奥数专题之还原问题
- 格式:docx
- 大小:8.20 KB
- 文档页数:3
奥数知识点:还原问题
奥数知识点:还原问题
在小学数学应用题中,还有这么一类问题:依照题意叙述由后往前推算而求出原来的数.这类应用题,我们称之为还原问题.下面小编给大家精心搜集整理的奥数知识点:还原问题,欢迎阅读!
奥数知识点:还原问题
已知某个数经过加、减、乘、除运算后所得的结果,要求原数,这类问题叫做还原问题,还原问题又叫逆运算问题。
解决这类问题通常运用倒推法。
遇到比较复杂的还原问题,可以借助画图和列表来解决这些问题。
例1:
小刚的奶奶今年年龄减去7后,缩小9倍,再加上2之后,扩大10倍,恰好是100岁。
小刚的奶奶今年多少岁?
分析与解答:从最后一个条件恰好是100岁向前推算,扩大10倍后是100岁,没有扩大10倍之前应是100÷10=10岁;加上2之后是10岁,没有加2之前应是10-2=8岁;没有缩小9倍之前应是8×9=72岁;减去7之后是72岁,没有减去7前应是72+7=79岁。
所以,小刚的奶奶今年是79岁。
例2:
某商场出售洗衣机,上午售出总数的一半多10台,下午售出剩下的一半多20台,还剩95台。
这个商场原来有洗衣机多少台?
分析与解答:从“下午售出剩下的一半还多20台”和“还剩95
台”向前倒推,从图中可以看出,剩下的95台和下午多卖的'20台合起来,即95+20=115台正好是上午售后剩下的一半,那么115×2=230台就是上午售出后剩下的台数。
而230台和10台合起来,即230+10=240台又正好是总数的一半。
那么,240×2=480台就是原有洗衣机的台数。
第一套还原问题■例1、1、一篮鸡蛋第一次吃去了全部的一半多1个,第二次又吃去了余下的一半少1个,这时还剩18个,原来鸡蛋有多少个?【做一做】2、小红去超市买学习用品,买了几只圆珠笔用去了一半多2元,买笔盒用去了余下的一半多1元,还剩5元,小红原来有多少元?3、有一筐鸡蛋,第一次吃去全部的一半少5个,第二次吃去余下的一半少6个,结果还剩下28个鸡蛋,求原来有多少个鸡蛋?4、儿童玩具店有一批玩具,卖掉200件后,又运来500件,再卖掉400件,还剩下300件,儿童玩具店原有玩具多少件?■例2、5、一根绳子剪去全长的一半多6米,还剩下16米,原来这根绳子是多少米?【做一做】6、一捆电线,用去全长的一半多4米,还剩16米,这捆电线原来长多少米?7、三年级一班一半人参加音乐小组,余下的人中又有一半人参加电脑小组,这时还剩下13人,都参加书法小组,这个班有多少人?H15-C-1页8、一捆电线,用去全长的一半少4米,还剩16米,这捆电线原来长多少米?■例3、9、某数加上6,乘以6,除以6,其结果等于6,某数是多少?【做一做】10、小红的奶奶的年龄加上17后,缩小4倍,再减去15之后,扩大10倍,恰好是100岁,小红的奶奶今年多少岁?11、一根绳子对折,再对折,这时每段长8米,原来这绳子长多少米?12、一个数加上6,除以2,再减去9,最后得8,求这个数。
■例4、13、有三盒乒乓球共90个,如果从第一盒拿出8个到第二盒,再从第二盒拿出10个到第三盒,那么三盒乒乓球的个数就相等,第二盒原来的有多少个乒乓球?【做一做】14、三只鱼缸里养63条金鱼,如果从第一只鱼缸里拿8条到第三只鱼缸里去,再从第二只鱼缸里拿4条金鱼到第三只鱼缸里去,那么三只鱼缸里的金鱼的条数相等,第三只鱼缸里原来有多少条金鱼?15、篮子里有若干个桔子,取它的一半又一个给第一人,再取其余的一半又2个给第二人,又取最后所余的一半又3个给第三人,篮内的桔子恰好分完,问篮子里原有多少个桔子?16、书架上分上、中、下三层,一共发放192本书,现在从上层取出与中层同样多的书放到中层,再从中层取出与下层同样多的书放到下层,最后从下层取出与上层剩下的本数同样多的书放到上层,这时三层所放的书本数相同。
小学生奥数还原问题应用题1.小学生奥数还原问题应用题1、三个容器内都有水,如果甲容器的1/3水倒入乙容器,再把乙容器的1/4倒入丙容器,最后再把丙容器的1/10倒入甲容器,那么各容器的水都是9升,每个容器里原来有水多少升?2、去年年终甲、乙、丙三人领取了数额不同的奖金,如果甲把自己的一部分奖金分给乙、丙两人,使乙、丙的奖金数额增加一倍;然后乙又拿出奖金的一部分分给甲、丙二人,使甲、丙的奖金额增加一倍;最后丙也拿出一部分奖金分给甲、乙二人,使甲、乙二人的奖金数额增加一倍,这样三人的奖金都是96元,则原来甲的奖金应是多少元?3、某男孩付一角钱进入一家商店,他在商店里花了剩余的钱的一半,走出商店时,又付了一角钱,之后,他又付一角钱进入第二家商店,在这里他花了剩余的钱的一半,走出商店时又付了一角钱。
接着他又用同样的方式进出第三家和第四家商店,当他离开第四家商店后,这时他身上只剩下一角钱,问:他进入第一家商店之前身上有多少钱?4、甲、乙、丙三堆零件,第一次从甲堆中拿出零件放到乙、丙中去,使乙、丙分别增加1/3,第二次从乙堆中拿到甲、丙中去,使甲、丙分别增加1/3。
第三次再从丙堆中拿到甲、乙中去,也使甲、乙分别增加1/3,这样三堆零件都是320个。
甲堆原有零件多少个?5、兄弟俩各有若干元钱,在哥哥拿出1/5给弟弟后,弟弟拿出1/4给哥哥,这时两人各有180元。
原来哥哥有多少元?弟弟有多少元?2.小学生奥数还原问题应用题24千克水被分装在三个瓶子中,第一次把A瓶的水倒一部分给B、c两瓶,使B、c两瓶的水比原来增加1倍;第二次把B瓶的水倒一部分给A、c两瓶,也使A、c两瓶的水比瓶中已有的水增加1倍;第三次把c瓶的水倒一部分给A、B 两瓶,使A、B两瓶的水比瓶中已有的水增加1倍。
这样倒了三次后,三瓶水同样多。
问三个瓶中原来各装水多少千克?分析:我们可以用倒推法来做这个题目,由题意可知,最后一次倒水后,A、B、c三个瓶中各有24÷3=8千克水,由题意可推算出第二次倒水之后A、B、c三个瓶中的水分别为8÷2=4、8÷2=4、8×2=16千克,再用同样的方法推算出最初A、B、c三个瓶中的水分别是多少。
1.小学五年级奥数还原问题练习题【习题1】小丽因病没参加班上的考试,其他同学的平均成绩是96分,小丽补考的成绩是66分,加上小丽的成绩后,全班的平均成绩是95分,全班有()人?【答案】【解析】小丽没考试前,其他同学的平均成绩是96分,可看成每个同学都考了96分;而小丽补考后,全班的平均成绩是95分,可看成每个同学都考了95分,即除小丽外,每个同学都要移走96-95=1(分)给小丽。
而小丽要达到全班的平均成绩,还需要不上95-66=29(分),说明全班除小丽外还有同学29个,全班有同学29+1+30(个)。
【习题2】喜羊羊和美羊羊一共买了36个包子,路上被灰太狼抢走了4个,喜羊羊比美羊羊多吃了6个,最后包子没有剩余,那么美羊羊吃了()个包子。
【答案】【解析】美羊羊吃了【(36-4)-6】÷2=13(个)。
【习题3】青松学校新进99本书,分给三、四、五三个年级,三年级比四年级多分了2本,四年级比五年级多分了5本,五年级分得()本书。
【答案】【解析】三个年级总和为99本,五年级最少,四年级比五年级多5本,三年级比四年级多2本,所以三年级比五年级多5+2=7(本),把三年级拿掉7本,四年级拿掉5本,都变得和五年级一样多了,所以五年级为:(99-7-5)÷3=29(本)。
【习题4】五个同学期末考试数学成绩平均分是85分,而其中三个同学的平均成绩为83分,另外两个同学的平均成绩是()分。
【答案】【解析】另外两个同学的平均成绩是(85×5-83×3)÷2=88分。
2.小学五年级奥数还原问题练习题1、甲、乙、丙三个中队,共有图书498册,如果甲中队给乙中队4册,乙中队给丙中队10册,那么三个中队的图书册数相等。
原来甲中队有图书多少册?2、小虎做一道减法题时,把被减数十位上的6错写成9,减数个位上的9错写成6,最后所得的差是577。
这道题的正确答案是多少?3、同学们玩扔沙袋游戏,甲、乙两班共有140只沙袋,如果甲班先给乙班5只,乙班又给甲班8只,这时两班沙袋数相等。
本讲主要学习还原问题.通过本节课的学习,可以使学生掌握倒推法的解题思路以及方法,并会运用倒推法解决问题.1. 掌握用倒推法解单个变量的还原问题.2. 了解用倒推法解多个变量的还原问题.3. 培养学生“倒推”的思想.一、还原问题已知一个数,经过某些运算之后,得到了一个新数,求原来的数是多少的应用问题,它的解法常常是以新数为基础,按运算顺序倒推回去,解出原数,这种方法叫做逆推法或还原法,这种问题就是还原问题.还原问题又叫做逆推运算问题.解这类问题利用加减互为逆运算和乘除互为逆运算的道理,根据题意的叙述顺序由后向前逆推计算.在计算过程中采用相反的运算,逐步逆推.二、解还原问题的方法在解题过程中注意两个相反:一是运算次序与原来相反;二是运算方法与原来相反. 方法:倒推法。
口诀:加减互逆,乘除互逆,要求原数,逆推新数.关键:从最后结果出发,逐步向前一步一步推理,每一步运算都是原来运算的逆运算,即变加为减,变减为加,变乘为除,变除为乘.列式时还要注意运算顺序,正确使用括号.模块一、单个变量的还原问题【例 1】 刚打完篮球,冬冬觉得非常渴,就拿起一大瓶矿泉水狂喝.他第一口就喝了整瓶水的一半,第二口又喝了剩下的13,第三口则喝了剩下的14,第四口再喝剩下的15,第五口喝了剩下的16.此时瓶子里还剩0.5升矿泉水,那么最开始瓶子里有几升矿泉水?例题精讲知识点拨教学目标6-1-2.还原问题(二)【例3】有60名学生,男生、女生各30名,他们手拉手围成一个圆圈.如果让原本牵着手的男生和女生放开手,可以分成18个小组.那么,如果原本牵着手的男生和男生放开手时,分成了_ _个小组.模块二、多个变量的还原问题【例4】甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。
这时四个组的书一样多。
这说明甲组原来有书______ 本。
还原问题知识要点在数学问题中,经常遇到这样的应用题:一个数或者一种量,通过一步一步的变化最后得到结果,要我们求最初的数或量。
如果按照一般的解题方法来求解这种题就比较困难,但如果从结果出发,沿着它的变化规律,利用加法与减法,乘法与除法的互逆关系,一步一步的倒着往前推,直到求出最初的数或量。
这样思考问题的方法叫还原法,这样的问题叫还原问题。
解答这类问题的关键在于“还原”。
“还原”的基本途径是:从最后一个已知数开始,逐步逆推回去。
原题为加,倒推里为减;原题为减,倒推时为加;原题为乘,倒推时为除;原题为除,倒推时为乘。
此类应用题也可以根据原题的叙述顺序,列出等量关系式按列方程解应用题的方法进行解答。
典例解析及同步练习典例1 某商场周日出售液晶电视机。
上午售出总数的一半多10台,下午售出剩下的一半多15台,还剩40台。
商场这天原有液晶电视机多少台?解析:从“下午售出剩下的一半多15台”和“还剩下40台”向前倒推。
40台和下午多卖的15台合起来,即40+15=55(台)(如图),正好是上午售出后剩下的一半,那么55×2=110(台)就是上午售后剩下的台数,而110台和10台合起来,即110+10=120(台),又正好是总数的一半,那么120×2=240(台),就是原来液晶电视机的台数。
10台 15台 40台上午售出下午售出还剩解:【(40+15)×2+10】×2=240(台)答:商场这天原有液晶电视机240台。
举一反三训练11、小明的爷爷说:“把我的年龄加上25,除以4,再减去23,最后乘25,恰好是半百。
”你知道小明的爷爷今年多少岁吗?2、小军用自己的零花钱的一半买了一本故事书,后来妈妈又给了他4元6角,他又拿出其中的一半多2角买了一本连环画,结果还剩5元6角,小军原来有多少元?3、冬冬去银行取款,第一次取出了存款的一半还多5元,第二次取了余下的一半少10元,这时存折上还剩下125元,冬冬原有存款多少元?4、超市运来一批苹果,上午卖出总数的一半少15个,下午又卖出剩下的一半少20个,还剩下140个苹果,这批苹果一共有多少个?典例2 甲、乙、丙、丁四人各有故事书若干本,甲将自己的故事书拿一部分给乙、丙、丁,使他们的书增加1倍,然后,乙又拿出一部分故事书使甲、乙、丙的书增加1倍,然后,丙又拿出一部分故事书使得甲、乙、丁的书增加1倍,最后,丁也拿出一部分故事书使得甲、乙、丙的书增加1倍时,甲、乙、丙、丁手中都有32本书。
还原问题一有一位老人说:“把我的年龄加上12,再用4除,再减去15后乘以10,恰好是100岁。
”这位老人有多少岁呢?解这个题目要从所叙述的最后结果出发,利用已给条件一步步倒着推算,同学们不难看出,这位老人的年龄是(100÷10+15)×4—12=88(岁)。
从这一例子可以看出,对于有些问题,当顺着题目条件的叙述去寻找解法时,往往有一定的困难,但是,如果改变思考顺序,从问题叙述的最后结果出发,一步一步倒着思考,一步一步往回算,原来加的用减,减的用加,原来乘的用除,除的用乘,那么问题便容易解决。
这种解题方法叫做还原法或逆推法,用还原法解题的问题叫做还原问题。
入门题:1、小刚的奶奶今年年龄减去7后,缩小9倍,再加上2后,扩大10倍,恰好是100岁,小刚的奶奶今年多少岁?2、一个数的3倍加上6,再减去9,最后乘以2,结果得60。
求这个数。
3、商场出售洗衣机,上午售出总数的一半多10台,下午售出剩下的一半多20台,还剩95台,这个商场原来有洗衣机多少台?4、小明、小强和小勇三个人共有故事书60本。
如果小强向小明借3本后,又借给小勇5本,结果三个人的故事书的本数相等。
这三个人原来各有故事书多少本?5、王亮和李强各有画片若干张。
如果王亮拿出和李强同样多的画片给李强,李强再拿出和王亮同样多的画片给王亮,这时两个人都有24张。
问王亮和李强原来各有画片多少张?练习题:1、粮库内有一批大米,第一次运出总数的一半多3吨,第二次运出剩下的一半多5吨,还剩下4吨。
问粮库原有大米多少吨?2、爸爸买了一些橘子,全家人第一天吃了这些橘子的一半多1个,第二天吃了剩下的一半多1个,第三天又吃了剩下的一半多1个,还剩下1个。
问爸爸买了多少个橘子?3、甲、乙、丙、丁四个小朋友有彩色玻璃球100颗,甲给乙13颗,乙给丙18颗,丙给丁16颗,丁给甲2颗后四人的个数相等。
他们原来各有玻璃球多少颗?4、书架分为上、中、下三层,共放192本书。
【#小学奥数# 导语】还原问题(pull back problem)是典型应用题之一,指已知某数经过四则运算的结果,要求出某数的应用题。
解这类问题应按题目所述顺序的逆序,施行所述运算的逆运算,就可列出算式。
简言之就是反其道而行之就能算出结果。
以下是?无忧考网整理的《小学生奥数还原问题及解析》相关资料,希望帮助到您。
1.小学生奥数还原问题及解析仓库里有一批大米。
第一天售出的重量比总数的一半少12吨。
第二天售出的重量比剩下的一半少12吨,结果还剩下19吨。
这个仓库原有大米多少吨?考点:逆推问题。
分析:此题应用逆推法,从后向前推算,即可得出。
解答:解:[(78-12)×2-12]×2,=[132-12]×2,=240(吨)答:这个仓库原有大米240吨2.小学生奥数还原问题及解析甲、乙、丙三人各有连环画若干本。
如果甲给乙5本,乙给丙10本,丙给甲15本,那么三人所有的连环画都是35本。
他们原来各有多少本?分析:因为丙给甲15本,则之前丙有35+15=50(本),在这之前,乙给丙10本,则丙原有50-10=40(本);乙给丙10本,则之前乙有35+10=45(本),在这之前,甲给乙5本,则乙原有45-5=40(本);那么,甲原有35×3-40-40,计算即可。
解答:解:丙原有:35+15-10=40(本);乙原有:35+10-5=40(本);甲原有:35×3-40-40,=105-80,=25(本);答:原来甲有25本,乙有40本,丙有40本。
3.小学生奥数还原问题及解析24千克水被分装在三个瓶子中,第一次把A瓶的水倒一部分给B、c两瓶,使B、c两瓶的水比原来增加1倍;第二次把B瓶的水倒一部分给A、c两瓶,也使A、c两瓶的水比瓶中已有的水增加1倍;第三次把c瓶的水倒一部分给A、B 两瓶,使A、B两瓶的水比瓶中已有的水增加1倍。
这样倒了三次后,三瓶水同样多。
还原问题错中求解
例1:一个数减16加上24,再除以7得32,求这个数?
例2:远远今年的年龄乘以7,加上4,除以6,减去7,再除以3,正好等于1,请你计算远远今年几岁?
练习:1、一个数加上5,乘5,减去5,除以5,结果还等于5,求这个数。
2、某数扩大3倍,再加上8,减去3,除以5后得4,这个数是多少?例3:(1)小马虎在做减法题时,把被减数十位上的3错写成8,结果差是85,正确的差是多少?
(2)小马虎在做减法题时,把被减数个位上的9看成了6,结果得到的差是159,正确的差是多少?
规律:在减法算式中被减数变大,差变大,求正确的结果用“-”。
被减数变小,差变小,求正确的结果用“+”。
例4:(1)小丽在做一道减法题时,把被减数十位上的2看成了5,结果得到的差是342,正确的差是多少?
(2)在减法算式中,错把减数个位上的7看做了2,结果得到的差是254,正确的差是多少?
练习:1、小亮在做一道减法算式时,把被减数十位上的7看成了1,结果得到的差是111,求正确答案。
2、在减法算式中,把被减数十位上的3写成了5,结果得到的差是169,上确的差是多少?
规律:在减法算式中减数变大,差变小,求正确的结果用“+”。
减数变小,差变大,求正确的结果用“-”。
例5:小丽在做一道减法题时,错把被减数十位上的2看做了7,减数个位上的5看做了8,结果得到的差是592,正确的差是多少?
练习:小红做一道减法题,把被减数十位上的6当数9,把减数个位上的3当做5,结果是217,正确答案是多少?。
奥数专题之还原问题5
1.一个数减去2487,小马虎在计算时错把被减数百位和十位的
数交换了,结果得8439,正确的结果是多少?
2.某数依次加上4,乘以4,减去4,除以4,最后得7.求某数.
3.五只猴子分一堆桃子.第一只猴子先去把桃子分成五份,拿走
了自己的一份;第二只猴子以为谁也没来分过,把剩余的桃子又分成
五份,拿走了自己的一份.以后每只猴子都以为谁也没来分过,都把
剩余的桃子分成五份,拿走了自己的一份,最后还剩下1024个桃子.
问这堆桃子原来是多少个?
4.一种商品,经过连续两次降价后,售价是16元.已知每次降价
25%,求这种商品原来的价格是多少钱?
5.洞口县粮食连年大丰收,曾两次受到了国务院的表彰.他们成
功的经验是大面积推广了杂交水稻.如某农户水稻亩产连续三年以2
0%的速度递增,今年他的水稻亩产量达1440千克.问这位农户前年的
水稻亩产量是多少千克?
6.有一个正方形,以它的一条对角线为边长作新正方形;又以新
正方形的对角线为边长作新正方形.如左图所示.如此这样作下去,得
到第八个正方形的面积是384平方厘米.求原正方形的面积.
7.甲、乙、丙三个小朋友共贺年卡90张,如果甲给乙3张后,
乙又送给丙5张,那么三个人的贺年卡张数刚好相同。问甲乙丙三个
小朋友原来各有贺年卡多少张?
8.甲、乙、丙、丁四个小朋友有彩色玻璃弹子100颗,甲给乙1
3颗,乙给丙18颗,丙给丁16颗,丁给甲2颗后四人的个数相等。
他们原来各有子弹多少颗?
9.王亮和李强各有画片若干张,如果王亮拿出和李强同样多的画
片送给李强,李强再拿出和王亮同样多的画片给王亮,这时两个人都
有24张,问王亮和李强原来各有画片多少张?
10.书架上分上中下三层,共放192本书,现从上层取出与中层
同样多的书放到中层,再从中层取出与下层同样多的书放到下层,最
后,从下层取出上层取出上层剩下的同样多的书放到上层,这时三层
书架所放的书本数相等,这个书架上中下各层原来各放多少本书?
11.李辉和张新各搬60本图书,李辉抢先拿了若干本,张新看李
辉拿了太多,就抢了一半,李辉不肯,张新就给了他10本,这时李
辉比张新多4本。问最初李辉拿了多少本?
12.有甲、乙、丙三个数,从甲数中拿出15加到乙数,再从乙数
中拿出18加到丙数。最后从丙数拿出12加到甲数,这时三个数都是
180。问甲、乙、丙三个数原来各是多少?
13.有一种水草生长很快,一天增长一倍,如果第一天往池塘里
投入一颗草,第二天就发展为两棵,第10天恰好长满池塘,如果第
一天投入4棵,问几天能长满池塘?
14.太郎和次郎各有钱若干日元,先是太郎把自己的钱一半给了
次郎,然后次郎把他所有钱的1/3给了太郎,以后太郎又把他所有
钱的1/5给了次郎.这时太郎有了675日元,次郎有了1325
日元.最初两人各有多少钱?