导图系列(3-4):八年级数学(北师大版)各章知识点思维导图集合
- 格式:pdf
- 大小:3.57 MB
- 文档页数:15
北师大版《数学》(八年级上册)知识点总结第一章 勾股定理1、勾股定理(1)直角三角形两直角边a ,b 的平方和等于斜边c的平方,即222c b a =+(2)勾股定理的验证:测量、数格子、拼图法、面积法,如青朱出入图、五巧板、玄图、总统证法……(通过面积的不同表示方法得到验证,也叫等面积法或等积法)(3)勾股定理的适用范围:仅限于直角三角形2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
#3、勾股数:满足222c b a =+的三个正整数a ,b ,c ,称为勾股数。
常见的勾股数有:(6,8,10)(3,4,5)(5,12,,13)(9,12,15)(7,24,25)(9,40,41)……规律:(1),短直角边为奇数,另一条直角边与斜边是两个连续的自然数,两边之和是短直角边的平方。
即当a 为奇数且a <b 时,如果b+c=a 2那么a,b,c 就是一组勾股数.如(3,4,5)(5,12,,13)(7,24,25)(9,40,41)……(2)大于2的任意偶数,2n(n >1)都可构成一组勾股数分别是:2n,n 2-1,n 2+1如:(6,8,10)(8,15,17)(10,24,26)……4、常见题型应用:(1)已知任意两条边的长度,求第三边/斜边上的高线/周长/面积……(2)已知任意一条的边长以及另外两条边长之间的关系,求各边的长度找最长边;b.比较长边的平方与另外两条较短边的平方和之间的大小关系;c.确定形状~(4)构建直角三角形解题例1. 已知直角三角形的两直角边之比为3:4,斜边为10。
求直角三角形的两直角边。
解:设两直角边为3x ,4x ,由题意知:()()34100916100251004222222x x x x x x +=+===,,, ∴x=2,则3x=6,4x=8,故两直角边为6,8。
中考突破(1)中考典题例. 如图(1)所示,一个梯子AB 长米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 距离为米,梯子滑动后停在DE 位置上,如图(2)所示,测得得BD=米,求梯子顶端A 下落了多少米]A AEC B C BD (1) (2)思维入门指导:梯子顶端A 下落的距离为AE ,即求AE 的长。
思维导图+重点知识梳理二次根式加、减、乘、除运算二次根式性质最简二次根式2 = 0 a a a ≥()()()()==-⎧⎪⎨⎪⎩200<a a a a a a ≥ ⋅⋅ = 0 0 a b a b a b (≥, ≥)()00>,bba b a a ≥= 0 0a a ≥≥()【例题展示】 已知a ,b 为等腰三角形的两条边长,且a,b 满足 ,求此三角形的周长.3264b a a =-+-+解:由题意得∴a =3,∴b =4.当a 为腰长时,三角形的周长为3+3+4=10;当b 为腰长时,三角形的周长为4+4+3=11.30260a a -⎧⎨-⎩≥,≥,【例题展示】 化简:(1)16;2(2)(5)-;解:2164 4.==22(2)(5)5 5.-==210;-2(3.14).-π()22111101010=10.----2(3.14) 3.14= 3.14.---πππ ,而3.14<π,要注意a 的正负性.注意2a a =32327+63---();06(2)20163+312.2--()-63336=--+解:(1)原式33.=-(2)原式333=--3 2.=-【例题展示】计算:有绝对值符号的,同括号一样,先去绝对值,注意去掉绝对值后,得到的数应该为正数.归纳勾股定理 直角三角形边长的数量关系 勾股定理的逆定理 直角三角形的判定 互逆定理勾股定理【例题展示】 有一个圆柱形油罐,要以A 点环绕油罐建梯子,正好建在A 点的正上方点B 处,问梯子最短需多少米(已知油罐的底面半径是2 m ,高AB 是5 m ,π取3)?AB AB A 'B '解:油罐的展开图如图,则AB '为梯子的最短距离.∵AA '=2×3×2=12, A 'B '=5,∴AB '=13. 即梯子最短需13米.【例题展示】 如图,南北方向PQ 以东为我国领海,以西为公海,晚上10时28分,我边防反偷渡巡逻101号艇在A 处发现其正西方向的C 处有一艘可疑船只正向我沿海靠近,便立即通知在PQ 上B 处巡逻的103号艇注意其动向,经检测,AC =10海里,BC =8海里,AB=6海里,若该船只的速度为12.8海里/时,则可疑船只最早何时进入我领海?东北P AB C Q D分析:根据勾股定理的逆定可得△ABC 是直角三角形,然后利用勾股定理的逆定理及直角三角形的面积公式可求PD ,然后再利用勾股定理便可求CD .解:∵AC =10,AB =6,BC =8,∴AC 2=AB 2+BC 2,即△ABC 是直角三角形.设PQ 与AC 相交于点D ,根据三角形面积公式有 BC·AB= AC·BD ,即6×8=10BD ,解得BD=在Rt △BCD 中,2222248 6.4().5CD BC BD ⎛⎫=-=-= ⎪⎝⎭海里又∵该船只的速度为12.8海里/时,6.4÷12.8=0.5(小时)=30(分钟),∴需要30分钟进入我领海,即最早晚上10时58分进入我领海.东北P A B C QD 24.512125种判定方法三个角是直角四条边相等一个角是直角或对角线相等一组邻边相等或对角线垂直一组邻边相等或对角线垂直一个角是直角或对角线相等一个角是直角且一组邻边相等平行四边形、矩形、菱形、正方形之间的关系平行四边形【例题展示】如图,已知O是平行四边形ABCD的对角线的交点,AC=24,BD=18,AB=16,求△OCD的周长及AD边的取值范围.解:由题意得OA=OC=12,OB=OD=9,CD=AB=16,∴△OCD的周长为12+9+16=37.在△ACD中,24-16<AD<24+16,∴8<AD<40;在△ABD中,18-16<AD<18+16,∴2<AD<34;在△AOD中,12-9<AD<12+9,∴3<AD<21.综上所述,AD的取值范围应是8<AD<21.【例题展示】 如图,点C是AB的中点,AD=CE,CD=BE.(1)求证:△ACD≌△CBE;(2)连接DE,求证:四边形CBED是平行四边形.证明:(1)∵点C是AB的中点,∴AC=BC.在△ADC与△CEB中,AD=CE , CD=BE , AC=BC ,∴△ADC≌△CEB(SSS),(2)∵△ADC≌△CEB,∴∠ACD=∠CBE,∴CD∥BE.又∵CD=BE,∴四边形CBED是平行四边形.【例题展示】 如图,在△ABC中,AB=AC,E为AB的中点,在AB的延长线上取一点D,使BD=AB,求证:CD=2CE.证明:取AC的中点F,连接BF.∵BD=AB,∴BF为△ADC的中位线,∴DC=2BF.∵E为AB的中点,AB=AC,∴BE=CF,∠ABC=∠ACB.F∵BC=CB,∴△EBC≌△FCB,∴CE=BF,∴CD=2CE .【例题展示】 如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为E,求证:四边形ADCE为矩形.证明:在△ABC中,AB=AC,AD⊥BC,∴∠BAD=∠DAC,即∠DAC= ∠BAC.又∵AN是△ABC外角∠CAM的平分线,∴∠MAE=∠CAE= ∠CAM,∴∠DAE=∠DAC+∠CAE = (∠BAC+∠CAM)=90°.又∵AD⊥BC,CE⊥AN,∴∠ADC=∠CEA=90°,∴四边形ADCE为矩形.1 212 12【例题展示】 如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm.将△ABC沿射线BC方向平移10cm,得到△DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是菱形.证明:由平移变换的性质得CF=AD=10cm,DF=AC.∵∠B=90°,AB=6cm,BC=8cm,∴AC=DF=AD=CF=10cm,∴四边形ACFD是菱形.()22226810cm. AC AB BC∴=+=+=某些运动变化 的现实问题 函数建立函数模型定义自变量取值范围 表示法 一次函数 y =kx +b (k ≠0)应用图象:一条直线性质:k >0,y 随x 的增大而增大 k <0,y 随x 的增大而减小数形结合一次函数与方程(组)、 不等式之间的关系一次函数【例题展示】小明所在学校与家距离为2千米,某天他放学后骑自行车回家,行驶了5分钟后,因故停留10分钟,继续骑了5分钟到家.如图,能大致描述他回家过程中离家的距离s(千米)与所用时间t(分)之间的关系图象D的是( )【例题展示】 已知直线l与直线y=-2x平行,且与y轴交于点(0,2),求直线l的解析式.解:设直线l为y=kx+b, ∵l与直线y=-2x平行,∴k= -2.又∵直线过点(0,2),∴2=-2×0+b,∴b=2,∴直线l的解析式为y=-2x+2.【例题展示】小明将父母给的零用钱按每月相等的数额存在储蓄盒内,准备捐给希望工程,盒内钱数y (元)与存钱月数 x (月)之间的关系如图所示,根据下图回答下列问题:(1)求出y 关于x 的函数解析式.(2)根据关系式计算,小明经过几个月才能存够200元?4080120y /元x /月12345o解: (1)设函数解析式为y =kx +b ,由图可知图象过(0,40),(4,120),∴这个函数的解析式为y =20x +40.(2)当y =200时,20x +40=200, 解得x =8,∴小明经过8个月才能存够200元.解得20,40,k b =⎧⎨=⎩∴{040,4120,k b k b ⨯+=+=4080120y /元x /月12345o数据的集中趋势数据的波动程度 方差用样本平均数估计总体平均数 用样本方差估计总体方差平均数 中位数 众 数 用样本估计总体数据的分析 数据收集—数据整理—数据描述—数据分析 【例题展示】 已知一组数据10,10,x,8(由大到小排列)的中位数与平均数相等,求x值及这组数据的中位数.解:∵10,10,x,8的中位数与平均数相等∴ (10+x)÷2= (10+10+x+8)÷4∴x=8(10+x)÷2=9∴这组数据的中位数是9.【例题展示】.五个数1,3,a,5,8的平均数是4,则a3 5.6=_____,这五个数的方差_____.。
第一章勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222a b c +=2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系,222a b c +=,那么这个三角形是直角三角形。
勾股数:满足222a b c +=的三个正整数,称为勾股数。
第二章 实数一、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
特别地,0的算术平方根是0。
表示方法:记作“a ”,读作根号a 。
性质:正数和零的算术平方根都只有一个,零的算术平方根是零。
2、平方根:一般地,如果一个数x的平方等于a,即x2=a,那么这个数x 就叫做a的平方根(或二次方根)。
北师大版初中数学七年级(上册)各章标题第一章丰富图形世界第二章有理数第三章字母表示数第四章平面图形及位置关系第五章一元一次方程第六章生活中的数据第七种可能性北师大版初中数学七年级(下册)各章标题第一章:整式的运算第二章平行线与相交线第三章生活中的数据第四章概率第五章三角形第六章变量之间的关系第七章生活中的轴对称北师大版初中数学八年级(上册)各章标题第一章勾股定理第二章实数第三章图形的平移与旋转第四章四边形性质探索第五章位置的确定第六章一次函数第七章二元一次方程组第八章数据的代表北师大版初中数学八年级(下册)各章标题第一章一元一次不等式和一元一次不等式组第二章分解因式第三章分式第四章相似图形第五章数据的收集与处理第六章证明北师大版初中数学九年级(上册)各章标题第一章证明(二)第二章一元二次方程第三章证明(三)第四章视图与投影第五章反比例函数第六章频率与概率北师大版初中数学九年级(下册)各章标题第一章直角三角形边的关系第二章二次函数第三章圆第四章统计与概率北师大版初中数学七年级(上册)各章知识点第一章丰富图形世界1、生活中常见的几何体:圆柱、、正方体、长方体、、球2、常见几何体的分类:球体、柱体(圆柱、棱柱、正方体、长方体)、锥体(圆锥、棱锥)3、平面图形折成立体图形应注意:侧面的个数与底面图形的边数相等。
4、圆柱的侧面展开图是一个长方形;表面全部展开是两个和一个;圆锥的表面全部展开图是一个和一个;正方体表面展开图是一个和两个小正方形,;长方形的展开图是一个大和两个。
5、特殊立体图形的截面图形:(1)长方体、正方形的截面是:三角形、四边形(长方形、正方形、梯形、平行四边形)、五边形、。
(2)圆柱的截面是:、圆(3)圆锥的截面是:三角形、。
(4)球的截面是:6、我们经常把从看到的图形叫做主视图,从看到的图叫做左视图,从看到的图叫做俯视图。
7、常见立体图形的俯视图几何体长方体正方体圆锥圆柱球主视图正方形长方形俯视图长方形圆圆左视图长方形正方形8、点动成,线动成,面动成。
第三章位置与坐标1 确定位置【知识与技能】认识到在平面内,确定一个物体的位置一般需要两个数据,并能准确地确定物体的位置.【过程与方法】通过对实际问题的分析,经历建立数学模型解决实际问题的过程.【情感态度与价值观】体验确定物体的位置在现实生活中应用的广泛性,逐步建立数学的应用意识.理解确定物体位置的意义和作用.如何确定一个物体或点的具体位置.多媒体课件.在日常生活中,我们常常会遇到:(1)在电影院内如何找到电影票上所指的位置?(2)在电影票上,“3排6座”与“6排3座”中的“6”的含义相同吗?上面的问题你能解决吗?你能举出生活中利用数据表示位置的例子吗?【教学说明】用学生比较熟悉的事例引入,容易引起学生的注意,唤起全体学生的学习欲望,使他们很快融入到学习中.一、思考探究,获取新知确定物体或点的位置思考:(1)在电影院内,确定一个座位一般需要几个数据?(2)在生活中,确定物体的位置还有其他方法吗?与同伴进行交流.【教学说明】通过学生的讨论、总结归纳得出结果,解决问题的方法可能有多种,培养学生自觉地将数学应用于生活的意识和一题多解的能力.例教材第54~55页例题.【教学说明】让学生明确确定一个物体或点的具体位置需要两个数据,从而找到表示平面内一个确定位置的方法.做一做:教材第55页“做一做”.【教学说明】通过给出的数据找到对应点的位置与给出物体所在的位置如何来描述相结合,让学生体会它们之间的相互转化,加深对知识的理解.议一议:在平面内,确定一个物体的位置一般需要几个数据:【教学说明】经过上面的学习,学生很容易回答问题,能对所学知识进行提炼和归纳.二、运用新知,深化理解1.下列数据中不能确定物体的位置的是()A.1单元105号B.北偏东60°C.清风路32号D.东经120°,北纬40°.2.如下图,围棋盘的左下角呈现的是一局围棋比赛中的几手棋,为记录棋谱方便,纵线用数字表示,横线用英文字母表示,这样,黑棋①的位置可记为(C,4),白棋②的位置可记为(E,3),则黑棋⑨的位置应记为.3.如下图,小明家在A(10,8)处,小刚家在B(4,4)处,从小明家到小刚家可以按下列两条路线走:路线一:(10,8)→(10,7)→(8,7)→(8,6)→(6,6)→(6,5)→(4,5)→(4,4)路线二:(10,8)→(4,8)→(4,4)(1)请你在图上画出这两条路线,并比较这两条路线的长短;(2)请你仿照上述方法再写出一条路线.【教学说明】由学生独立完成,加深对所学知识的理解和运用以及检查学生掌握情况.对有困难的学生教师及时指导,错误及时纠正,并加强训练.【答案】1.B 2.(D,6)3.(1)原图中的部分,这两条路线一样长.(2)(10,8)→(10,4)→(4,4).四、师生互动,课堂小结通过今天的学习,你能确定一个物体或点的具体位置或根据具体位置如何来描述吗?还有什么心得体会,与大家共享.【教学说明】引导学生回顾所学知识,加深印象.同学之间互相取长补短,达到共同进步.通过今天的学习,你能确定一个物体或点的具体位置或根据具体位置如何来描述吗?还有什么心得体会,与大家共享.【教学说明】引导学生回顾所学知识,加深印象.同学之间互相取长补短,达到共同进步.1.P36.通过检测的情况来看,学生对于给出的数据去找对应的点或物体相对容易一些,而给出物体或点来确定它的位置要困难一些.在以后的教学中要通过实例让学生不断加以强化,促进全面提高.第三章位置与坐标课时1 平面直角坐标系的有关概念【知识与技能】认识平面直角坐标系,了解点的坐标的意义,能画出点的坐标位置.【过程与方法】渗透对应关系,提高学生的数感.【情感态度与价值观】体验数、符号是描述现实世界的重要手段.平面直角坐标系的组成和用有序实数对来表示点的坐标.根据点的位置写出点的坐标,根据点的坐标描出点的位置.多媒体课件.我们知道:数轴上的一个点可以用一个数来表示,这个数就叫做这个点的坐标.你能采用类似的办法解决下面的问题呢?问题见教材第58页“做一做”上面的内容.【教学说明】从学生身边发生的事情为例出发,激发他们的学习兴趣,经历体验解决问题的过程.一、思考探究,获取新知1.平面内点的表示方法.教材第58页“做一做”.【教学说明】让学生初步掌握已知平面内点的坐标怎样描出这个点的方法和已知平面内的点怎样找到这个点的坐标的方法,经历这样相反的两个过程加深了对知识的理解.2.平面直角坐标系的组成.究竟怎样确定平面内一个点的位置呢?这就需要利用平面直角坐标系.阅读教材思考:(1)什么是平面直角坐标?它由什么组成?各部分的名称是什么?(2)什么叫横坐标、纵坐标?如何来表示一个点的坐标?(3)平面直角坐标系分成哪几个部分?各部分的名称是什么?它们点的坐标有什么特征?【教学说明】充分利用学生自主学习的机会,使学生明白平面直角坐标系的组成以及各部分坐标特点,自己发现其中的规律,培养学生的观察、联想能力和总结归纳的能力.教材第60页“做一做”.【教学说明】让学生经历在平面直角坐标系由描点的过程深切体会到平面直角坐标系内的点与有序实数对之间的对应关系,加深了对知识的理解与运用.【归纳结论】在直角坐标系中,对于平面上的任意一点,都有唯一的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上唯一的一点与它对应.二、运用新知,深化理解1.点P的横坐标是-3,纵坐标为-7,则点P的坐标可记作,点P在第象限.2.若点M(a+b,ab)在第二象限,那么点N(a,b)在第象限.3.点M位于x轴下方,距x轴3个单位长,且位于y轴左侧,距y轴2个单位长,则M的坐标是().A.(-3,-2)B.(-3,2)C.(-2,-3)D.(2,-3)4.根据图中正方形的位置,分别写出边长为2的正方形ABCD的各点坐标.(1)(2)(3)5.如图,建立平面直角坐标系,使点B、C的坐标分别为(0,0)和(4,0),写出点A、D、E、F、G的坐标,并指出它们所在的象限.【教学说明】教师让学生独立完成,及时让学生巩固平面内点的坐标和表示方法,有助于学生理解和消化所学的知识.通过反馈的情况教师及时纠正并加以强化.【答案】1.(-3,-7),三;2.三;3.C4.(1)A(0,0),B(-2,0),C(-2,2),D(0,2)(2)A(0,0),B(-2,0),C(-2,-2),D(0,-2)(3)A(0,0),B(0,-2),C(2,-2),D(2,0)5.解:如图所示的坐标系,∴A(-2,3),D(6,1),E(5,3),F(3,2),G(1,5),点A在第二象限.点D、E、F、G都在第一象限.1.师生共同回顾平面直角坐标系的概念及组成,以及各部分的坐标特征等知识点.2.你觉得本节课还有什么需要大家掌握的?与同学们共同分享.有什么问题与大家交流.【教学说明】教师引导学生回顾所学知识,让学生在大脑中形成一个完整的知识体系,同时也培养学生总结概括能力.1.P37.学生在利用点的坐标特征解决问题时还存在许多误区.如:点的横坐标与这个点到y轴的距离有关,点的纵坐标与这个点到x轴的距离有关,而学生往往理解成相反的意思.在这方面还需要花一定时间让学生逐步提高.第三章位置与坐标课时2 特殊点的坐标特征【知识与技能】感受点与坐标之间的对应关系,能指出坐标对应的点和点对应的坐标;同时认识到坐标轴上的点,各象限内的点的坐标的特征.【过程与方法】通过点与坐标间的对应关系和点的坐标的特征,解决实际问题.【情感态度与价值观】通过用坐标确定物体的位置的方法使同学们认识到学习坐标的意义,增加同学们学习的热情.坐标轴上及各象限内的点的坐标的特征.指出不同点的对应坐标的意义.多媒体课件.前面我们已经学习了如何在平面直角坐标系内根据位置找点的坐标和根据坐标来找点的位置.利用这个知识,你能解决下面的问题吗?问题:教材第62页例2.【教学说明】通过学生实际操作,既对上节课所学的知识进行了巩固,又通过观察得出平行于坐标轴点的坐标特征.为这一节课的学习作好了充分的准备.一、思考探究,获取新知1.各个象限点的坐标特点.做一做:教材第63页“做一做”.(3)不描出点,你能判断A(1,2),B(-1,-3),C(2,-1),D(-3,4)所在的象限吗?【教学说明】学生利用点的坐标总结归纳各个象限内点的坐标特征,使知识体系化,运用方便化.2.特殊位置的点的坐标之间的关系.教材第64页习题3.3第3题.讨论:什么位置上的坐标间有类似的关系?有类似关系的坐标所对应的点,有怎样的位置关系?【教学说明】学习通过讨论、交流,认识到通过知道点的特殊位置关系,从而确定坐标间的关系,反之亦然,使解题简单化.二、运用新知,深化理解1.点A(m,-2),B(3,m-1)且直线AB∥x轴,则m的值为.2.矩形ABCD中,A(-4,1),B(0,1),C(0,3)则点D的坐标为.3.已知(a-2)2+|b+3|=0,则P(-a,-b)的坐标为()A.(2,3)B.(2,-3)C.(-2,3)D.(-2,-3)4.如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3),如果要使△ABD与△ABC全等,那么点D的坐标是.【教学说明】教师让学生独立完成,加深对所学知识的理解和检验学生掌握情况,对于第4题教师可以正确引导,给有困难的学生及时帮助,让疑难问题当堂消化.【答案】1.-1;2.(-4,3);3.C;4.(4,-1)或(-1,3)或(-1,-1)1.教师引导学生回顾各个象限内点的坐标特点和平行y坐标轴点的坐标特征以及建立平面直角坐标的方法步骤.2.这节课你掌握了哪些内容?还有哪些疑问?请与大家交流.【教学说明】引导学生从多个方面回顾本节重点知识,帮助学生养成在学习中不断总结归纳形成知识网络的好习惯,同时也加深了学生的理解与掌握.1.P39.本节采用自主学习和组内合作学习的教学模式,通过学生自己大胆的尝试,让学生在学习中得到乐趣,培养团结合作精神.第三章位置与坐标课时3 建立适当的平面直角坐标系【知识与技能】1.能利用与坐标轴平行的点的坐标特征解决有关问题.2.通过具体的实例,帮助学生掌握建立适当的直角坐标系描述点的位置的方法.培养学生观察问题、分析问题、解决问题的能力,以及把实际问题转化为数学问题的能力.【过程与方法】通过用直角坐标系表示点或物体的位置,使学生体会平面直角坐标系在实际生活的应用.【情感态度与价值观】通过多种形式的学习,培养学生合作交流的意识和探索精神.建立适当的坐标系表示点的位置.建立适当的坐标系表示点的位置.多媒体课件.前面我们已经学习了如何在平面直角坐标系内根据位置找点的坐标和根据坐标来找点的位置.利用这个知识,你能解决下面的问题吗?问题:教材第62页例2.【教学说明】通过学生实际操作,既对上节课所学的知识进行了巩固,又通过观察得出平行于坐标轴点的坐标特征.为这一节课的学习作好了充分的准备.一、思考探究,获取新知1.建立适当的平面直角坐标系.教材第65页例3.讨论:除了上面的方法外,你还可以怎样建立直角坐标系?【教学说明】学生通过讨论、交流,体验建立坐标系的位置不同,所得的结果并不完全一样.当然,可以根据实际情况力求使解题简单化.2.已知点的坐标求其他点的坐标.教材第66页习题3.4第3题.【教学说明】由从坐标系上用已知坐标找点的过程反向思考,培养学生的逆向思维,并寻求最简单解题方法.教师引导学生完成教材第65页例4.讨论:教材第65页“议一议”.【教学说明】经历运用所学的知识,寻找实际背景的过程,使学生体验到数学是解决实际问题和进行交流的重要工具.在现实生活中有着广泛的应用.二、运用新知,深化理解1.已知等边三角形ABC的两个顶点坐标为A(-4,0),B(2,0),则点C 的坐标为,△ABC的面积为.2.如图,象棋盘中的小方格均是边长为1个单位长度的正方形,“炮”的坐标为(-2,1),“帅”的坐标为(1,-1),则“卒”的坐标为.3.如图,一个机器人从O点出发,向正东方向走3 m到达A1点,再向正北走6m到达A2点,再向正西走9m到达A3点,再向正南走12m到达A4点,再向正东方向走15 m到达A5点,……按如此规律走下去,当机器人走到A6点时,A6点的坐标是.4.如下图是我市市区几个旅游景点的示意图(图中每个小正方形的边长为1个单位长度).请以某景点为原点,建立平面直角坐标系,并用坐标表示各景点的位置.5.根据以下条件在图中画出小玲、小敏、小凡家的位置,并标明它们的坐标.小玲家:出校门向西走150米,再向北走100米.小敏家:出校门向东走200米,再向北走300米.小凡家:出校门向南走100米,再向西走300米,最后向北走250米.【教学说明】教师让学生独立完成,加深对所学知识的理解和检验学生掌握情况,对于第5题教师可以正确引导,给有困难的学生及时帮助,让疑难问题当堂消化.【答案】【答案】1.(-1,33)或(-1,-33)93;2.(3,2);3.(9,12);4.以光岳楼为原点建立平面直角坐标系.如下图.则各景点所在位置的坐标为:光岳楼(0,0),金凤广场(-2,-2),动物园(6,3),湖心岛(-1.5,1),山峡会馆(4,-1).5.如图,小玲家(-150,100),小敏家(200,300),小凡家(-300,150).1.教师引导学生回顾各个象限内点的坐标特点和平行y坐标轴点的坐标特征以及建立平面直角坐标的方法步骤.2.这节课你掌握了哪些内容?还有哪些疑问?请与大家交流.【教学说明】引导学生从多个方面回顾本节重点知识,帮助学生养成在学习中不断总结归纳形成知识网络的好习惯,同时也加深了学生的理解与掌握.1.P40.就学生反馈的情况看,对如何建立坐标系和方案的最优化还十分欠缺,还有部分学生利用比例尺在坐标系中解决实际问题不是很熟练,有待今后进一步加强训练.第三章位置与坐标3 轴对称与坐标变化【知识与技能】1.会由一点求关于坐标轴对称的点的坐标.2.掌握两点关于坐标轴对称的坐标规律,并能利用这个规律在平面坐标系中作出一个图形的轴对称图形.【过程与方法】在找两点关于坐标轴对称的坐标规律的过程中,培养学生的语言表达能力、观察能力、归纳能力,养成良好的自觉探索的习惯,体会数形结合的思想方法.【情感态度与价值观】在找点、描点的过程中让学生体会数形结合的思想,激发学生学习数学的乐趣.会由一点求关于坐标轴对称的点的坐标.找两点关于坐标轴对称的坐标规律.多媒体课件.情境教材第68页例题上方的内容.【教学说明】学生通过观察和实际操作对关于坐标轴对称点的坐标特点有个初步的认识.利用数形结合帮助他们进一步理解这一规律.一、思考探究,获取新知关于坐标轴对称点的坐标特点.前面,我们已经对关于坐标轴对称点之间的关系有了一定的了解,利用这个关系,请看例题并思考.例教材第68页例题【教学说明】一方面,通过学生描点对以前所学知识加以巩固;另一方面,让学生经历纵坐标不变,横坐标乘-1点的坐标变化形成的规律特征,印象深刻.做一做:教材第69页“做一做”【教学说明】相反的,当把上面的各个顶点的横坐标不变,纵坐标乘-1所形成的规律特征让学生形成鲜明的对比,有助于学生理解与记忆.【归纳结论】关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数.二、运用新知,深化理解1.平面直角坐标系中,点P(4,-5)关于x轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限2.若P(x,y)的坐标满足等式(x-2)2+|y-1|=0,点P与P1(x1,y1)关于y轴对称,则x1,y1的对应值为()A.-2,1B.2,-1C.2,1D.-2,-13.已知点A(a+2b,1),B(-2,2a-b).(1)若点A、B关于x轴对称,求a、b的值.(2)若点A、B关于y轴对称,求a+b的值.4.△ABC在平面直角坐标系中的位置如图,分别作出与△ABC关于x轴和y轴对称的图形.【教学说明】学生独立完成,加深对所得规律的理解和检查他们学以致用的情况.学习过程中有困难的同学教师要及时给予帮助.1.共同回顾关于坐标轴对称点的坐标规律.2.通过这节课的学习,你已经掌握了哪些新知识?还存在哪些疑惑?请与大家交流.【教学说明】教师引导学生回顾已学知识,加深印象便于理解和记忆.通过总结得出,互相取长补短,利于共同进步.规律不需要死记硬背,要结合图形来理解.1.P42.学生对于规律性的知识一般采用死记硬背的方法,题目稍作变换就不能灵活加以运用,解决实际问题的过程中必要时利用图形帮助我们达到快速高效的目的.。