高一数学1.1.1任意角评估训练新课程新课标必修四
- 格式:doc
- 大小:81.00 KB
- 文档页数:3
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课时素养评价一任意角(15分钟30分)1.在①160°;②480°;③-960°;④1 530°这四个角中,属于第二象限角的是( )A.①B.①②C.①②③D.①②③④【解析】选C.②480°=120°+360°是第二象限的角;③-960°=-3×360°+120°是第二象限的角;④1 530°=4×360°+90°不是第二象限的角.2.下列说法中,正确的是( )A.第二象限的角都大于90°B.第二象限的角大于第一象限的角C.若角α与角β不相等,则α与β的终边不可能重合D.若角α与角β的终边在一条直线上,则α-β=k·180°(k∈Z)【解析】选D.A错,例如-225°=-360°+135°是第二象限的角,但小于90°;B错,α=135°是第二象限角,β=360°+45°是第一象限的角,但α<β;C错,α=360°,β=720°,则α≠β,但二者终边重合;D正确,α与β的终边在一条直线上,则二者的终边重合或相差180°的整数倍,故α-β=k·180°(k∈Z).3.与-60°角的终边相同的角是( )A.300°B.240°C.120°D.60°【解析】选A.因为-60°=-360°+300°,所以与-60°角的终边相同的角是300°.4.如图所示,阴影部分表示的角的集合为(含边界) .【解析】如题干图,阴影部分表示的角α位于第一、三象限,在第一象限,0°≤α≤60°;在第三象限,180°≤α≤240°,所以阴影部分表示的角的集合为(含边界):{α|n·360°≤α≤n·360°+60°或n·360°+180°≤α≤n·360°+180°+60°,n∈Z}={α|k·180°≤α≤k·180°+60°,k∈Z}.答案:{α|k·180°≤α≤k·180°+60°,k∈Z}5.在0°~360°范围内,找出与下列各角终边相同的角,并判断它们是第几象限的角:(1)-120°.(2)640°.【解析】(1)与-120°终边相同的角的集合为M={β|β=-120°+k·360°,k∈Z}.当k=1时,β=-120°+1×360°=240°,所以在0°~360°范围内,与-120°终边相同的角是240°,它是第三象限的角.(2)与640°终边相同的角的集合为M={β|β=640°+k·360°,k∈Z}.当k=-1时,β=640°-360°=280°,所以在0°~360°范围内,与640°终边相同的角为280°,它是第四象限的角.(20分钟40分)一、选择题(每小题5分,共20分)1.已知集合A={α|α小于90°},B={α|α为第一象限角},则A∩B=( )A.{α|α为锐角}B.{α|α小于90°}C.{α|α为第一象限角}D.以上都不对【解析】选D.小于90°的角包括锐角及所有负角,第一象限角指终边落在第一象限的角,所以A∩B是指锐角及第一象限的所有负角的集合.2.若θ是第二象限角,那么和90°-θ都不在( )A.第一象限B.第二象限C.第三象限D.第四象限【解析】选B.由题意知90°+k·360°<θ<180°+k·360°,k∈Z,此时45°+k·180°<<90°+k·180°,故为第一、三象限的角.又-90°-k·360°<90°-θ<-k·360°,故90°-θ为第四象限角.所以和90°-θ都不在第二象限.3.若角α与β的终边垂直,则α与β的关系是( )A.β=α+90°B.β=α±90°C.β=α+90°+360°·k(k∈Z)D.β=α±90°+360°·k(k∈Z)【解析】选D.若角α与β的终边垂直,则β-α=±90°+360°·k(k∈Z),所以β=α±90°+360°·k(k∈Z).4.若α是第一象限角,则下列各角中属于第四象限角的是( )A.90°-αB.90°+αC.360°-αD.180°+α【解析】选C.若α是第一象限角,则:90°-α位于第一象限,90°+α位于第二象限,360°-α位于第四象限,180°+α位于第三象限.二、填空题(每小题5分,共10分)5.终边落在阴影部分内(包括边界)的角α的集合是.【解析】因为角的终边在第四象限的角为-40°+k·360°,k∈Z,角的终边在第一象限的角为50°+k·360°,k∈Z.所以终边落在阴影部分内(包括边界)的角α的集合是.答案:6.角α,β的终边关于y=x对称,若α=30°,则β=.【解析】因为30°与60°的终边关于y=x对称,所以β的终边与60°角的终边相同.所以β=60°+k·360°,k∈Z.答案:60°+k·360°,k∈Z【补偿训练】终边在直线y=-x上的角α的取值集合是( ) A.B.C.D.【解析】选D.角α的取值集合为∪=∪=.三、解答题7.(10分)已知角β的终边在直线x-y=0上.(1)写出角β的集合S.(2)写出集合S中适合不等式-360°<β<720°的元素.【解析】(1)如图,直线x-y=0过原点,倾斜角为60°,在0°~360°范围内,终边落在射线OA上的角是60°,终边落在射线OB上的角是240°,所以以射线OA,OB为终边的角的集合分别为S1={β|β=60°+k·360°,k∈Z},S2={β|β=240°+k·360°,k∈Z},所以,角β的集合S=S1∪S2={β|β=60°+k·360°,k∈Z}∪{β|β=60°+180°+k·360°,k∈Z}={β|β=60°+2k·180°,k∈Z}∪{β|β=60°+(2k+1)·180°,k∈Z }={β|β=60°+n·180°,n∈Z}.(2)由于-360°<β<720°,即-360°<60°+n·180°<720°,n∈Z.解得-<n<,n∈Z,所以n=-2,-1,0,1,2,3.所以集合S中适合不等式-360°<β<720°的元素为60°-2×180°=-300°;60°-1×180°=-120°;60°+0×180°=60°;60°+1×180°=240°;60°+2×180°=420°;60°+3×180°=600°.关闭Word文档返回原板块。
第一章三角函数§1.1任意角和弧度制1.1.1任意角自主学习知识梳理1.角的概念(1)角的概念:角可以看成平面内________________绕着________从一个位置________到另一个位置所成的图形.(2)角的分类:按旋转方向可将角分为如下三类:类型定义图示正角按______________________形成的角负角按________________形成的角零角一条射线________________,称它形成了一个零角2.象限角角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,那么,角的终边(除端点外)在第几象限,就说这个角是______________.如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.3.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=____________},即任一与角α终边相同的角,都可以表示成角α与____________的和.4.终边落在坐标轴上角的集合终边所在的位置角的集合x轴正半轴x轴负半轴x轴y轴正半轴y轴负半轴y轴自主探究终边落在各个象限的角的集合.α终边所在的象限角α的集合第一象限第二象限第三象限第四象限对点讲练知识点一终边相同的角与象限角例1在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角.(1)-150°;(2)650°;(3)-950°15′.回顾归纳 解答本题可先利用终边相同的角的关系:β=α+k ·360°,k ∈Z ,把所给的角化归到0°~360°范围内,然后利用0°~360°范围内的角分析该角是第几象限角. 变式训练1 判断下列角的终边落在第几象限内: (1)1 400°; (2)-2 010°.知识点二 终边相同的角的应用例2 已知,如图所示,(1)写出终边落在射线OA ,OB 上的角的集合; (2)写出终边落在阴影部分(包括边界)的角的集合.回顾归纳 解答此类题目应先在0°~360°上写出角的集合,再利用终边相同的角写出符合条件的所有角的集合,如果集合能化简的还要化成最简.变式训练2 如图所示,写出终边落在阴影部分的角的集合.知识点三 角的象限的判断例3 已知α是第二象限角,试确定2α,α2的终边所在的位置.回顾归纳 若已知角α是第几象限角,判断α2,α3等是第几象限角,主要方法是解不等式并对k 进行分类讨论.考查角的终边的位置.变式训练3 已知α为第三象限角,则α2所在的象限是( )A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限1.对角的理解,初中阶段是以“静止”的眼光看,高中阶段应用“运动”的观点下定义,理解这一概念时,要注意“旋转方向”决定角的“正负”,“旋转幅度”决定角的“绝对值大小”.2.关于终边相同角的认识一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z },即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.注意:(1)α为任意角.(2)k ·360°与α之间是“+”号,k ·360°-α可理解为k ·360°+(-α).(3)相等的角,终边一定相同;终边相同的角不一定相等,终边相同的角有无数多个,它们相差360°的整数倍.(4)k ∈Z 这一条件不能少.课时作业一、选择题 1.与405°角终边相同的角是( ) A .k ·360°-45°,k ∈Z B .k ·180°-45°,k ∈Z C .k ·360°+45°,k ∈Z D .k ·180°+45°,k ∈Z 2.若α=45°+k ·180° (k ∈Z ),则α的终边在( ) A .第一或第三象限 B .第二或第三象限 C .第二或第四象限 D .第三或第四象限 3.若角α与β的终边相同,则α-β的终边落在( ) A .x 轴的正半轴 B .x 轴的负半轴 C .y 轴的正半轴 D .y 轴的负半轴 4.若α是第四象限角,则180°-α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 5. 如图,终边落在阴影部分(含边界)的角的集合是( )A .{α|-45°≤α≤120°}B .{α|120°≤α≤315°}C .{α|k ·360°-45°≤α≤k ·360°+120°,k ∈Z }D .{α|k ·360°+120°≤α≤k ·360°+315°,k ∈Z }二、填空题6.经过10分钟,分针转了________度.7.下列命题:①第一象限角都是锐角;②锐角都是第一象限角;③第一象限角一定不是负角;④第二象限角大于第一象限角;⑤第二象限角是钝角;⑥小于180°的角是钝角、直角或锐角.其中判断错误的是______.(把有关命题的序号写上即可)8.若α=1 690°,角θ与α终边相同,且-360°<θ<360°,则θ=________.三、解答题9.在与角-2 010°终边相同的角中,求满足下列条件的角.(1)最小的正角;(2)最大的负角;(3)-720°~720°内的角.10.已知角x的终边落在图示阴影部分区域,写出角x组成的集合.第一章三角函数§1.1任意角和弧度制1.1.1任意角知识梳理1.(1)一条射线端点旋转(2)类型定义图示正角按逆时针方向旋转形成的角负角按顺时针方向旋转形成的角零角一条射线没有作任何旋转,称它形成了一个零角3.α+k·360°,k∈Z整数个周角4.终边所在的位置角的集合x轴正半轴{α|α=k·360°,k∈Z}x轴负半轴{α|α=k·360°+180°,k∈Z}x轴{α|α=k·180°,k∈Z}y轴正半轴{α|α=k·360°+90°,k∈Z}y轴负半轴{α|α=k·360°+270°,k∈Z}y轴{α|α=k·180°+90°,k∈Z}自主探究α终边所在的象角α的集合限第一{α|k·360°<α<k·360°+90°,k∈Z}象限第二{α|k·360°+90°<α<k·360°+180°,k∈Z}象限第三{α|k·360°+180°<α<k·360°+270°,k∈Z}象限第四{α|k·360°-90°<α<k·360°,k∈Z}象限对点讲练例1解(1)因为-150°=-360°+210°,所以在0°~360°范围内,与-150°角终边相同的角是210°角,它是第三象限角.(2)因为650°=360°+290°,所以在0°~360°范围内,与650°角终边相同的角是290°角,它是第四象限角.(3)因为-950°15′=-3×360°+129°45′,所以在0°~360°范围内,与-950°15′角终边相同的角是129°45′角,它是第二象限角.变式训练1解(1)1 400°=3×360°+320°,∵320°是第四象限角,∴1 400°也是第四象限角.(2)-2 010°=-6×360°+150°,∴-2 010°与150°终边相同.∴-2 010°是第二象限角.例2解(1)终边落在射线OA上的角的集合是{α|α=k·360°+210°,k∈Z}.终边落在射线OB上的角的集合是{α|α=k·360°+300°,k∈Z}.(2)终边落在阴影部分(含边界)角的集合是{α|k·360°+210°≤α≤k·360°+300°,k∈Z}.变式训练2解设终边落在阴影部分的角为α,角α的集合由两部分组成.(1){α|k·360°+30°≤α<k·360°+105°,k∈Z}.(2){α|k·360°+210°≤α<k·360°+285°,k∈Z}.∴角α的集合应当是集合(1)与(2)的并集:{α|k·360°+30°≤α<k·360°+105°,k∈Z}∪{α|k·360°+210°≤α<k·360°+285°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,k∈Z}∪{α|(2k+1)·180°+30°≤α<(2k+1)·180°+105°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°或(2k+1)·180°+30°≤α<(2k+1)·180°+105°,k∈Z}={α|k ·180°+30°≤α<k ·180°+105°,k ∈Z }. 例3 解 因为α是第二象限角, 所以k ·360°+90°<α<k ·360°+180°,k ∈Z . 所以2k ·360°+180°<2α<2k ·360°+360°,k ∈Z ,所以2α的终边在第三或第四象限或终边在y 轴的非正半轴上. 因为k ·360°+90°<α<k ·360°+180°,k ∈Z ,所以k ·180°+45°<α2<k ·180°+90°,k ∈Z ,所以当k =2n ,n ∈Z 时,n ·360°+45°<α2<n ·360°+90°,即α2的终边在第一象限; 当k =2n +1,n ∈Z 时,n ·360°+225°<α2<n ·360°+270°,即α2的终边在第三象限.所以α2的终边在第一或第三象限.变式训练3 D [由于k ·360°+180°<α<k ·360°+270°,k ∈Z , 得k 2·360°+90°<α2<k 2·360°+135°. 当k 为偶数时,α2为第二象限角;当k 为奇数时,α2为第四象限角.]课时作业 1.C 2.A3.A [∵α=β+k ·360°,k ∈Z , ∴α-β=k ·360°,k ∈Z .]4.C [可以给α赋一特殊值-60°,则180°-α=240°,故180°-α是第三象限角.]5.C [与边界终边相同的角为k ·360°+120°或k ·360°-45°.故阴影部分的角为k ·360°-45°≤α≤k ·360°+120°,k ∈Z .] 6.-607.①③④⑤⑥解析 ①390°角是第一象限角,可它不是锐角,所以①不正确.②锐角是大于0°且小于90°的角,终边落在第一象限,故是第一象限角,所以②正确. ③-330°角是第一象限角,但它是负角,所以③不正确.④120°角是第二象限角,390°是第一象限角,显然390°>120°,所以④不正确. ⑤480°角是第二象限角,但它不是钝角,所以⑤不正确.⑥0°角小于180°,但它既不是钝角,也不是直角或锐角,故⑥不正确. 8.-110°或250°解析 ∵α=1 690°=4×360°+250°,∴θ=k ·360°+250°,k ∈Z .∵-360°<θ<360°, ∴k =-1或0. ∴θ=-110°或250°.9.解(1)∵-2 010°=-6×360°+150°,∴与角-2 010°终边相同的最小正角是150°.(2)∵-2 010°=-5×360°+(-210°),∴与角-2 010°终边相同的最大负角是-210°.(3)∵-2 010°=-6×360°+150°,∴与-2 010°终边相同也就是与150°终边相同.由-720°≤k·360°+150°<720°,k∈Z,解得:k=-2,-1,0,1.代入k·360°+150°依次得:-570°,-210°,150°,510°.10.解(1){x|k·360°-135°≤x≤k·360°+135°,k∈Z}.(2){x|k·360°+30°≤x≤k·360°+60°,k∈Z}∪{x|k·360°+210°≤x≤k·360°+240°,k∈Z}={x|2k·180°+30°≤x≤2k·180°+60°或(2k+1)·180°+30°≤x≤(2k+1)·180°+60°,k∈Z}={x|k·180°+30°≤x≤k·180°+60°,k∈Z}.。
任意角1. 1.1任意角班级 姓名一、学习目标:1.理解并掌握任意角、象限角、终边相同的角的定义。
2.会写终边相同的角的集合并且会利用终边相同的角的集合判断任意角所在的象限。
二、重点、难点:任意角、象限角、终边相同的角的定义是本节课的重点,用集合和符号来表示终边相同的角是本节课的难点三、知识链接:1.初中是如何定义角的?2.什么是周角,平角,直角,锐角,钝角?四、学习过程:(一)阅读课本1-3页解决下列问题。
问题1、按 方向旋转形成的角叫做正角,按 - 方向旋转形成的角叫做负角,如果一条射线没有作____旋转,我们称它形成了一个零角。
零角的 与 重合。
如果α是零角,那么α= 。
问题2、问题3、画出下列各角(1)780o (2) -120o (3) -660o (4) 1200o问题4、象限角与象限界角 为了讨论问题的方便,我们总是把任意大小的角放到平面直角坐标系内加以讨论,具体做法是:(1)使角的顶点和坐标 重合;(2)使角的始边和x 轴 重合.这时,角的终边落在第几象限,就说这个角是 的角(有时也称这个角属于第几象限);如果这个角的终边落在坐标轴上,那么这个角就叫做 ,这个角不属于任何一个象限。
问题5、在平面直角坐标系中作出下列各角并指出它们是第几象限角:(1)420o (2) -75o (3) 855o (4) -510o问题6、把角放到平面直角坐标系中后,给定一个角,就有唯一的终边与之对应。
反之,对于直角坐标系内任意一条射线,以它为终边的角是否唯一?如果不唯一,终边相同的角有什么关系?为解决这些问题,请先完成下题:在直角坐标系中作出下列各角:(1)-32o (2) 328o (3) -392o (4) 688o (4) -752o问题7、以上各角的终边有什么关系?这些有相同的始边和终边的角,叫做 。
把与-32o 角终边相同的所有角都表示为 ,所有与角α 终边相同的角,连同角α 在内可构成集合为 .。
1.1.2 弧度制1.角的单位制(1)角度制:规定周角的________为1度的角,用度作为单位来度量角的单位制叫做角度制.(2)弧度制:把长度等于________的弧所对的圆心角叫做1弧度的角,记作________.(3)角的弧度数求法:如果半径为r 的圆的圆心角α所对的弧长为l ,那么l ,α,r 之间存在的关系是:____________;这里α的正负由角α的________________决定.正角的弧度数是一个________,负角的弧度数是一个________,零角的弧度数是________.23.扇形的面积 S =________一、选择题 1.集合A =⎩⎨⎧⎭⎬⎫α|α=k π+π2,k ∈Z 与集合B =⎩⎨⎧⎭⎬⎫α|α=2k π±π2,k ∈Z 的关系是( )A .A =B B .A ⊆BC .B ⊆AD .以上都不对2.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是( )A .2B .sin 2 C.2sin 1 D .2sin 13.扇形周长为6 cm ,面积为2 cm 2,则其中心角的弧度数是( )A .1或4B .1或2C .2或4D .1或54.已知集合A ={α|2k π≤α≤(2k +1)π,k ∈Z },B ={α|-4≤α≤4},则A ∩B 等于() A .∅B .{α|-4≤α≤π}C .{α|0≤α≤π}D .{α|-4≤α≤-π,或0≤α≤π}5.把-114π表示成θ+2k π(k ∈Z )的形式,使|θ|最小的θ值是( )A.π4 B .-π4 C.34π D .-34π6.扇形圆心角为π3,半径长为a ,则扇形内切圆的圆面积与扇形面积之比为( )A .1∶3B .2∶3C .4∶3D .4∶9二、填空题7.将-1 485°化为2k π+α (0≤α<2π,k ∈Z )的形式是________.8.若扇形圆心角为216°,弧长为30π,则扇形半径为____.9.若2π<α<4π,且α与-7π6角的终边垂直,则α=______. 10.若角α的终边与角π6的终边关于直线y =x 对称,且α∈(-4π,4π),则α=________________.三、解答题11.把下列各角化成2k π+α (0≤α<2π,k ∈Z )的形式,并指出是第几象限角:(1)-1 500°;(2)236π;(3)-4.12.已知一扇形的周长为40 cm ,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?能力提升13.已知一圆弧长等于其所在圆的内接正方形的周长,那么其圆心角的弧度数的绝对值为________.14.已知一扇形的中心角是α,所在圆的半径是R .(1)若α=60°,R =10 cm ,求扇形的弧长及该弧所在的弓形面积;(2)若扇形的周长是一定值c (c >0),当α为多少弧度时,该扇形有最大面积?1.1.2 弧度制答案知识梳理1.(1)1360 (2)半径长 1 rad (3)|α|=l r终边的旋转方向 正数 负数 0 2.2π 360° π 180° π180 ⎝⎛⎭⎫180π° 3.απR 180 αR απR 2360 12αR 2 12lR 作业设计1.A2.C [r =1sin 1,∴l =|α|r =2sin 1.] 3.A [设扇形半径为r ,圆心角为α,则⎩⎪⎨⎪⎧2r +αr =612αr 2=2, 解得⎩⎪⎨⎪⎧ r =1α=4或⎩⎪⎨⎪⎧r =2α=1.] 4.C [集合A 限制了角α终边只能落在x 轴上方或x 轴上.]5.D [∵-114π=-2π+⎝⎛⎭⎫-34π,∴θ=-34π.] 6.B [设扇形内切圆半径为r ,则r +r sin π6=r +2r =a .∴a =3r ,∴S 内切=πr 2. S 扇形=12αr 2=12×π3×a 2=12×π3×9r 2=32πr 2. ∴S 内切∶S 扇形=2∶3.]7.-10π+74π 解析 ∵-1 485°=-5×360°+315°,∴-1 485°可以表示为-10π+74π. 8.25解析 216°=216×π180=6π5,l =α·r =6π5r =30π,∴r =25. 9.73π或103π 解析 -76π+72π=146π=73π,-76π+92π=206π=103π. 10.-11π3,-5π3,π3,7π3解析 由题意,角α与π3终边相同,则π3+2π=73π, π3-2π=-53π,π3-4π=-113π. 11.解 (1)-1 500°=-1 800°+300°=-10π+5π3,∴-1 500°与53π终边相同,是第四象限角. (2)236π=2π+116π,∴236π与116π终边相同,是第四象限角. (3)-4=-2π+(2π-4),∴-4与2π-4终边相同,是第二象限角.12.解 设扇形的圆心角为θ,半径为r ,弧长为l ,面积为S , 则l +2r =40,∴l =40-2r .∴S =12lr =12×(40-2r )r =20r -r 2=-(r -10)2+100. ∴当半径r =10 cm 时,扇形的面积最大,最大值为100 cm 2,此时θ=l r =40-2×1010=2 rad. 13.4 2解析 设圆半径为r ,则内接正方形的边长为2r ,圆弧长为42r .∴圆弧所对圆心角|θ|=42r r=4 2. 14.解 (1)设弧长为l ,弓形面积为S 弓,∵α=60°=π3,R =10,∴l =αR =10π3(cm). S 弓=S 扇-S △=12×10π3×10-12×102×sin 60°=50⎝⎛⎭⎫π3-32 (cm 2). (2)扇形周长c =2R +l =2R +αR ,∴α=c -2R R , ∴S 扇=12αR 2=12·c -2R R ·R 2=12(c -2R )R =-R 2+12cR =-(R -c 4)2+c 216. 当且仅当R =c 4,即α=2时,扇形面积最大,且最大面积是c 216.。
高一数学必修4同步练习:1-1-1任意角编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高一数学必修4同步练习:1-1-1任意角)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高一数学必修4同步练习:1-1-1任意角的全部内容。
1—1-1任意角一、选择题1.将90°角的终边按顺时针方向旋转30°所得的角等于()A.60° B.90°C.120° D.-30°[答案]A2.(2011~2012·北京通州高一期末)下列各角中,与60°角终边相同的角是( )A.-300° B.-60°C.600° D.1380°[答案]A[解析]与60°角终边相同的角α=k·360°+60°,k∈Z,令k=-1,则α=-300°,故选A.3.给出下列四个命题,其中正确的命题有()①-75°是第四象限角②225°是第三象限角③475°是第二象限角④-315°是第一象限角A.1个B.2个C.3个D.4个[答案]D[解析]由终边相同角的概念知:①②③④都正确,故选D.4.与600°角终边相同的角可表示为(k∈Z)()A.k·360°+220° B.k·360°+240°C.k·360°+60° D.k·360°+260°[答案]B[解析]与600°终边相同的角α=n·360°+600°=n·360°+360°+240°=(n+1)·360°+240°=k·360°+240°,n∈Z,k∈Z。
必修四§1.1任意角和弧度制第一课时:§1.1.1任意角1. 下列命题中正确的是( )A .终边在y 轴非负半轴上的角是直角B .第二象限角一定是钝角C .第四象限角一定是负角 D.若β=α+k·360°(k∈Z),则α与β终边相同2.将-885化为360k α+⋅ (0360α≤<k ,∈Z )的形式是 ( ) A.-165(2)360+-⨯ B.195(3)360+-⨯ C.195(2)360+-⨯ D.165(3)360+-⨯3.在[360°,1440°]中与-21°16′终边相同的角有( )A .1个B .2个C .3个D .4个4.终边落在X 轴上的角的集合是( )A.{ α|α=k ·360°,K ∈Z }B.{ α|α=(2k+1)·180°,K ∈Z }C.{ α|α=k ·180°,K ∈Z }D.{ α|α=k ·180°+90°,K ∈Z }5.角α=45°+k·180°,k∈Z的终边落在 ( )A .第一或第三象限B .第一或第二象限C .第二或第四象限D .第三或第四象限6.设,,,,那么( ) A .B C A B .B A C C .D (A ∩C) D .C ∩D=B7.下列各组角中终边相同的是( )A. +90与Z B.与ZC. +30与+30Z D.与+60Z 8.若角和的终边关于y 轴对称,则有 ( ) A. B.Z C.Z D.Zo {90A =小于的角}{B =锐角}{C =第一象限的角}00{900}D =小于而不小于的角180k ⋅90k ⋅k ,∈(21)180k +⋅(41)180k ±⋅k ,∈180k ⋅360k ⋅k ,∈60k ⋅180k ⋅k ,∈αβ90αβ+=90αβ+=360k +⋅k ,∈360k αβ+=⋅k ,∈180αβ+=360k +⋅k ,∈9.若β是第四象限角,则180β-是第 象限角。
莫愁前路无知己,天下谁人不识君。
双基达标 限时20分钟
1.下列角中,终边与330°角终边相同的是( ).
A.-630° B.-1 830° C.30° D.990°
解析 与330°角终边相同的角α=330°+k·360°(k∈Z).
当k=-6时,α=-1 830°.
即-1 830°角终边与330°角终边相同.
答案 B
2.若角α与β的终边相同,则角α-β的终边( ).
A.在x轴的正半轴上 B.在x轴的负半轴上
C.在y轴的负半轴上 D.在y轴的正半轴上
解析 由角α与β的终边相同,得
α=β+k·360°,k∈Z.
所以α-β=k·360°,k∈Z.
故α-β的终边在x轴的正半轴上.
答案 A
3.已知角2α的终边在x轴上方,那么α是( ).
A.第一象限角 B.第一或第二象限角
C.第一或第三象限角 D.第一或第四象限角
解析 ∵角2α的终边在x轴上方,
∴k·360°<2α
当k为偶数时,α在第一象限.
答案 C
4.若α、β两角的终边互为反向延长线,且α=-120°,则β=________.
解析 在[0°,360°)内与α=-120°的终边互为反向延长线的角是60°,
∴β=k·360°+60°(k∈Z).
答案 k·360°+60°(k∈Z)
莫愁前路无知己,天下谁人不识君。
5.已知角α=-3 000°,则与α终边相同的最小的正角是________.
解析 与α角终边相同的角为β=k·360°-3 000°(k∈Z).
由题意,令k·360°-3 000°>0°,则k>253,故取k=9,得与α终边相同的最小正角
为240°.
答案 240°
6.已知α=-1 910°.
(1)把角α写成β+k·360°(k∈Z,0°≤β<360°)的形式,指出它是第几象限的角;
(2)求出θ的值,使θ与α的终边相同,且-720°≤θ<0°.
解 (1)∵-1 910°=-6×360°+250°.0≤250°<360°.
∴把α=-1 910°写成k·360°+β(k∈Z,0°≤β<360°)的形式为α=-1 910°=-
6×360°+250°,它是第三象限角.
(2)∵θ与α的终边相同,
令θ=250°+k·360°(k∈Z),
取k=-1或-2就得到符合-720°≤θ<0°的角:
250°-360°=-110°,250°-720°=-470°.
故θ=-110°或-470°.
综合提高 限时25分钟
7.若α=n·360°+θ,β=m·360°-θ,m,n∈Z,则α、β终边的位置关系是( ).
A.重合 B.关于原点对称
C.关于x轴对称 D.关于y轴对称
解析 由α=n·360°+θ可知α与θ是终边相同的角;由β=m·360°-θ可知β与-
θ是终边相同的角,而θ与-θ两角关于x轴对称,故α与β两角终边关于x轴对
称.
答案 C
8.(2012·孝感高一检测)给出下列四个命题:①-75°是第四象限角;②225°是第三
象限角;③475°是第二象限角;④-315°是第一象限角.其中正确的命题有
( ).
A.1个 B.2个 C.3个 D.4个
解析 -90°<-75°<0°,180°<225°<270°.
莫愁前路无知己,天下谁人不识君。
360°+90°<475°<360°+180°,-360°<-315°<-270°.
∴这四个命题都是正确的.
答案 D
9.在-720°到720°之间与-1 000°角终边相同的角是________.
解析 与-1 000°角终边相同的角的集合是S={α|α=-1 000°+k·360°,k∈Z},
分别对k赋予不同的数值便可求出结果.
答案 -640°,-280°,80°,440°
10.与-1 050°角终边相同的最小正角是________.
解析 -1 050°=-3×360°+30°,故答案为30°.
答案 30°
11.如图所示,写出终边落在图中阴影部分
(包括边界)的角的集合,并指出-950°是否是
该集合中的角.
解 终边落在阴影部分(包括边界)的角的集
合为{x|120°+k·360°≤x≤250°+k·360°,k∈Z}.
因为-950°=130°-3×360°,120°<130°<250°,
所以-950°是该集合中的角.
12.(创新拓展)已知集合A={α|k·180°+30°<α
终边或210°至270°角的终边,集合B中角的终边是
-45°至45°角的终边,
∴A∩B的角的终边是30°至45°角的终边,
∴A∩B={α|k·360°+30°<α