate of imbibition,indicating less water-wet conditions are obtained when any of these three crude oils is displaced with these synthetic base oils.Surface precipitation of asphaltenes during the diplacement of crude oil by paraffinic or olefinic synthetic base oils must be sus-pected as a cause of wettability change.The extentofFigure 5.Wetting conditions in Berea core after it was aged in Gullfaks crude oil are shown by the line labeled MXW.The other three curves show seawater imbibition rates after the crude oil was displaced by the productsindicated.Figure 6.Wetting conditions in Berea core after it was aged in Fuji crude oil are shown by the line labeled MXW.The other three curves show seawater imbibition rates after the crude oil was displaced by the productsindicated.Figure 3.RI and P RI for the onset of asphaltene precipitation from Minnelusa crude oil at 60°C.Figure 4.Wetting conditions in Berea core after it was aged in Minnelusa crude oil are shown by the line labeled MXW.(Numbers beginning C5-identify specific cores.IFT is inter-facial tension.T a ,T f ,and T m are the aging,flushing,and measurement temperatures.)The other three curves show seawater imbibition rates after the crude oil was displaced by the products indicated.Effect of SBM Base Oils on Asphaltenes and Wetting Energy &Fuels,Vol.19,No.4,20051415change toward oil wetness will depend on the crude oil/ brine/rock combination.For the fatty acid esters(Petro-free LV),there was no drastic reduction in water wetness.In one case imbibition was somewhat slower and in the other two cases faster than imbibition into the MXW core.ConclusionsParaffinic and olefinic base oils used to make up some synthetic oil-based drilling muds can destabilize as-phaltenes.All of the paraffinic and olefinic products tested induced asphaltene precipitation at solubility conditions comparable to those of n-paraffins in the heptane to pentadecane range.Among the synthetic base oil products tested,only the fatty acid ester-based products did not act as asphaltene precipitants.Cores in which there was mixing of synthetic base oils with crude oil during displacement became less water-wet,except in the case of exposure to a fatty acid ester. These results are consistent with the surface precipita-tion mechanism of wetting alteration due to destabiliza-tion of asphaltenes.Acknowledgment.This work was supported by the U.S.DOE(NETL)under Contract Number DE-FC26-01BC15164.We thank Halliburton and ChevronTexaco for samples.Additional support was provided by the State of New Mexico and the Enhanced Oil Recovery Institute of the University of Wyoming.EF049777U1416Energy&Fuels,Vol.19,No.4,2005Zhang et al.。